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Preface

This book, Physics for Advanced Level Secondary Schools, is written specifically for
Form Five students in the United Republic of Tanzania. The book is prepared according
to the 2009 Physics Syllabus for Advanced Secondary Education Form V-VI, issued by
the Ministry of Education and Vocational Training.

The book is divided into nine chapters, which are: Measurement; Newton’s Laws of
Motion and projectile motion; Circular motion, simple harmonic motion, and gravitation;
Rotation of rigid bodies; Fluid dynamics; Properties of matter; Heat: Vibrations and
waves; and Electrostatics. In addition to the content, each chapter contains illustrations,
exercises, revision questions, and some practical work. Answers to numerical questions
are provided at the end of the book. Learners are encouraged to do all activities and
answer all questions so as to enhance their understanding, and promote the acquisition
of the intended skills, knowledge, and attitudes.

Tanzania Institute of Education
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Chapter

One

Introduction

Measurement

Being an experimental science, Physics needs to relate the theoretical description
of nature with experimental observations. Before an explanation of nature can
be attempted, accurate observations must be made. The relationship between
theory and experimental observation is made through quantitative measurements
of various physical quantities. Measurement entails assigning numbers to events
or observations. In this chapter, you will learn about the differences between
fundamental and derived physical quantities, methods of dimensional analysis,
and the relationship between physical quantities. You will also learn about types
and sources of errors, ways of determining errors from a graph, and distinguishing

between accuracy and precision.

1.1 Physical quantities

Physical quantities can be divided
into two types, namely, fundamental
and derived quantities. A fundamental
physical quantity is not defined in
terms of any other quantity whereas the
quantities which are defined in terms
of other quantities are called derived
physical quantities. The measurement
of physical quantities involves their
comparison with the chosen standard of
the same kind of units. The measure of
any physical quantity is merely a number
and any idea about its magnitude that can
be stated in the unit. The standard units
for fundamental quantities are called
fundamental units. On the other hand, the
standard units for derived quantities are
called derived units. For example, units

Physics Form V.indd 1

for mass, length and time are chosen as
fundamental units while units of area,
volume, velocity and energy are derived
units.

In this section, you will study the
interactions existing between the two types
of physical quantities. The focus will be on
the difference between fundamental and
derived physical quantities, the method of
dimensional analysis, use of dimensional
analysis and the limitations of using the
method of dimensional analysis.

1.1.1 Fundamental and derived
quantities

Physical quantities which cannot be
derived or obtained from any other physical
quantities are known as fundamental
physical quantities. For example, the
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fundamental quantity mass can be measured directly using beam balance and hence it
does not depend upon other quantities. There are seven fundamental physical quantities.
Table 1.1 shows the fundamental quantities with their units.

Table 1.1 Fundamental quantities

Physical ity Symbol | SI unit Symbol
Mass m kilogram kg
Length 14 metre m
Time t | second s
[ Temperature T | kelvin K
Electric current I ampere A
Luminous intensity (brightness) 7 candela cd
[ Amount of subslan}:s (&uanliw) n mole mol

Note that, four of the base units namely, the kilogram, ampere, kelvin, and the mole
have been redefined in terms of naturally fixed constants, namely the Planck constant
(h). the elementary electric charge (e). the Boltzmann constant (k), and the Avogadro
constant (N ) respectively.

On the other hand, derived quantities are defined in terms of fundamental quantities.
In order to measure the derived quantity, one must measure the quantities that it depends
upon. For example, speed is derived from length and time. Table 1.2 shows examples of
derived quantities with their respective units.

Table 1.2 Derived quantities

Derived quantity Unit of measurement Unit symboli
Area square metre m2

Volume cubic metre m’

Density kilogram/cubic metre kgm *

Speed metre/ second ms
Acceleration meter/second squared ms”>

Force newton Norkgms~
Pressure newton/ metre squared or pascal Nm *or Pa
Potential difference volts i A4

1.1.2 Dimensional analysis

Dimensions are the powers of fundamental physical quantities that represent a certain
physical quantity. Dimensions can be represented by square brackets [ ]. Dimensional
analysis is the method of establishing a relationship among physical quantities using

| Physics Form V.indd 2




Physics Form V.indd 3

the three fundamental basic quantities
(length, mass and time). Any physically
meaningful equation will have the same
dimensions on the left and right sides.
Therefore, dimensional analysis is
important for checking correctness of
formula and establishing the relationship
among physical quantities. Table 1.3
shows units and dimensions of some
common physical quantities.

Table 1.3 Dimensions of some physical

quantities
Quantity \ Unit \ Dimensions
Mass kg M
Length m |IiB
Time s T
Velocity [me® | Lr?
Acceleration [ ms * LT
Force kegms® | MLT?
Density kgm™ [ M7

\bamplers) |

Find the dimensional formula for
kinetic energy.

Solution

Kinetic energy is given by the
1

expression Emvl where m is the mass

and v is the velocity.

Dimensions of

kinetic energy =[mass ]x[velocity]’,

but [mass ] = M and [velocity] =LT".

Since E is dimensionless, then,

[%mvg:i =M T

The dimensions ofkinetic energy are ML* T
where M, L and T are the dimensions of
the fundamental quantities mass, length
and time, respectively. Therefore, the
dimensional formula for kinetic energy
is ML'T™.

1.1.3 Uses of dimensional analysis

Dimensional analysis is useful in checking
correctness of a formula, assigning units of
physical quantities and deriving formula.

(a) Tocheck the correctness of
formula

Checking correctness of a given equation
using dimensional analysis is based on the
principle of dimensional homogeneity.
The principle works by comparing the
dimensions of each term on either side of
an equation. It states that, “An equation
is dimensionally correct if the dimensions
of the fundamental quantities (mass,
length, and time) are the same in each
term on either side of the equation”. Only
quantities of the same dimensions can be
added, subtracted or equated.

Consider the physical equation
v=u+at where v and u are final and
initial velocities of a body respectively,
a isan acceleration, and £ is time. Using
methods of dimensional analysis, check
whether the equation is dimensionally
homogeneous.

Solution
From the principle of dimensional
equation is

homogeneity. the
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dimensionally homogeneous if each
term on either side of the equation has
the same dimensions.

The dimensions of each term are:
[W]=LT"; [u]=LT"'; and [at]=LT".
Since the dimensions of physical
quantities are the same for every term, the
equation is dimensionally homogeneous.

(b) To assign units of a physical quantity
The method of dimensional analysis is
used to assign units of physical quantities.
For example, the units of the coefficient of
r'Ap
80!
is the radius of the pipe, O is the volume

viscosity given by 1= (where r

flux (volume flow per time), %is pressure

gradient) can be obtained using dimensional
analysis as follows:
() (me2T

[UJ:T)l [HJZML"T" the

units of nare kgm™'s™ or Nm™s.

1.1.4 Relationship between physical
quantities

Dimensional analysis can be used to
derive an expression of a physical quantity
provided the terms upon which the given
physical quantity depends are known. This
form of dimensional analysis expresses a
functional relationship of some variables
in the form of an exponential equation.
The method involves the following steps:
(i)  Identify all the independent variables

.L

that are likely or assumed to

determine the dependent variable.
(i) If Q isa variable that depends upon

independent variables; R ,R ,R,..R

then Q=<RIR,R;..R", where

a, b, c,...,m are arbitrary exponent
integers.

(iii) Write the above equation in the
form Q=kR!R]RS..R”, kisa
dimensionless constant.

(iv) Express each of the quantities in the
equation in some base units.

(v) By using dimensional homogeneity,
obtain aset of simultaneous equations
involving the exponents a, b, ¢,...,m.

(vi) Solve these equations to obtain the
value of exponents a, b, ¢,...,m.

(vii) Substitute the values of the exponents
in the main equation, and form the
non-dimensional parameters by
grouping the variables with similar
exponents.

This method does not provide the value of

a dimensionless constant k. The constant

can be determined mathematically or

experimentally.

Neampleds) ]
Consider a small bob hanging freely
to a string whose free end is attached
to a fixed-support. If the bob is set into
periodic oscillation, use dimensional
analysis to derive the formula for the
period of oscillation of the system.

Solution
The period T of oscillation of the
pendulum depends on the length / of

| Physics Form V.indd 4




the pendulum and the acceleration
due to gravity g at the place. With this
information the relationship between
the physical quantities can be written as

T=k'g (i)

where a and b are unknown exponents
and k is a dimensionless constant.

Dimensionally, equation (i) can be
written as

[T]=kIr1g" (ii)
Substituting each physical quantity

with its respective base fundamental
unit in equation (ii) gives,

MOLOT =(M0LMT0)(M“LhT—Z/)) (i)
Comparing LHS and RHS of equation
(ifi) M: 0=0; L:0=a+b; T:1=-2b;

1 1
a= 3 and b=—E
Substituting the values on equation (i)

gives T=ki2g 2.

The value of & was experimentally
found to be 2m. Therefore, the final

equation is 7'= Zn\/Z.
g

1.1.5 Limitations of dimensional
analysis

Although dimensional analysis is used

to check correctness of formulae, derive

formulae and assign units of physical

quantities, it has some limitations as

follows:

(a) Ifaphysical quantity depends on more
than three fundamental quantities (M,

Physics Form V.indd &

(b)

(c

(d

©

&)

Measurement

Land T), then the relation among them
cannot be established.

It does not show whether a given
physical quantity is a scalar or a vector.
It does not show the value of constants
involved in given formula.

It cannot be used for deriving equations
containing logarithmic, exponential or
trigonometric relations.

It can only verify whether a physical
relation is dimensionally correct or not.
It cannot show whether the relation is
absolutely correct or not. For example,
applying this technique s = ut + 4at’
is dimensionally correct whereas the

X % |
correct relation is s = ur + ;at“,

Use dimensional analysis to check

the correctness of the following

formula:

(a) v*=u’+ 2as where u and v
are velocities, a is acceleration
and s is distance.

(b) E=mc* where Eis energy, m
is mass and ¢ is the velocity of
light.

(¢) T=2m where Tis period.

Write the dimensions of @ and b in

b—x
the relation p S where p is

power, x is distance and ¢ is time.
Identify the physical quantity x

defined as x=ﬂ. where / is

moment of inertia, F is force, v is
velocity, W is work and / is length.
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a
4. Write the dimension of » in the

relation F= aJ;+[;[3 , where F is
force, x is distance and ¢ is time.

5. A jetofwater of cross sectional area
A and velocity v strikes normally
on a stationary flat plate. The mass
per unit volume of water is 0. By
dimensional analysis, show that an
expression for the force F exerted
by the jet against the plate is given
by kAv:Q.

1.2 Errors

Measurements of physical quantities are
always subjected tosome errors. These errors
may originate from various sources, mainly
from measuring devices, environment, an
observer taking the measurements and
mathematical computations. Errors are
uncertainties in measurements. Therefore,
measured values will always deviate from
exact values. The difference between the
exact value (sometimes taken as a mean
value) and the measured value constitutes
an error of measurement. The word error
should not be confused with mistake which
is simply doing something incorrectly or
carelessly.

In this section, you will learn types and
sources of errors, how to determine errors
in measurement, method of estimating
errors of derived physical quantities,
techniques of determining errors from
graph and the differences between accuracy
and precision.

1.2.1 Types and sources of errors
Errors of measurement are divided into
two types namely systematic and random
errors. Systematic errors are caused by
instruments. For example, ruler or a beam
balance with incorrect scales. These are
errors whose cause is known and tend
to happen or occur in a systematic pattem.
Some specific causes of systematic errors
include:

(a) Incorrect design or set up of an
instrument which includes construction
and calibration.

(b

=2

Incorrect reading or interpretation of
the instrument in an experiment.
Limitation of the method used for
measurement.

(c

(d)
Systematic errors can be minimized
by proper design and calibration of the
measuring instruments.

Poor accuracy of formula being used.

On the other hand, the causes of random
errors are unpredictable and have no
systematic pattern. They keep on varying
in terms of their magnitude and direction.
Causes of random errors include changes
in experimental conditions such as
pressure, temperature and wind. Also,
lack of sensitivity of the instrument and
human inaccuracies. Random errors can
be minimized by repeating a measurement
several times and then finding the arithmetic
mean (or average) for all the recorded values.

1.2.2 Determination of errors in
measurements

Measured quantities are always subject to

errors because of the uncertainties that are

involved in the process of measurement.

| Physics Form V.indd 6




Hence, it is important to make some analysis
and find out the magnitude of those errors
and make interpretation. The following are
common terms used in errors:

(a) Absolute error

Absolute error is the magnitude of the
difference between the true value and
the measured value of the quantity. This
difference may be positive or negative
depending on the circumstances of taking
the measurement. Assume a physical
quantity to be measured # times and let
the measured values be sy By vensilye
The arithmetic mean, a,, of Lhese values
becomes

_ata+..+a,

a
m

n
hence the absolute error IAa"|in a, is

n ;am i

(b) Mean absolute error

Since the error may be either positive
or negative, it is worth to find the Mean
absolute error that is the arithmetic mean
of the magnitudes of absolute errors.
Mathematically this is expressed as,

e

mean o

The final result of measurement can be
writtenas, a=a___+Aa

‘mean mean *

This implies that value of a is likely to lie
between a+Aa, . and a—Aa, ..

(¢) Relative error or fractional error
The relative error or fractional error is
defined as the ratio of the mean absolute
error to the mean value of the quantity

a
meun

measured. Relative error =

Physics Form V.indd 7

Measurement

When the relative error or fractional
error is expressed in percentage then
percentage error is obtained. Thus,

Aa
percentage error = —=2x 100%
a

mean
Relative error gives an indication of
how good a measurement is compared
to the size of the object being measured.
Consider two students measuring objects
with a meter stick. One student measures
the height of a room and gets a value
of (3.125 £ 0.001) m. Another student
measures the height of a small cylinder
and gets (0.075 £ 0.001) m. Clearly,
the overall accuracy of the room height
is much better than that of the cylinder.
The comparative accuracy of these
measurements can be determined by
looking at their relative errors as follows:

Relative error in a room height is
0.001m
3.125m

Relative error in a cylinder height is

0.001m
0.075m

=32x10"

=1.3x10"

Clearly, the relative error in the room
height is considerably smaller than the
relative error in the cylinder height even
though the amount of absolute error is the
same in each case.

[\ Rewiy ) ]

Determination of errors of mass,
length and time of a simple pendulum

Materials: Inextensible string, meter
rule, stop watch, retort stand. pendulum
bob, and beam balance
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Procedure

(a) Measure the mass (m) of the
pendulum bob.

(b) Tie the bob on the string and suspend
it on the retort stand so that it hangs
freely.

(c) Measure the length (/) of the string
from the point of suspension to the
centre of the bob.

(d) Set the bob to oscillate at small angle.

(e) Measure the time (7) for 10
oscillations.

(f) Repeat step (a) to (¢) then record the
values of m, / and 7 as in Table 1.4.

Table 1.4 Measurement of mass, length

and time
Measurement | Mass| Length | Time
(&) | (em) | (s)
First
Second
Third
Question

Write the values of m, [ and ¢ including
their corresponding errors.

\eamplea) ]

An object weighs exactly 36.5 grams.
When weighed on a faulty scale, it
weighs 38 grams.

(a) What is the percentage error in
measurement of the faulty scale to
the nearest tenth?

(b) If a chick weighs 14 grams on the
same defective scale, what is the
chick’s weight in gram to the nearest
tenth?

Solution
(a) Percentage error

[38g-36.5¢]
T 365¢g
which is approximately 4.1%.

x100%

(b) Let the true weight of the chick be x,
then, 14g=x+0.041x ; x=13.4g.

Therefore, the chick’s weight is 13.4
grams.

The actual length of the playing field is

500 m. A measuring instrument shows

the length to be 508 m. Find:

(a) Absolute error in the measured
length of the field;

(b) Relative error in the measured length
of the field; and

(¢) Percentage error in the measured
length of the field.

Solution

(a) The absolute error in the length of
the field is 1500_5031 m=8m.

(b) The relative error in the length of

is [500m —508:
the field is [500m —508m| _
500m
(¢) Thepercentageerrorinthelengthofthe

.. [500m —508m|
field is %100% = 1.6%.
500m

1.2.3 Errors of derived physical
quantities

In any experimental results, the measured

values which are always subjected to

various errors can propagate errors when

the measured quantities are manipulated.

Student’s Book Form
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Such manipulation includes addition,
subtraction, multiplication, division and
exponents. The propagation of errors in any
mathematical computation depends on the
formula used to determine the final answer.
In this part the errors in sum, difference,
product, quotient and exponents will be
discussed.

(a) Errorsin a sum

Suppose you are given this equation,
x=a+b. Let Aa be the absolute error in
the measurement of @, Ab be the absolute
error in the measurement of » and Ax be
the absolute error in the value of x,

When ¢ and b are added, such that
x=a+b

xtAr=atAa+btAb (1.1)

After expanding equation (1.1), four
possible values of Ax are: Ag+ Ab,
Aa—Ab, —Aa+ Ab, and —Aa—Ab. The
maximum possible absolute error in x is
Ax= Aa+Ab. Therefore, the maximum
absolute error in the sum of two quantities
equals to the sum of the absolute errors in
the individual quantities.

[ \Eemples) ]

Suppose a= (20‘51 0.5)cm and
b=(10.0+02)em. Calculate the
maximum possible error of a+b.

Solution

Let x=a+b then,
x=20.5cm+10.0cm=30.5cm and
Ax=0.5cm+0.2cm =+0.7cm.

Maximum possible errorin x is +0.7cm.

Physics Form V.indd 9
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Therefore, the value of x ranges from
29.8cm to 31.2 cm.

(b) Errors in a difference

Error in difference can be calculated by
following the same procedure used in the
sum.

Let x=a—b, and Aa be the absolute
error in the measurement of a, Ab be
the absolute error in the measurement
of b and Ax be the absolute error in the
measurement of x. Then,

x+Ax=(atAa)—(bEtAb) as in sum,

the four possible values of Ax are;
(Aa+ Ab), (Aa— Ab), (~Aa — Ab) and
(—Aa + Ab).

The maximum possible error in x is

(Aa+ Ab). Hence the value of x can

range from, (a—b)—(Aa + Ab)to
(a—b)+(Aa+ Ab)

Therefore, the maximum absolute error in
the sum is equal to the maximum absolute
error in the difference.

(¢) Errorsin a product
Let x=ab, then

(x+Av) = (a% Aa)(b+ Ab) (1.2)

By simplifying equation (1.2) and
dividing each term by x on both sides
gives,
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Since is very small, it can be

Aa _ Ab
24 &
a b Ax
neglected: the possible values of e
Aa Ab Aa_Mb Aa Ab c’]
— e ———k—— AT}
a b a b a b

But the maximum possible values are
A

A“ Ab and ————b‘ The maximum

P I) a b

value of
Ax [ Aa  Ab
o= [ T

a b
Therefore, maximum fractional error in
product of two or more quantities is equal to
the sum of fractional errors in the individual
quantities.

.

(d) Error in division
a
Let x=—
et x=1

(a*Aa)

GEAN= s An)

(1.3)

simplyfing equation (1.3) gives

£+A—h d-ﬁ-—,hence.
a b

A (Ma &b

x la b

Thus, the maximum value of fractional
error in division of two quantities is equal
to the sum of fractional errors in the
individual quantities.

(e) Error in exponents

Letx= %, thenapplying natural logarithms
on both sides, In(x)=nlna—mlnb.
Differentiating both sides gives,
dx _ da db

b
which can be written in terms of fractional
erTors as;

Therefore, the maximum value of

Ax [ Aa Ab]
—={n—+m—|.
X a b

This equation can be regarded as a general
form for computation of errors in derived
physical quantities.

Calculate percentage error in the

determination of g=41z3L1 when

[ and T are measured with £2% and
+3Y% errors respectively.

Solution !
Using, g :41:2F. and since 4n” is

constant,
error in Ag is +[1;/ 2ATJX]OO%
g

Substituting the values for / and 7, the
percentage errorin gis +8%.

then maximum percentage

Therefore, if the actual value of g is
9.8ms then approxnmated value of g
may vary from 9.0ms™ to 10.6ms™.

| Physics Form V.indd 10
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1.2.4 Errors from a graph

The fact that no individual measurement
is accurate often requires experimenters
to carry several measurements of a
given quantity with the hope that these
measurements  will cluster about the
true value required to be measured.
The distribution of these data values is
represented graphically by showing a
single data point representing the mean
valueofthe data, and error bars to represent
the overall distribution of data. Error bars
are used on graphs to indicate the error
or uncertainty. They look like a cross
(Figure 1.1) whose vertical bar gives the
error on the ordinate and the horizontal
bar gives the error on the abscissa.

For example, the uncertainty associated
with a data point
A(x,y)=(3.75+0.15,40m£02m) on
a (x,y) graph is plotted by drawing a
cross whose vertical bar goes from 3.8m
to 4.2m and whose horizontal bar goes
from 3.6 s t03.8s.

When calculating a gradient froma graph,
it is important to determine the magnitude
of uncertainty. This is done by drawing two
lines of “worst fit” also known as lines of
minimum and maximum gradient. These
lines are drawn by first constructing a
square (or rectangle) around the error bars
of the two extreme data points.

x(m) _— i Best fit line
Maximum gradient \
’
3 7
= g
H
HFHH R H A A gradient
4
3
2
1 B
L(s)
0 1 2 3 4

Figure 1.1 Determination of errors from graph




or Advance

Then the top left comner of the first data
point is joined with the bottom right corner
of the n" data point and the bottom right
corner of the 1* data point is joined with
the top left comer of the n data point
(Figure. 1.1).

Suppose the gradient of line of best fit is
m, gradient of the worst fit line one is
m, and gradient of the worst fit line two
is m,. The uncertainty in the gradient
of best fit line is then taken as half the
difference between errors in the gradients

of worst fit lines. Mathematically,
_ Am +Am,

7 , Where Am = |’”| - m|

and Am, =|m, —m|A This formula applies
to a straight line graph and a curve although

the gradients of the graph would vary.

eampiea)
Suppose the slope of the best fit line
is 1.0 and slopes of maximum and
minimum worst lines are 1.16 and 0.81
respectively. Estimate the value of slope
of the graph.

Solution
From the given information,

Am, =[1.16~1.0{and Am, =|0.81-1.0|

_0.16+0.19

Am 0.18.

Therefore, the slope of the graph to the
nearest hundredth is 1.0£0.18.

1.2.5 Accuracy and precision
Accuracy and precision have different
meanings, although some people use them
interchangeably. Precision refers to the
closeness of two or more measurements
to each other. For example, if you weigh
a given substance five times, and you
get the same value each time then your
measurement is very precise. Precision is
determined by the smallest scale division
or least counting unit of the measuring
instrument. The smaller the least counting
unit or the smaller the scale division the
greater the precision.

The accuracy is the measure of how close
the measured value is to the true value of the
quantity. Accuracy in measurements always
depends on several factors like personal
errors and imperfection in technique or
procedureused. Others include instrumental
errors and environmental factors like
weather changes, wind and temperature.
Therefore, accuracy refers to the degree of
conformity and correctness of something
when compared to a true or absolute value
whereas precision refers to a state of strict
exactness. Accuracy in measurements can
be improved in many ways including the
following:

(a) Make measurement with an instrument
that has the highest level of precision
(smallest possible unit)

(b) Apply correct techniques when using
the measuring instrument and when
reading the value measured.

(c) Avoid the error due to parallax by
taking readings while looking at right

angle to the scale of an instrument.

.L
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(d) Repeat the same measurement several

(e

times to get a good average value.

Take measurement under controlled
conditions. If the object you are
measuring could change size depending
upon weather conditions (expand or
shrink), make sure you measure it
under the same conditions each time.

| Erercise 12 )

Explain the basic differences
between precision and accuracy.

In a certain experiment, the refractive
index of a glass was observed to be
1.44,1.50, 1.48, 1.45,1.60 and 1.52.
From these data calculate:

(a) Mean absolute error;

(b) Mean value of the refractive index;
(c¢) Fractional error; and

(d) Percentage error.

The relative error in measuring the
mass of a certain substance is 5% and
inits volume is 2%. What will be the
percentage error in the measurement
of the density?

. The initial and the final temperatures

of a liquid are found to be

(63.5+ 0.5)°C and (72. 6+ 0.4)°C.

respectively. Determine the rise in

temperature.

The period of oscillation of a
!

simple pendulum is 7=2mn =
The value of / is 20cm known to
| mm accuracy, and time for 100
oscillations of the pendulum is found
to be 90 s using a wrist watch of 1s
resolution. What is the accuracy in
the determination of g?

Physics Form V.indd 13
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Measurement

An experiment shows that the
frequency f ofatuning fork depends
on the length / of the prongs, density
p, and the Young’s modulus £ of
the material. Using dimensional
analysis derive an expression for
the frequency.

An explosion that happened in water
created a gas bubble within it, and it
was found to oscillate with a period
of oscillation 7. If T'is proportional
to p*p'E° where p is the static
pressure, p is the density of water and
E the total energy of explosion. using
methods of dimensions, determine
x,yand z.

It is suggested that the velocity of
water waves in a basin depends on
wavelength 1, density of water p
and the acceleration due to gravity
2. Using dimensional analysis check
if the dependence of these quantities
is correct.

Differentiate between an error and
a mistake.

A certain wire with a length of
(125.2£0.1)cm was subjected to
an extensional force and caused it to
extendto (128.3+0.1)cm. Calculate
the elongation of this wire with its
error limit.

. A physical quantity Q is given by the
following equation Q= ka’b’c’d".
If the percentage error in each
measured value of a,b,cand d is
0.6%, determine the percentage
errorin Q.
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7. The length, breadth and thickness
of a glass block as measured
by a student were found to be
(25.124+0.05)cm, (15.55+0.05)cm
and (5.15+0.05)cm. Determine the
percentage error of the volume of
this glass block.

8. In the ancient years the Earth’s
daily rotation on its axis was once
used to define the standard unit of
time. What other types of natural
phenomena currently could serve
as alternative time standards?

9. (a) You are given a thread and
a metre scale. How will you
estimate the diameter of the
thread?

(b) A micrometer screw gauge
has a pitch of 1.0 mm and 200
divisions on the circular scale.
Do you think it is possible
to increase the accuracy of
the micrometer screw gauge
arbitrarily by increasing the
number of divisions on the
circular scale? Why?

(¢) The mean diameter of a thin
brass rod is to be measured by
Vernier calipers. Why is a set
of 100 measurements of the
diameter expected to yield a
more reliable estimate than a
set of 5 measurements only?

—

10. What is the unit of volume? A student
measured the volume of a cylinder
which has the radius » and height
h, and wrote the formula of volume
as - h. Explain whether the student
was dimensionally correct or not.

11. A book with many printing errors
contains the following four different
equations for the displacement y
of a particle undergoing a certain
periodic motion:

. [ 2mt
(a) y =sin T
(b) y =sin (v);

=l
(c) y-Tsm 1 ;and
(d) »= (A«/E)(sin[zrﬂ]+ cos[%]v

where 4 is maximum displacement
of the particle, v is speed of the
particle, ¢ is the time and 7 is the
periodic time. Find out the wrong
equations on dimensional grounds.

)

. Precise measurements of physical
quantities are needed in science. For
example, to ascertain the speed of an
aircraft, one must have an accurate
method to find its positions at closely
separated instants of time. Think
of different examples in modern
science where precise measurements
of length, time and mass are needed.
Also, give a quantitative idea of the
precision needed.
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Chapter

Two

Introduction

Newton’s Laws of Motion
and projectile motion

In your life, you have experienced many situations in which different objects
move. Physicists can describe the motion of such objects. In the process of
describing their motion, three questions can be asked: What causes an object
to move? What causes an object to stop? And what causes an object to
accelerate or decelerate? The answer to these questions is objects move, stop
and or acceralate due to the effect of force. In this chapter, you will learn about
Newton’s Laws of Motion and projectile motion. You will also learn about the
application of Newton’s Laws of Motion and projectile motion in daily life.

2.1 Newton’s Laws of Motion
Motion of bodies was carefully studied
and analyzed first by Galileo Galilei and
then followed by Sir Isaac Newton. On
the basis of his study, Newton articulated
three laws of motion: first law, second law
and third law of motion. In this section
you will learn about force, equilibrant
forces on a body, expressions for tension
and acceleration of connected bodies,
reaction forces, and the principle of the
conservation of linear momentum.

2.1.1 Force

The concept of force gives a quantitative
description of the interaction between
two objects or between an object and
its environment. It is defined as a pull
or push acting on an object. The result
of force is to produce or stop motion of

Physics Form V.indd 15 o

a body. Thus, force can cause a body to
move or a moving body to come to a stop.
Furthermore, force can cause a body to
accelerate or decelerate in a circle with its
velocity changing continuously.

Force exists in different types. When a
force involves direct contact between
two objects we call it contact force. Other
types include normal force (a component
of force perpendicular to surface), friction
force (a component of force parallel to
the surface), tension (a force in a cord or
rope attached to pulled object) and weight
(gravitational attraction the earth exerts
on an object).

Being a vector quantity, force is described
in terms of magnitude and direction. The
ST unit of magnitude of force is newton,
abbreviated as N. An object can be
affected by several forces simultaneously.
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In this case, the net force (vector sum of
all forces) will determine the motion of
the object. When there is no force or no
net force acting on the body in motion,
the body moves with constant velocity
and zero acceleration, while the one at
rest remains stationary.

The relation between force and motion
is described by Newton’s three laws of
motion. Having discussed some properties
of force, we now turn our attention to
discuss what makes bodies move the
way they do and the way forces affect the
motion of a body by using Newton’s laws
of motion. There are three Newton's laws
of motion. The first law says that, when
a net force on a body is zero, its motion
does not change. The second law relates
force to acceleration when the net force
is not zero. The third law is a relation
between the forces that two interacting
bodies exert on each other.

2.1.2 Newton’s First Law of Motion
Suppose you are pushing a book along a
horizontal table top (i.e. you are applying
a horizontal force to it with your hand).
When you stop pushing, what happens to
the motion of a book? What do you think
will keep the book moving? Suppose you
are now pushing the book across a smooth
surface of a freshly waxed floor, what
happens to the motion of a book as you
stop pushing it? In the same manner, what
happens to the motion of a book moving
ona completely frictionless surface when
you stop pushing it?

In each of the preceding cases, you may
note that after you stop pushing, the book
will not continue to move indefinitely:
it slows down and stops. So you need to
keep pushing (i.e. applying force) for it
to continue moving. It may be concluded
that, bodies in motion naturally come to
rest and that a force is required to sustain
motion. Again, let us ask ourselves: what
makes the body slow down and stop? The
answer is “friction force™ which interacts
between the lower surface of the body
and the surface on which it slides.

In all explained cases. the surfaces exert
a frictional force on the book which
resists the motion of the book. The only
difference in the preceding cases is the
magnitude of the frictional force. The
slippery (frictionless smooth surface)
exerts less friction than the rough surface.
These cases show further that, if you
could eliminate friction completely, the
book would never slow down.

It can therefore be concluded that, when
no net force acts on a body, the body
either remains at rest or moves with
constant velocity in a straight line. This
is Newton’s first law of motion. The
law states that, “Every body continues
in its state of rest or uniform motion in
a straight line unless it is acted upon by
external force”.

The tendency of a body to keep moving
once it is set in motion or to keep at rest
once it is stopped is called Inertia. Thus,
Newton's first law of motion is also called
the law of inertia.

.L
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2.1.3 Newton’s Second Law of
Motion

The law states that, “The rate of change of

linear momentum is directly proportional
to the net externally applied force and the
changes take place in the direction of the
net force”.

Consider a body of mass m moving with
a velocity v in a straight line. The linear
momentum P of the body is defined as
the product of mass and its linear velocity
such that P=mv. From the Newton’s
second law,

dap
D=

where Y’ F, =netexteral force;

2.4)

. dP .
P = linear momentum; ar =rate of
dt

change of linear momentum.

From the equation P =mv; and keeping
mass constant; dP = mdv 22

Therefore, placing equation (2.2) in
. . mdv

equation (2.1) gives F =—,

q gives F B =—

dv . .
where; =a, the variable a is the
acceleration. Therefore,

F _=ma

wa
Thus, a net external force acting on an
object produces a proportional acceleration.
This means acceleration is an effect of a
net external force.

Note that, Newton’s first law is the special
case of Newton’s second law. To verify
that, let wand v be the initial and final
velocities of a moving body whose mass
is m and moving in a straight line.

N Laws of Mation

From Newton’s second law, net force
dpP
F=—=ma
dt

Since m # 0, then a =0, that is
v—u
t
therefore, u = v, hence a body is moving
with constant velocity or is at rest. This is
Newton’s first law of motion.

=0,v—u=0,

2.1.4 Newton’s Third Law of Motion
The law states that, “To every action
(force) there is an equal and opposite
reaction”. Force is a mutual interaction
between an object and its environment.
For example, when you push an object,
the object pushes back at you with an
equal force. Suppose that, object A acts on
object B; then, force on B due to A, F,
is equal to the force on A due to B, F,
ie, F,,=—F, , where the negative sign
implies that, the two forces are oppositely
directed. Note that, these two forces act
on different objects and therefore they
never cancel each other.

2.1.5 Equilibrant forces on a body

Equilibrant forces are those forces that
produce zero acceleration to an object on
which they act and therefore establishing
equilibrium for that object. One of the
simplest cases of a body in equilibrium is a
book resting on a table as in Figure 2.1. The
forces acting on a book are its weight, W
acting downwards, and the normal reaction
R, that the table exerts upward on the book.
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Figure 2.1 Forces on a book resting on a table

Taking the upward direction to be
positive and the downward direction to
be negative, then the net external forceon
the book is:

F,, =R, +(-mg) (2.3)

e
Since there is no net motion vertically,
then » F_=0.

e
Therefore, 0= R, —mg: hence R, =mg.

The analysis on the forces acting on the
book shows that the two forces (R, and
mg ) add up to give zero, thus, the book is
in equilibrium.

[ Wampie21 )

A block of mass, m=100g is placed
on a rough inclined plane. The plane
makes an angle, 6=30° with the
horizontal as shown in Figure 2.2.
Determine the value of friction force
that is required to keep the block at rest.

Figure 2.2 Forces acting on a body resting on
a rough inclined plane

Solution

The free body diagram (Figure 2.3) for
the problem is;

] i
PN
/1

/o™
// \\

// N
W sinf
/ w

Figure 2.3 Free body diagram for the
inclined plane

\Wcosa

Net force along the x — axis;

> E =f+(-Wsing)

ma_= f—Wsinf
Since the block is at rest then, a, =0.
Therefore, f'=Wsinf=mgsinf
f=0.1kgx9.8ms™ xsin30° =0.49N
Therefore, friction force which is required
to keep the block at rest is 0.49N.

Notethat, since there is no acceleration
perpendicular to the plane, the component
R, and W cos@ add up to zero.
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A box weighing 8.0 N is supported by
two wires with tension 7' and 7,
(Figure 2.4). Find the tension in each
wire.

Figure 2.4 Box supported by two wires

Solution
The free body diagram for the problem,
Figure 2.5.

Tisin@ +T,sin6,
A

7

Figure 2.5 Free body diagram for the
supported two wires

Net force along the x —axis (horizontal)
Y F, =Tyc0s6, +(~T,cosb,)
ma, =T, cos6, —T, cosH,
Since the box does not accelerate,
a, =0.
Therefore, 7)cos6, =T, cosé, , but
6,=60° and 6, =30°

Physics Form V.indd 19
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Net force along the y-axis (vertical)
Y F, =TLsin6, +Tsin6, + ()
ma, =Tsing, + Tsinf, =W

Since the box does not accelerate,
a =0. Therefore,

mx0=Tgsin@, +Tsind —W

W =T;sin@, + T;sin6,

8="T.sin30" + T;sin60”
8=0.5T,+0.8667; (if)

Substituting equation (i) in equation
(ii) gives 8.0=0.5T, +0.866x 1.737,
and solving for 7, and 7;;

8.0

I,=————=40Nand 7, =6.9N
2 0.5+1.498

2.1.6 Motion of connected bodies
Connected bodies can move in vertical
direction, horizontal plane and inclined
plane.

(a) Connected bodies in vertical motion

Consider two bodies of massesm, and

m,which are connected together using a

flexible and massless string. The string is

made to pass over a smooth pulley which
is fixed to the ceiling so that the two

bodies hang freely (Figure 2.6).

(i) If the two masses are equal. the
system will be at equilibrium i.e.
there will be no motion at all.

(i) If m <m,, then the system will
move in the direction of m, with an
acceleration a.
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(iii) If m, <my, then the system will
move in the direction of m, with an
acceleration a.

Consider case (ii) where m, <m,.

Ve

mg

Figure 2.6 Pulley system

The larger weight pulls on the lighter causing
the system to accelerate in one direction with
an acceleration a. Therefore, the motion of
the bodies can be expressed as,

T,-mg=ma 2.4
m,g—T,=myua 2.5)
Since the pulley system is smooth, 7, =7,

then, adding equation (2.4) and (2.5) and
rearranging, gives
_[m—m

m +m,

(2.6)

Substituting equation (2.6) into equation
(2.4) gives
m, —

. m,—m,
—mg=m|— g
1 \m+m,

m,—m
Ti=mg+m|— g
m +m,

2mm,g

I,=
i’l’ll"'i'l’l2

Also, substituting equation (2.6) into (2.5)

gives, 7, = 2™€ Thismeans I,=T,=T.
Tompdm, -

Therefore,

2mm,g

T 2.7)

my +m,

Suppose the two bodies in figure 2.6
have the masses mz and m, of 3kg and
5kg respectively. Find the acceleration
of each mass and the tension in the
string.

Solution
. )
Recall equation, a= g
m+m,

Skg—3kg 2 2
=l—=—— %9 8§ =245
a [3kg+5kg)x ms ms

2mm,g
my+m,

Recall equation, T =

_ 2x3kgx5kgx9.8ms™
3kg+5kg

Thus, the acceleration of each body is

2.45msand the tension in the string

is 36.75N.

71y =36.75N

(b) Connected bodies on horizontal
plane

Usually one body is pulled horizontally

by another, each linked by a tow-bar.

my+m, +n, —m sy
T = mlg{#] This is similar to the pulley but drawn out
m, in a line as in Figure 2.7.
- — —
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Figure 2.7 Motion of bodies in horizontal plane

Assuming no friction,

For my: F-T=ma (2.8)

For my: T=m,a (2.9)
Adding equations (2.8) and (2.9) and
rearranging, gives

F
a= X
m +m,

Substituting value of « into equation
(2.9), gives
m,F

m +m,

Consider a case whereby two connected
bodies are such that one is resting on a
smooth table and the other is hanging
through a smooth pulley which is fixed at
the edge of the table as in Figure 2.8.

7 T
' )

m

Figure 2.8 Connected bodies

Note that, when a mass of any magnitude
m is connected (Figure 2.8), the system
will accelerate in the direction of m,.
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The acceleration of the system is
m

a=
m +m,

g

and the tension of the string is
m

|y

mi + m,

Suppose the body of mass m, is resting on a
rough table and the other hanging through a
smooth pulley (Figure 2.8). If the motion
of the system is in the direction of m,,
then, it follows that,

m|g—T=m|a (2.10)

T— f=mya, where f is the friction
force which always opposes the motion.
T—u,R=myua but, R = m,g

Thus,
T—pmg=ma (2.11)

Adding equation (2.10) and (2.11), and
rearranging, gives

. (mI —/.lkm:)g and 7— mn, (144, )g
m+m, m+n

where g, is the coefficient of kinetic

friction and R is the normal reaction.

[ Woanpeza )

A car with a mass of 600 kgtows a
trailer with a mass of 250kg in a
straight line using a rigid tow-bar as
shown in Figure 2.9. The resistive
force on the car is 200N and the
resistive force on the trailer is 80 N.
If the forward thrust produced by the
engine of the car is 800 N, find:
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(a) The acceleration of the car; and
(b) The tension in the tow-bar.

Figure 2.9 A car towing a trailer

Solution

Let m; be the mass of a car and m, the
mass of a trailer. The accelerating force
on the car is given by

F-T-f=ma (i)
The accelerating force on trailer is given
by:

T—f,=ma (ii)
Adding equation (i) and (ii). and
rearranging gives
_F-fie,
m +m,
- 800N —200N —80N 0,612 ms™

600kg+250kg

Substituting the values of a and f£; in (ii),
T=ma+f,

T=250kgx0.612 ms™+80N =233N

Therefore, acceleration and tension are
a=0.612ms™ and 233 Nrespectively.

(¢) Connected bodies on an inclined
plane

Consider two blocks of masses m, and

m, connected by an inextensible string

that passes over a smooth pulley as shown

in figure 2.10.

Figure 2.10 Connected bodies on an
inclined plane
Suppose m,>m, when the system is
released. Mass m, will raise up the plane
and m,will fall vertically downwards.
The resultant forces can be shown by a
diagram (Figure 2.11).

Figure 2.11 Forces acting on connected bodies
Net force along the plane:

> F, =T+(-Wsin6)

ma, =T —mgsind

Since there is no net motion perpendicular
to the plane, then

R, =mgcos@
Net force onm,
DE=W=T
mya =mg—-T
Since the two blocks move as a single

system, then they move with the same
acceleration. Therefore,

a =a

x v

=a
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Thus, acceleration and tension are:

. (m: —m sine)g

ml + m,

and T— mm,g(1+sinB)

my +m,

[ Weampezs )

A 10 kg mass on asmooth 30° inclined
plane is connected to a 4 kg mass by a
light inextensible string passing over a
smooth pulley at the top of the plane
(Figure 2.12).

7
\Q‘%
V)
AN
m, =4kg

30°

Figure 2.12 Connected masses on
an inclined plane

When the bodies are released from rest
the 10 kg mass moves down the plane.
Find:

(a) The acceleration of the system: and
(b) The tension in the string.

Solution
The free body diagram for m and m,
is shown in Figure 2.13.
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Net force parallel to the plane
ZE =mgsing—T
10kgxa, =10kgx9.8ms™ xsin30°—T
10 kgx a, =49 kgms ™ —T (i)

Net force on m,
4kgxa, =T—4kgx9.8ms™
4kgxa, =T-39.2 kgms™ (ii)

But d,=a, =d (the acceleration of
the system). Solving for a and 7 ; from
equation (i) and (ii) gives,

(a) a=0.7ms” (b) T=42N

[ \Bxample26) ]

Two equal masses connected by a string
passing over a frictionless pulley lie on
each side of a rough wedge. The wedge
faces make angles 6, =53°and 6, =47°
to the horizontal. Find the coefficient of
friction u for which the masses move
at constant velocity.

Solution

Since the masses are equal, the direction
of motion will be down the steeper slope.
The resultant force on the ascending
mass m in the direction of motion is

Zﬁ =mgsin@, —T — umg cos, (i)

Figure 2.14 Forces acting on connected bodies
on inclined rough surfaces
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The resultant force on the other mass m is
ZFz =T~ mgsinb, — umg cosO, (ii)

Motion at constant velocity implies that
both forces vanish. Adding equation (i)
and (if), Y F, =) F,=0, thus,

0= mg(sinﬂ, = smez)— mg (uasﬂ, + zzosBz).

Thus,
_ sing), —sinf, 3
" cosf, +cosb, -
_ sin53°—sin47°
c0s53°+cos47°
_0.799-0.731 _ 0.068

“060o+06s2 1284 %

Therefore, the coefficient of friction, u
is 0.05.

(d) Mass ascending or descending in a lift
Consider a person of mass m standing in an
accelerating lift. The lift could accelerate
upwards (ascending) or downwards
(descending). Note that, there are only
two forces acting on the person: the weight
downward and the upward reaction of the
floor (Figure 2.15).

R>mg mg >R
a a
R R
i i
mg mg
(a) (b)

Figure 2.15 Ascending and descending
mass ina lift

You are aware of your weight because
the ground (or whatever supports us)
exerts an upward push on us as a result
of the downward push our feet exert on
the ground. It is this upward push which
makes us feel the force of gravity. When
a lift suddenly starts upward the push of
the floor on our feet increases and we feel
heavier. In fact, we judge our weight from
the upward push exerted on us by the floor.

During ascending (Figure 2.15 (a)).

R—mg =ma

R=m(g+a)
If our feet are completely unsupported we
experience weightlessness. Passengers
in a lift that has a continuous downward
acceleration equal to g would get no
support from the floor since both would
be falling with the same acceleration as
the lift. There is no upward push on them,
and so no sensation of weight is felt. The
condition is experienced when we jump
off a wall or dive into a swimming pool,
as we are then in free fall.

During descending (Figure 2.15 (b)),
mg—R=ma; R=m(g—a)

When a =g, R=0, thus, a person feels

weightlessness.

[ exampie27 ) =

A person with a mass 100kg stands
in a lifi. Find the force exerted by the
lift floor on the person when the lift is
moving:

(a) Upwards at 3ms™; and

(b) Downwards at 4ms™.

Solution
(a) Consider the movement upwards,
R =mg +ma
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R=100kgx9.8ms ™" +100kgx3ms~,
R=1280N

Therefore, reaction of the floor when
the lift ascends is 1280 N.

(b) Considerthe movementdownwards,
R=m(g—a)
R=100kgx(9.8ms™ —4ms ™) = 580N

Therefore, reaction of the floor when
the lift descends is 580 N.

2.1.7 Conservation of linear
momentum

Consider two objects of masses m, and

m, that are involved in a collision as

shown in Figure 2.16.

u u,

’I ’,

(a) Before collision

(b) During collision

)
Vi

—

o]

Figure 2.16 Colliding objects

(¢) After collision
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If F,, isthe force on m, dueto m, and F),
is the force on m, due to m, during the
collision and p is linear momentum; then,
applying Newton’s third law of motion
youget
E,=-F,

12 21 (2.12)
Since the two forces act at the same time
interval, then, according to Newton’s
second law of motion, the force acting on

mass m, is

dp
F,="0 (2.13
Bt 4
and the force acting on mass m, is
dp. ‘
== (2.14)
b5} d/

Substituting equations (2.13) and (2.14)
into equation (2.12), you get:
dp,=—dp,
dp,+dp, =0
my(v, = u)+my (v, —u,)=0
Rearranging the terms, gives,
mu, +myu, = myv,+my, (2.15)

Equation (2.15) is called the law of
conservation of linear momentum. The law
states that, “Provided that no net external

forces act on a system, then, the total

momentum of the system before collision is
equal to the total momentum of the system
afier collision”. The point to be noted is
that, individual momenta of various bodies
in the system may change, but their total
vector sum remains unchanged.

Impulsive forces
A collision is a relatively short lived event
whereby two or more objects exert forces
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on each other. During collision, relatively
large forces are exerted on the colliding
objects. These forces are called impulsive
forces. An impulsive force is not a
constant force. It varies from zero (just
before collision), increases to maximum
(during collision) and decreases to zero
(just after collision) (Figure. 2.17).

Figure 2.17 Variation of impulsive

force with time

Applying Newton’s second law of motion
to an object involved in collision:

= %, hence Fdt = dp
By definition Fdtis the impulse of the
force F acting for a duration df. Thus,
impulse of the force is measured by the
total change of momentum (dp ). Kicking
a football and hitting a cricket-ball with a
bat are examples of impulse.
When considering systems where mass
changes while velocity remains constant,
for example liquid emerging from a
hosepipe, hovering bird, etc., the following
relation can be obtained.

From Ap=A(mv), when velocity is
constant, Ap=vAm .

For a small change of momentum and
mass, Ap = dp, Am=dm and At = dt,
thus, change in momentum is given as:
dp = vdm.
Force due to change in mass is obtained
as follows;

_dp_ dn

dt dt
But, dm= pAdx, where A is the area, P
is the density and dxis the distance. It
follows that,
pAdx
F=yE2
Y

(2.16)

Since ﬂ =y. then
dt

F=pAv
Therefore, the force exerted by the
fluid is pAv’.

[ Nz ]

Aballofmass 2kg movinghorizontally
to the right at a speed of 20m/s strikes
a wall and bounces back horizontally
at a speed of 20m/s. If the impact
lasted for 0.01 seconds, determine the
average force exerted by the ball on the
wall during collision.

Solution
- )|
dt t
2kg(—20ms™ —20ms™'
g 2l 20m” )

0.01s

F=-8000 kgms™
The negative sign indicates a direction
in which force F acts. Therefore, the

average force exerted by the ball is
8000kgms ™ or 8000 N.
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Rain falls vertically onto a plane roof,
1.5 m square, which is inclined to the
horizontal at an angle of 30°. The rain
drops strike the roof with a vertical
velocity of 3ms™, and a volume of
2.5%107m’ of water is collected from
the roof in one minute. Assuming that
the conditions are steady and that the
velocity of the raindrops after impact is
zero, calculate:

(a) The vertical force exerted on the
roof by the impact of the falling
rain; and

(b) The pressure normal to the roof
due to the impact of the rain.

(Use density of water is 1000 kgm™).

Solution
From equation (2.16),
F= vd—m = v—p v

dt dt

where, v isthe rate of change of volume

of the water collected from the roof.
=2 3

F=3ms" x1000kgm x22X10 @

60s
=125N

Therefore, the vertical force exerted on

the roof'is 1.25N .

(b) Pressure normal to the roof, P= % :

Since the roof'is inclined at an angle of
30°, the force F,,,normal to the roof is

F, = Fcos@
F, =1.25N %0530
=1.25N x0.866=1.08N
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pm BN e
1L5mx1.5m

Therefore, the pressure normal to the

roof is 0.48Nm .

Collisions

When a body in motion interacts with
another body (either at rest or in motion),
a collision is said to have taken place.
When sucha collision takes place, velocity
of bodies may change. The velocities
after the collision can be determined,
considering that, during the collision, the
law of conservation of linear momentum
and energy hold. Collision can be either
elastic or inelastic. In this part, you are
going to learn collisions that occur in one
dimension and two dimensions, and that
the colling bodies make contact during a
collision.

(@) Elastic collision

Elastic collision is a type of collision
in which the total kinetic energy of
the colliding bodies is conserved. This
means that the total kinetic energy and
the momentum of colliding bodies are
conserved.

(b) Inelastic collision

Inelastic collision is a type of collision
whereby the kinetic energy of the colliding
bodies is not conserved but the momentum
is conserved. Kinetic energy is not
conserved due to the fact that some of the
mechanical energy is lost in the collision.
Energy is lost in form of heat or is used in
deformation of bodies. When it happens
that the two colliding bodies stick to each
other after collision, it is referred to as
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perfect inelastic collision. So, they move
together with acommon velocity after the
impact. Hence equation (2.15) becomes
myu, +myu, =(m, +m,)v, where v is the
final velocity of the single body after
collision. In most cases for this to happen,
the objects must stick together and move
with common velocity as a single unit. For
example, consider a wooden block of mass
M swinging from fixed strings of length /.
If a bullet of mass m is fired horizontally
at velocity w and hits the block, it becomes
embedded, then the masses swing in a to
and fro motion as shown in Figure 2.18.

Figure 2.18 Ballistic pendulum

From conservation of linear momentum
mu+Mx0=(m+ M)v. Where v is the
common velocity of block and bullet after
collision. Therefore,

mu
m+M

(2.17)

Also from conservation of energy, total
kinetic energy after collision = total
potential energy at extreme point

%( m+ MW =(m+ M)gh (2.18)

Substituting equation 2.17 into 2.18 we
end up with

mu ¥ 1 mu
——— | =2gh, then j=—| ]
[M+m] & 2g[M+m

h
cosf=1— 77 substituting the

value of h; cos = l—L e
2gi\ M+m

f=cos”| 1-——[ "™ _| | 219
2gI\ M +m

The angle € is the angle of displacement
when the bullet hits the block.

[ \Bxample210) ]

A 10 g bullet is fired with a velocity of
300ms™ into a pendulum bob which
has a mass of 990 g. How high does the
pendulum bob with the bullet embedded
swing after the collision?

Solution

From the law of conservation of
momentum,

m +myu, = (m+my)v

0.01kg x300ms™ = (0.01+0.99) kg x v

Therefore, v=3ms™'

In conserving mechanical energy at
point A and B; K, +U,=K,+U, .
where K, K, and U, U, are kinetic
and potential energies respectively.
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L +m, )V +0=0+(m +m,)gh
2 1 2

3

(Sms‘

1y
2%9.8ms™

h= 5 =0.46m
2g
Therefore, the pendulum bob will

swing at a height of 0.46m .

In practice, there is always some loss of
kinetic energy during collision. The “lost™
energy is converted to other forms of energy
such as heat energy. sound energy, light
energy, and energy of deformation. The
degree of loss of energy during collision
can be described by the coefficient of
restitution (e). This coefficient depends
on the elastic properties and nature of the
surfaces of colliding objects. Therefore, it
is possible to classify a collision as elastic,
inelastic, or perfect inelastic according to
the value of e that is associated with it. The
coefficient of restitution e is defined as the
ratio of the relative velocity of separation
to the relative velocity of approach.

_ relative velocity of separation

" relativevelocity of approach ~
_Y%—h

u—u,

From Figure 2.16, 4, —u,. v,—v are
relative velocities of approach and
separation respectively.

When e=1: such collision is said to be
perfectly elastic. This means the kinetic
energy of the system remains constant
(conserved). Thus, initial kinetic energy
is equal to final kinetic energy

(2.20)

71111':+—1m|1
g 3Vs
CHEAE I

[ P
— ]+ —mau; =
il o+ Sty

2

Newton's Laws of Motion

Which can be written as,
m(u +v ), —v)=m,(v, +u, ) (v, —u,)

Equation (2.15) can be written as,

my(u, —v)=m,(v,—u,) (2.21)

Placing equation (2.21) into (2.20) gives
m(uy +v )y —v))= (v, +u,)m (u,—v,)
Dividing both sides by m,(u,—v,) gives

U —u, (2.22)

Equation (2.22) shows that when the kinetic
energy of system of colliding objects is
conserved, the coefficient of restitution
(e) equals to 1. Thus, for perfectly elastic
collision in one dimension, the relative
velocity of approach before collision is
equal to relative velocity of recession
(separation) after collision. When e =0
the collision is said to be perfectly inelastic
ehy v, =V 5 s
collision. Such that, 0 = 2—; this is true
u—u
only when v, =V,. v
For inelastic collision, velocity of
separation is always less than velocity
=
1

b3

of approach, hence L
u

<1 ore<l.

1 2
This result shows that, after collision the
colliding objects move with a common
velocity. In most cases for this to happen,
the objects must stick together and move
as a single unit.

Aball of mass 0. 1kgmoving horizontally
ataspeed of 5ms™ collides head on with
aballof 0.3kg at rest. Assuming that the
collision is perfectly elastic, determine
the final velocities of the two balls.
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Solution

From the law of conservation of linear
momentum mu, +myi, =my, +m,v,
But m, =0.1kg, m, =0.3kg,

u, =5ms™, u,=0ms™
0.1v,+0.3v,=0.5 (i)

For perfect elastic collision, el O
L]
v,—v =5 (it)
Solving equation (i) and (ii) gives,
v, =—2.5ms"and v, =2.5ms™".

It shows that the two balls move with the
same velocity in the opposite directions.
When collision occurs in two dimensions
it is treated by considering horizontal and
vertical directions. Consider a particle
of mass m, colliding elastically with a
particle of mass m,which initially is at
rest. Let u, be the initial velocity of mass
m, , move along the x-direction. After the
collision, the two particles move with
velocities v, and v, making an angle
6, and 6, with the x-axis respectively
(Figure 2.19).

Before collision After collision
¥ vsing
Y
—»V, cos,

Wy, ()

v,siné,

Figure 2.19 Collision system

According to the law of conservation of
linear momentum, linear momentum in
x-direction is given by

(2.23)
For y-direction, since initially the
y-component of momentum is zero, then,

(2.24)

my, = my, cosB, + myv,cos 6,

0=my, sin@ +m,(-v,sin,)
The law requires that in an elastic
collision, the total kinetic energy before
collision equals the total kinetic energy
after collision.

Thus, noting the initial conditions, u, =0.

%m,uf = %m[vf + %m:vz: (2.25)
The three equations (2.23), (2.24) and
(2.25) express the entire contents of the
conservation laws. The motion after
collision involves four unknowns v;, v,, 6,
and 0,, while assuming that, the values
of m,m,, u,and u, are known. The four
unknown quantities cannot be determined
by only three equations. In order to find their
values, at least one quantity should be known.

[ \Example.12)

A small spherical body slides with
velocity v and without rolling on a
smooth horizontal table and collides with
an identical sphere which is initially at
rest on the table. After the collision the
two spheres slide without rolling away
from the point of impact, the velocity of
the first sphere being in a direction of
30° to its previous velocity. Assuming
that energy is conserved, and that there
are no horizontal external forces acting,
calculate the speed and direction of travel
of the target sphere away from the point
of impact.

dent’s Book Fors
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Solution
From Figure (2.19), considering the
horizontal direction,

M, + gty = m v, cos 6, +m,v, cos6,

where m; =m,,u,=0,u,=v and 6, =30°

Thus, v=v,c0s30°+v,cosé,

g "
cosf, =—2— ®
Vertical direction,

0=v,sin30°~v,sin6,

v
§inf, = —— i
=5 (ii)

Squaring (i) and (ii), and adding, you
get, Vi =vi+ v — vlvﬁ (iii)
Since kinetic energy in an elastic
collision is conserved, then,

1, 1,1,
;mlv =Em|vl +Em1v:

(iv)

Substituting equation (iv) into (iii), and

simplifying:
3 v
V=Y and v, = 5

The speed of the target sphere is ‘;’

From equation (ii),

e

—y J;

sing, =—2—="2_ 9, =60°

e

Therefore, the speed and direction

of the target sphere are 2 and 60°
respectively. 2
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2.1.8 Momentum of systems with

varying masses and velocity
There are numerous cases where
momentum changes are produced by
reaction or explosive forces. An example
is a bullet fired from a rifle: initially, the
total momentum of the bullet and rifle is
zero. From the principle of the conservation
of linear momentum, when the bullet is
fired the total momentum of bullet and
rifle is still zero, since no external force
has acted on them. The momentum of the
rifle is thus equal and opposite to that of
the bullet, resulting into reaction force. This
also applies to the systems in which both
mass and velocity change, for example in
rocket and jet propulsion, sand on conveyor
belts and hosepipes.

Consider a system whose mass and velocity
change as shown in Figure 2.20(a).

Yo ol i v+Av
a = & I < =
I
| “mﬂ 'm |l
| | | m—Am
att=0 att=t  aqrg=r+AMt

(a) Rocket propulsion

Combustion chamber

— o F1|él Z
Air— | me——e— §
— B[ Fuei' ’7‘ <7 gases
Compressor Turbine

(b) Jet engine

Figure 2.20 Systems of changing mass and
velocity
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At initial time 7, a system of mass m is
moving with a velocity v. At a later time
(t+Ar), the mass is (m—Am), and it
moves with a speed (v-+Av). The ejected
mass Am moves with a speed u.

As change in mass, velocity and time
become very small, then,
Am=dm, Av=dv and Ar=dr

From principle of conservation of linear
momentum,

total initial momentum = total final

momentum

my =(m—dm)(v+dv)+udm
mv = mv+mdv—vdm—dmdv+udm

But the term dmdy is the product of two
small quantities and therefore can be
neglected.

mv—mv =mdv—vdm+udm
0= mdv+(u—v)dm
mdv=—(u—v)dm

The quantity (u—v) gives the relative
velocity of the ejected mass with respect
to the system denoted as V,,;. Thus,
)
dv=—v, 2 (2.26)
m
The above equation can be applied in all
systems of changing mass.

Rockets propulsion

One of the interesting illustrations where
the principle of conservation of linear
momentum is applied is that of rocket
propulsion. Here the rocket is propelled as a
reaction of the ejected gas produced during
the combustion of the fuel. In this case
the mass of the rocket goes on changing
constantly as a result of ejection of gases

formed during combustion of the fuel. The
mass of the rocket constantly decreases
as the gases get ejected, its acceleration
and velocity go on increasing all the time
(Figure 2.20(a)).

The velocity of a rocket in outer space
(negligible gravitational pull of the earth)
can be obtained using equation (2.26

[dv= [, 2 ] =, [ ]

v, =v,+v  In] —
i rel
m,

The thrust on a rocket is a recoil (reaction)
force exerted on the rocket by the exhaust
gases. The expression for thrust can be
obtained by using equation (2.26).

dv=—v ﬂ, mdv=-v_dm
m

Divide by d throughout the equation to

(2.27)

. This is

ml
d
the force that propels the rocket forward.

The thrust on a rocket is —1

The negative sign in equations (2.26)
and (2. "7) shows an increase in speed
(posm\'e— ) correspondmg to a decrease

in rocket mass (nq,(mve—)

Note that, when the rocket is under the
influence of earth’s gravity, equation
(2.27) is modified to become.

dv__ . dm_ (2.28)

F

| Physics Form V.indd a2




Rearranging equation (2.28)

ﬂ —V,, dm
dt m dr

J‘:'dv:‘jm' @ J’ dt

m
v, =v,+v In| —|-gt
m,

Thus final velocity is given by equation
(2.29). and acceleration is given by

am LIn m o,
t m,

This applies where the force of gravitation
is experienced.

—g, dv=—v, /L—gd
m

(2.29)

Jet propulsion

A jet engine uses the surrounding air for
its oxygen supply and so is unsuitable for
space travel. The compressor draws in air at
the front, compresses it, fuel is injected and
the mixture burns to produce hot exhaust
gases which escape at high speed from
the rear end of the engine. These cause
forward propulsion and drive the turbine
(Figure 2.20 (b)) which in turn rotates the
compressor and hence the jet takes off.
Suppose air of mass m, enters the front
end of the jet with incoming velocity v,
which then mixes with fuel of mass 7, in
the combustion chamber. The mixture of air
and fuel burn and the exhaust (burnt) gases
will be ejected with velocity v, through the
rear end of the jet.

The initial linearmomentum P, of incoming
air is given by;

P=mpy,
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The final linear momentum B, of
outgoing burnt gases is given by;

B= (mu +m, ) vy
The change in linear momentum is given

by dP:(m“ +m,)vo—m"vi

The force F exerted by the burnt gases
equals to the rate of change of linear

dpP .
momentum —, i.e.,
dt

(mﬂ = m, )"u my,

m,
and —~ are the rates at
t

m
where —=
t

which air enters the jet and the fuel burns
respectively. The force exerted by the burnt
gases to the rear end of the jet (from left
to right) has the same magnitude as that
the rear end of the engine produces from
right to left. In turn and with reference to
Newton’s third law of motion, the rear
end of the jet produces the same force but
in opposite direction which makes the jet
engine to take off.

Example
[ \Example2.13/ ]

A jet aircraft is travelling at 225 ms™
in a horizontal flight. The engine takes
in air at a rate of 85kgs™ and burns fuel
atarate of 3kgs™". If the exhaust gases
are ejected at 650ms™ relative to the
aircraft; find the thrust of the jet engine.

Solution
Velocity of incoming air (velocity of
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jet aircraft) v =225ms™ and velocity
of outgoing burnt gases Vv, =650ms™.
The rate at which air enters the front

end of the jet, ﬂ:SSkgs“ and the

rate at which fuel burns, *3kg5

Then thrust on the jet engine is obtained

=88kgs™ X 650ms™
=38075N

Therefore, thrust of the jet engine is
38075 N.

[ examplez19) ]
A rocket moving in free space has a
speed of 3.0x10°ms™ relative to the
earth. Its engines are turned on, and
fuel is ejected in a direction opposite
the rocket’s motion at a speed of
5.0x10"ms™ relative to the rocket.

(a) What is the speed of the rocket
relative to the earth once the
rocket’s mass is reduced to one-
halfits mass before ignition?

(b) What is the thrust on the rocket if it
burns fuel at 0.77 kgs™?

- (85kgs" ) x225ms™

Solution

(a) V,—V,=V, ln[i],
N mf

V=Y In[ﬂ—]

rel m

v, =3x10" ms™+5.0x10" ms™ In| —=-
0.5m,
=6465.7 ms™'

Therefore, speed of the rocket relative
to the earth is 6466ms™.

(b) Thrust, F =v,_<,d—m.

dt
F=50x10"ms™' x0.77kgs ™' =3850N
Therefore, the thrust on rocket is
3850N.

[ ample 2157
Two fire fighters must apply a total

force of 600N to a steady hose that

is discharging water at 3600 litres/min.

Estimate the speed of the water as it

exits the nozzle.

Solution
dm F F
=y, — V==
wt gy Vet dm pdV
dt dt
G =76_?0N = =10ms™
1000kgm™ % 0.06m's
Therefore, the speed of water is
10ms™.

2.1.9 Applications of Newton’s Laws
of Motion

Newton’s laws of motion are widely

applied and experienced in daily life.

Some of the applications are:

As one turns a corner when travelling in a
car, his/her body keeps moving in a straight
line while the car turns the corner. It is as if
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he/she is pushed into the side of the seat.
Also, when a moving bus stops suddenly,
the passengers feel a jerk in a forward
direction. This is because the upper part
of the passenger’s body tends to remain
in continuous motion while the lower part
of the body comes at rest suddenly. That
is why it is advised to fasten a seat belt
when travelling in a car to ensure safety
throughout the journey.

When beating a dusty coat with a stick,
the coat comes in motion while the dust
particles remain in a state of rest and thus
get removed.

When you jump off a small rowing boat
in water, you will push yourself forward
towards the water. The same force you
use to push forward will make the boat
move backwards.

When you walk on the ground you press
the ground backward with your feet as
a reaction and the ground gives you an
equal and opposite impulse forward
which sets you in motion.

If a ball is kicked in air, it will rise in air
and eventually fall back to the ground.
This is due to air resistance and pull of
gravity.

When a rocket propels, it pushes out a
burning gas (action) and exhausted gas
pushes on the rocket (reaction) with an
equal thrust but opposite in direction. The
net rate of change in linear momentum
produces the forward acceleration of a
rocket.
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A\ Exercise
s —

1. Explain why;

(a) when you push against a wall,
you feel like the wall is pushing
against you.

(b) when one end of a horizontal

plane is lifted, a certain stage

(angle of repose) is reached

when an object resting on it

begins to slide down the plane.
if you push on a heavy box
which is at rest, you must apply
some force to start its motion.

However, once the box is

sliding, you can apply a smaller

force to maintain its motion.

(c

2. Give reasons as to why:

3

(a) when a train suddenly starts,
the passengers standing in
a compartment tend to fall
backwards.

(b) when brakes are applied on the
train, passengers inside it tend
to fall forward.

apassenger sitting in the rear ofa
bus claims that she was injured as
the driver slammed on the brakes,
causing a suitcase to come flying
towards her from the front of the
bus. If you were the judge in this
case, what disposition would you
make? Why?

Analyse the motion of a stone
dropped in water in terms of its speed
and acceleration as it falls. Assume
that a resistive force is acting on the
stone that increases as the velocity
of the stone increases.

(c

A mass m =1kg lies on a smooth
table and is attached by a string
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and a frictionless pulley to a mass
m, =0.0lkg hanging from the
edge of the table (Figure 2.21). The
system is released from rest.

(a) Calculate the distance the mass
m, moves across the table in the
first 10seconds.

(b) How long will it take for the
mass m,to travel 1m from its
initial position?

Figure 2.21 Connected masses on a pulley

.(a) Can a body be in equilibrium

when only one force acts on it?
Explain your answer.

(b) A person standing in a lift
holds a spring balance with a
load of 5kg suspended from
it. What would be the reading
of the balance when the lift is
descending with an acceleration
of 3.8ms~?

. A book of mass M rests on a long
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table with a piece of paper of
mass m=0.1M in between. The
coefficient of friction between all
surfaces is g =0.1. The paper is
pulled with horizontal force P
(Figure 2.22).
(a) What is the minimum value of
Prequired to cause any motion?

(b) With what force must the paper
be pulled in order to extract it
from between the book and the
table?

Book

"

—_—

Figure 2.22 A book resting on a table

7.(a) Explain why the load on the rear
wheels of a motor car increases
when the vehicle is accelerates.

(b) Figure 2.23 shows a painter in
a crate which hangs alongside
a building. When the painter
who weighs1000 N pulls on the
rope, the force that the painter
exerts on the floor of the crate
is450N. If the crate weighs
250N, find the acceleration of
the system.

Figure 2.23 A painter in a crate

8. A box of mass 2kg lies on a

rough horizontal floor, coefficient
of friction is 0.2. A light string is
attached to the box in order to pull it

Student'’s Book Form Five




across the floor. If the tension in the
string is 7', find the tension that must
be exceeded for motion to occur if
the string is

(a) horizontal.

(b) 45° above the horizontal.

(c) 45° below the horizontal.

9. (a) A jetengine ona test bed takes
in 20kg of air per second at a
velocity of 100ms™ and burns
0.8kg of fuel per second. After
compression and heating, the
exhaust gases are ejected at
velocity of 500ms™ relative to
the air craft. Calculate the thrust
of the engine.

(b

A fire engine pumps water at
such a rate that the velocity
of water leaving the nozzle
inclined at angle 60°to the
horizontal is 15ms™. Calculate
the pressure exerted on the wall,
assuming the rebound of the
water is neglected and 1m’®of
water has a mass of 1000kg .

A bullet is fired from a gun
with a horizontal velocity of
500ms ™. The mass of the gun is
4kg and the mass of the bullet
is 50g. Find the initial speed
ofrecoil of the gun and the gain
in kinetic energy of the system.

10. (a) (i) What are head-on and
oblique collisions?

(ii) In perfectly inelastic
collisions between two
objects, there are events
in which all of the
original kinetic energy
is transformed to forms

(c

<
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Projectile motion

other than kinetic. Give an
example of such an event.

(b) By using your own environment,
describe the applications of the
principle of conservation of
linear momentum in daily life
situations.

(¢) A ball of mass m moving at
Sms™ collides with a ball of
mass 2kg which is at rest.
After collision, the first ball
acquired the velocity of 2ms™
atan angle of 50° relative to its
original direction. What is the
velocity of the second ball after
collision?

2.2 Projectile motion

When an object is thrown in air, its motion
is influenced entirely by gravity and
air resistance. The motion of the object
is a two dimensional motion because as
the object moves in air, it covers both
horizontal and vertical displacement. The
horizontal component does not have any
acceleration, hence constant magnitude.
The vertical component, however, has
acceleration equal to the acceleration
due to gravity, but, in opposite direction
and hence, its magnitude is different at
different points and is directed vertically
downwards. Therefore, projectile motion
is a two dimensional motion of an object
in air which is influenced entirely by
gravity and air resistance.

Examples of projectile motion include the
motion of a bomb released by a moving
plane, a thrown stone, a bullet fired from a




or Advance

gun, a ball thrown in any direction and an
athlete doing a high jump. In this section,
you will learn the concept of projectile
motion, derivation of mathematical
relations and applications of projectile
motion.

2.2.1 Motions of projectile

Since a projectile moves horizontally as
well as vertically, two coordinates are
required to specify its position at any
time. Let us discuss the salient features of
projectile motion in which air resistance
is negligible.

Figure 2.24 shows a projectile projected
from the origin O with initial velocity u at
an angle @ with horizontal (x-axis). The
projectile rises to the maximum height ()
at point B and then descends, and finally
strikes the ground at point P.

v Trajectory

(6] Range ip
Figure 2.24 Motion of a projectile

The angle 6 is called the angle of
projection and the horizontal distance
OP is called the range of the projectile.
Mathematical analysis of the motion will
help to define important parameters of the
motion. Inthe analysis, xand y coordinates
are treated separately. The x-component
of acceleration due to gravity is zero and
the y-component is constant and its value
is—g.

From figure (2.24), vertical and horizontal
velocities, and displacements may be
obtained using equations of motion.
From first equation of motion,

v.o=u tat

v =usinf—gt (2.30)

Also, v =ucosf—-0xt
v, =ucosf (2.31)

Therefore, equations (2.30) and (2.31)
show the wvelocities for vertical and
horizontal components respectively.

It should be noted that, the horizontal
component v, of velocity is constant
throughout the motion because there is
no horizontal acceleration (i.e. ¢, =0).

Similarly, vertical and horizontal
displacements can be obtained using second
equation of motion;

s =u

1 2
t+—(a )
Hala)

1,
s, =(usi.119)t—5gt‘ (2.32)

s, =(ucos@)l+§x0x £
s, =(ucos@)t (2.33)

Therefore, equations (2.32) and (2.33) show
the vertical and horizontal displacements
respectively.

Likewise, vertical displacement s _can be
obtained from third equation of motion,

V=ul+2as,
v #

v, =usin H—ngj

.L
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2.2.2 Parameters of projectile
motion

Projectile motion consists of various

parameters. which include: trajectory, time

of flight, maximum height, time to reach

maximum height, range and velocity of

projectile at any point.

(a) Trajectory

Trajectory is the path traced by a projectile
from the point of projection O, to the
point of landing P, (Figure 2.24).

Trajectory equations

From equations (2.33) and (2.32),

s
s, =(ucosO)t; 1=—=
ucos@

s, =(usin0)t-%gt:

s =usin@ %4 g| =2
e ucosf ) 25| ucosd

1 g’

s =s tanf-———-—
v 2u cos 6 (2.349)
g
S =V S =N T T a0
Let s, =y, s, =x 2u” cos™ 6
tan@ = b

Equation (2.34) can be reduced to
1

= ie, y= bx+ax’.
2ucos @

y=xtanf—

This is the equation of parabola.
Thus, equation (2.34) is the trajectory
equation which is parabolic in nature.

(b) Time of flight

Time of flight is the total time taken
by a projectile from the instant when it
is projected to the time when it strikes
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the point in a horizontal plane passing
through the point of projection, i.e., from
point O to P (Figure 2.24). From the
same figure, let B be the point where the
vertical component of velocity becomes
zero. Hence, at this point equation (2.30),
v, =0
_using

O=usinf-gt ¢
’ g

This time #is the time taken by a projectile
to reach maximum height, i.e. from O to
B in (Figure 2.24). The total time taken
by a projectile to reach the point in a
horizontal plane passing through the point
of projection is double of this time t. Hence,
the total time of flight is given by
= 2usin@
g
This can alternatively be obtained by
considering that the total vertical distance
travelled by the particle is zero. Therefore,
from equation (2.32),
s, =0

T= (2.35)

2usin@

0=(usi.u9)T—%gT1,T= =

(¢) Maximum height
Maximum height is the maximum vertical
distance attained by the projectile above
the point of projection. It is obtained
using the relation;

vf =, uf +2a,s,

At maximum height (point B)
(Figure 2.24), v =0 and s = H, thus,

u’sin’ 0

0=(usin6)* —2gH, H =
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Note that, maximum height {7 is
i

obtained when 6 =90° and sin®@=1.

Thus,

_w
w3

(d) Horizontal range
Horizontal range R is the horizontal
distance covered by the projectile from
projection point O to the landing point P
(Figure 2.24). From equation (2.33),

s, = (ucos@)
At the point of landing, the time spent in
air by a projectile is T and the horizontal
distance is R. Therefore,

R=(ucosd)T (2.36)

Substituting equation (2.35) in equation
(2.36) gives,
Re ”COSB[ 2using ) g U cosfsin®
g g
Using the trigonometric identity,
sin( A+ B)=sin Acos B+cos Asin B

2sin@cosh =sin26 gives

_ u’sin26
4

R (2.37)
Note that, the maximum horizontal range
is obtained when sin20=1 or 6=45°
and therefore,

Hence, a projectile which is projected
making an angle 45° with the horizontal
has a maximum range.

(e) Velocity of a projectile at any point
The velocity v of a projectile at any point
along the trajectory is obtained by adding
the horizontal component and the vertical
component of its velocity (Figure 2.25).

V= \'f + vf
V=4 v\2 + vi
v= ,'(ucose)2 +(usi116—gf)Z

On simplifying gives,
v=qlut +g’t* —2ugtsing

The direction of a projectile at any point
is given by

o=tan” L
l"

[ Wampezio)

Aball is thrown with a speed of 17ms ™

at a projection angle of 58° above the

horizontal. Assuming the point of return

of the ball is at the same horizontal level

as the point of projection, determine;

(a) time of flight.

(b) the range.

(¢) maximum height.

(d) time taken to reach maximum
height.

Solution Ao
(a) Time of flight, 7= =459
_ 2x17ms ' xsins8’ _

= = 2.9s
9.8ms™

u’ sin20

(b) Horizontal range, gp—
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{7 ) xsinfaxstr)
9.8ms

(c) Maximum height, 77— @sin’§

(17ms™') xsin®sg®
H=—1""" " _{o6m
2%9.8ms™

(d) Time to reach the maximum height,

usinf
t=——
4
e
Therefore, t = Lot <ein3 e =1.5s

9.8ms™

2.2.3 Special cases of projectile
motion

So far we have discussed a projectile
projected from the ground and the point of
striking the ground is on the same plane as
the projection point. There are other cases
where either projection point or striking
point is not on the ground, for example,
projectiles fired from a point above the
ground and those fired on an inclined plane.

(a) Projectiles fired from a point above
the ground

Projectiles fired from a point above the

ground may be horizontally or vertically

or at an angle 6 with the horizontal.

(i) Consider aprojectilefiredhorizontally
with velocity u at a heighth above the
ground (Figure 2.25). The horizontal
velocity remains constant throughout
the projectile motion. The downward
velocity is zero at the time of firing
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the projectile and keeps on increasing
uniformly with time till the projectile
hits the ground.

¥

NN

=
NN

Figure 2.25 Projection above the ground

For horizontal motion (6=0°)
u,=usin0°=0
u, =ucos0° =u
For vertical motion
v, ==—gl, negative sign indicates
downward velocity.

From equation (2.32), the vertical
displacement s, from the point of
projection to point P (Figure 2.25), is
given by

s, = usiu(O")r— %gtz

§ = -lgt“’ negative sign indicates
¥ 2 e
downward displacement.

Time taken by a projectile to hit the
ground is obtained from the relation;

vi = ui +2as,

(»gr): = (us‘m(O”))l —2gh
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(i)

whereu, = usiu(()“). v,=u sin(O")—gr

and s, =/h

Therefore, time taken by a projectile
to hit the ground is given by: s = ’2_/'

Horizontal distance from the point
of projection to the point where the
projectile hits the ground is given by:

s, = (ucos@)t

s, =ucos(0")x\/§, s, =u\/2?7
&

Consider a projectile fired from
height h above the ground at an angle
6 with a velocity u (Figure 2.26).

!

Figure 2.26 Projection at an angle

Motion along the vertical;

v, =usinf—gt;
. |
y= h+(usm€)f—5gr’

Motion along horizontal

v, =ucosf; x=(ucos)

Time of flight is obtained from the
vertical motion equation.

0= h+(usin6)t—%gr1 (2.38)

Rearranging equation (2.38) and
solving gives,
- usin@ £ \Ju’ sin® 0+ 2hg
g
Since Ju’sin® 8+ 2hg > usin@, then,
time taken by a projectile to reach the
ground is given by;

e usin®+/u’sin> 0+ 2hg
g
x=(ucosO),

= cosﬂ[ usin@+ ' sin’ 0+2gh

£

[ mpiezi)

A stone is thrown at an angle 45°

with the horizontal, from the top of

a building 30m high with an initial

velocity of 20ms™. Calculate;

(a) time of flight

(b) horizontal distance at which the
stone strikes the ground

(¢) velocity and direction with which
the stone strikes the ground.

Solution
(a) Using equation (2.38),

—30m =20ms™" xsin45°
><t—%><9.8ms’2 xt

Solving fortgives t =4.3s or t =—1.4s
but time cannot be negative, hence the
time of flight is 1 =4.3s.
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(b) Horizontal distance, s, = (ucos@)t.

5, =20ms ™' Xcos45°%4.35=60.8m

(c¢) Velocity is given by the relation
v
v, =ucosf
v, =20ms ' xcos45°=14.14ms "
v, =usinf— gt
v, =20ms™ xsin45°—9.8ms ™ x4.3s

=-28ms™

v=y/(14.14ms
=31.37ms™
This is the magnitude of the velocity
with which the stone strikes the ground.

The direction @ of the velocity is
calculated using the relation,

V‘_
tang =2,

x

o] —28ms™
14.14ms™

The direction with which the stone
strikes the ground is 63.21° below the
horizontal.

(b) Projectile on an inclined plane
Projectile motion on an inclined plane
is one of the various types of projectile
motion. The main distinguishing aspect
is that, points of projection and point of
striking the ground are not on the same
plane.
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This type of motion can be discussed in terms
of a new pair of coordinates, with x-axis
along the incline and y-axis perpendicular
to the plane. Figure 2.27 shows a projectile
fired initially with velocity u atan angle 6
with the horizontal. The inclined plane is at
an angle ¢ with the horizontal, therefore
the firing angle with the inclined plane is
6— zz) .

Figure 2.27 Projectile up an inclined plane

Important characterizing aspects of
projectile motion up an inclined plane
includes:

(i) Coordinate x along the inclined plane
and y perpendicular to the inclined
plane;

(ii) Angle of projection;

(iii) Range s, measured along the incline
from point O to P:

(iv) Components of initial velocity
u, =ucos(f—a and u =usin(6-c);
and

(v) Components of acceleration
a =-gsinocand a =—gcoso .

When dealing with projectile motion on an

inclined plane the common parameters of

interest as usual are time of flight, range

of flight, maximum range and angle of
projection.
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Time of flight can be derived from the
1
distance equation s, = uvt+5a“r3.

Where s =0 at the time of flight.

Thus, 0=u T + la T, Substituting
vt T
expressions for #,and @, gives,
_ 2usin(6-a)
gcosa
Consequently, the range of flight is found
from the relation, g =4 7+ la b it

Substituting values for «_,a_and T,

R:ucug(g_a)(m]_

gcosa
1.\ 2usin@-e)\
2 ding || 22RO ~@)

[ngm J{ geosor )

Simplifying equation (2.39),

(2.39)

1!1
R=———(sin(260 - )-sina
gcos® 01( ( ) )
The range is maximum when,
. Vi
in(20—a)=1, i.e, 20— =— or
sm( ) 5
g
4 2
Therefore, maximum range,
_ 2usin(@-a)
geosa

[ Neampieziy

A projectile is thrown from the base of
an incline of angle 30°. What should
be the angle of projection, as measured
from the horizontal direction so that
range on the incline is maximum?

T

Solution
From the relation

R= gc:;za(sin@e—a)—sina)

The range is maximum when
sin(26—a)=1- 20=a+90°
_90°+30°
2

Therefore, the maximum angle of
projection is 60°.

6 ; 0=60°

2.2.4 Applications of projectile
motion

Projectile motion is widely applied in every

day life. Some applications are as follows.

In football, the amount of force a footballer
applies to the ball (how hard the individual
kicks) will determine the initial velocity
and how fast the ball will travel. The
angle at which the footballer kicks the ball
determines the height and distance travelled.
For example, if the ball is kicked at an angle
of 45° it will get the maximum range.
Projectile motion is very closely associated
almost with all types of sports involving
jumping or throwing of objects in air.

A soldier who has to target at a particular
location must calculate the velocity and
angle of throw for the bomb to hit the target.
In addition, projectile motion is applied
when using fire extinguishers. People who
have to extinguish fire at a long distance
position the water hose at a certain angle
in order to hit the fire.

Projectile motion is also used when food
packages are dropped from helicopters
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or aeroplanes in times of disasters. The
distance from which the packages are
dropped is important so that these packages
may fall in appropriate locations.

A\ Exercise2.2 J
A /

1. (a) Abomb is released by a plane
flying horizontally and the other
one is released by a stationary
plane like a helicopter at the
same altitude and they reach the
ground at the same time. Why?
Aballis projected horizontally
from the top of a building.
One second later another ball
is projected horizontally from
the same point with the same
velocity. At what point in the
motion will the balls be closest
to each other? Will the first ball
always be traveling faster than
the second ball? What will be
the time interval between them
when the balls hit the ground?
Can the horizontal projection
velocity of the second ball be
changed so that the balls arrive
at the ground at the same time?

(b

2. (a) Does a rocket flight depict
projectile motion?

(b) Two projectiles are thrown with
the same magnitude of initial
velocity, one atan angle 6 with
respect to the level ground and
the other at angle (90°— ).
Both projectiles will strike the
ground at the same distance
from the projection point. Will
both projectiles be in the air for
the same time interval?

Pro) ‘e motion

3. (a) What factors determine the span
of the jump for one who jumps
in a long jump?

A projectile is fired at an angle

of 30° from the horizontal with

some initial speed. At what
other angle does firing of the
projectile results in the same
horizontal range if the initial
speed is the same in both cases?

Neglect air resistance

(¢) The maximum range of a
projectile occurs when it is
launched at an angle of 45.0°
with the horizontal, if air
resistance is neglected. If air
resistance is not neglected, will
the optimum angle be greater or
less than 45.0°? Explain.

4. (a) What are the domestic
advantages of knowing about
projectile motion?

(b) Draw a free-body diagram for
each of the following:

(i) A projectile in motion in the
presence of air resistance;

(ii) Arocket leaving the launch pad
with its engines operating; and

(iii) An athlete running along a
horizontal track.

5. (a) Determine the two possible
angles of projection that
produce a range of 60m if the
initial velocity of projection is
30ms™.

(b) A mancan just throw a stone to
a horizontal distance of 75m.
With what velocity does he
throw it and how long is it in
the air?

6. (a) Describe how to throw a
projectile so that:

(b
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(i) It has zero speed at the top of
its trajectory; and

(ii) It has nonzero speed at the top
of its trajectory.

(b) Aprojectile is projected from the
foot of an incline of angle 30°
with a velocity 30 ms™. The
angle of projection as measured
from the horizontal is 60°. Find
its speed when the projectile is
parallel to the incline.

. (a) Determine which of the

following moving objects

obey the equations of projectile

motion.

A ball is thrown in an arbitrary

direction.

(ii) A jet airplane crosses the sky
with its engines thrusting the
plane forward.

(iii) A rocket leaves the launch pad

(iv) A rocket moving through the
sky after its engines have failed

(v) Astone is thrown under water.

(i

=

(b) Two projectiles are thrown
with the same speed «, but at
different angles from the base of
an inclined surface of angle

“@”. The angle of projection
with the horizontal is 6 for
one of the projectiles. If the
two projectiles reach the same
point on incline, determine the
ratio of times of flights for the
two projectiles.

(a) Aballisheld ina person’s hand.

(i) Identify all the external forces
acting on the ball and the
reaction to each.

(ii) If the ball is dropped, what
force is exerted on it while it

is falling? Identify the reaction
force in this case. (Neglect air
resistance.)

(b) A projectile is launched
with horizontal and vertical
velocity components wandv
respectively. Show that its
trajectory is a parabola and
that the maximum height and
the range (on level ground) are

Trieil e 2av respectively.
4

4
9. (a) A body falls freely from rest

to the ground a distance h
below. In the last one second

ofits flight it falls a distance ﬁ
Find the value of /1.

(b) A stone is thrown horizontally
with speed u from the edge
of a vertical cliff of height /.
The stone hits the ground at
a point which is a distance d
horizontally from the base of
the cliff. Show that 2/u” = gd”.

10. (a) Aprojectile is launched at some

angle to the horizontal with
some initial speed v, and air
resistance is negligible. Is the
projectile a freely falling body?
What is its acceleration in the
vertical direction? What is its
acceleration in the horizontal
direction?

(b) A ball is projected with a
velocity v at an angle 6
to the horizontal. It passes
through a vertical point y and
horizontal point x. If Ris the
horizontal range, prove that
1an9=i[ i g

x\R—x
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. A person is standing in a lift while
holding a briefcase. He lets the
briefcase go off but it does not fall
on the floor of the lift. Describe the
motion of the lift.

. Asarocket is fired from a launching

pad. its speed and acceleration
increase with time as its engines
continue to operate. Explain why
this occurs even though the thrust
of the engines remains constant.

. Identify the action-reaction pairs in

the following situations;

(a) a man takes a step

(b) a snowball hits a person on the
back

(c) a baseball player catches a ball

(d) a gust of wind strikes a window.

(a) A person sitting on the front
seat of a stationary car tries to
move it by pushing against the
dashboard. Will the car move?
Explain your answer.

(b) A truck loaded with sand
accelerates along a highway:. If
the driving force on the truck
remains constant, what happens
to the truck’s acceleration if its
trailer leaks sand at a constant
rate through a hole at its bottom?

(a) What causes a moving body to
come to a stop? What causes a
body to accelerate or decelerate?

(b) The driver of a speeding empty
truck slams on the brakes
and skids to a stop through a
distance d.

Physics Form V.indd 47

Proj e motion

(i) If the truck carries a load that
doubles its mass, what will be
the truck’s “skidding distance™?

(ii) Ifthe initial speed of the truck is
halved, what will be the truck’s
“skidding distance™?

6. (a) Explain how to determine
equilibrant forces of a body
resting on a horizontal and
inclined plane.

Can action and reaction forces
cancel each other? Explain.

@

(c) How do you apply Newton’s
laws of motion in solving
various problems in daily life?

7. (a) A mass rests on an inclined
plane of angle 6=30°, the
coefficient of static friction
is p =0.6. Draw a diagram
showing all the forces acting
on the mass and explain their
origin. Calculate their values if
the mass is m=5kg and verify
that under these conditions the
mass will not slide.

(b) A mass m is held at rest on an
inclined plane, whose slope is
o by means of a horizontal force
F (Figure 2.28). If the coefficient
of static friction is 4. show

that the maximum force F,
allowed before the body starts
to move up the plane is given
_ mg(sino+y cosar)

coso — i sinax

as F,

max
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/\/ A

e

Figure 2.28 A mass rests on an inclined

plane

. Ablock of mass m is placed on a

rough inclined plane at an angle 6
with the horizontal. Show that when
the block is released, its acceleration
is independent of its mass.

. A particle is projected from a point

O and has an initial velocity uat
an angle of @ above the horizontal.
In the vertical plane of projection it
takes @ and b axes as the horizontal
and vertical axes respectively and O
as the origin. Show that the equation
of the trajectory when the particle
passes through these points (a,b) is
ga? (1+tan? 9)—214141 tanf+2u’b=0

An experiment is performed
to determine the value of the
gravitational acceleration g on earth.
Two equal masses M hang at rest
from the ends of a string on each side
of a frictionless pulley (Figure 2.29).
Amass m=0.01M is placed on the
right-hand side. After the heavier
side has moved down by h=1m,
the small mass m is removed. The
system continues to move for the
next 1s, covering a distance of
H =0.312m. Find the value of g
from these data.

M

Figure 2.29 Two equal masses hang
from the ends of a string

11. A bullet with a mass of 4g is
horizontally fired at a speed of
600ms " into a ballistic pendulum
with a mass of 1kg and a thickness
of 25em . The bullet goes through
the pendulum and leaves it with a
speed 100ms ™. Find the magnitude
of the constant force that slows down
the bullet inside the pendulum and
the vertical height through which the
pendulum rises.

12. A hose ejects water at a speed of
0.2ms™ through a hole of area
0.01m”. If the water strikes a wall
normally, calculate the force on the
wall assuming the velocity of the
water normally to the wall is zero
after collision.

13. A body is thrown horizontally with
a yelocity of Sms™ from a tower of
40m high. Determine the time of
flight and the horizontal distance
from the base of a tower to where
the body strikes the ground.
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14. Two automobiles of equal masses

1

1

1

5

=l

=

approach an intersection. One
vehicle is travelling with velocity
13ms™ towards the east and the
other is travelling north with a
speed of v. Neither driver sees
the other. The vehicles collide at
the intersection and stick together,
leaving parallel skid marks of an
angle of 55° north of east. The speed
limit for both roads is 56kmh ™", and
the driver of the northward moving
vehicle claims he was within the
speed limit when collision occurred.
Is he telling the truth? Give reasons.
A 30kg shell at rest, burst and splits
into three pieces of equal masses. The
first piece flies off vertically with a
velocity of 20ms™, the second piece
flies off horizontally with a velocity
of 35ms™. Determine the velocity
and direction of the third piece.

A space craft’s dry mass is 75000kg
and the effective exhaust gas velocity
of its main engine is 3100ms™". How
much propellant must be carried if
the propulsion system is to produce
a total velocity of 700ms™?

. A large rocket with an exhaust speed

of 3000ms™ develops a thrust of

24x10"N.

(a) How much mass is being blasted
out of the rocket exhaust per
second?

(b) What is the maximum speed the
rocket can attain if it starts from
rest in a force-free environment
with v =3.00kms™ and if
90.0% of its initial mass is fuel
and oxidizer?

Pro) ‘e motion

18. (a) Aballis released from a vertical
distance of /1. Onstrikinga level
floor, it bounces back to height
h,. Show that the coefficient of
restitution between the ball and

h.

the floor is given by e= ]—1
h
|

(b

A 2 kg ball moving horizontally
at a speed of 10 ms™ strikes a
vertical wall and bounces back
with the same speed at an angle
of 45°above the horizontal.
Determine the average force
exerted on the wall by the ball
if the impact lasted.

(c) Figure 2.30 shows a fixed pulley
carrying a string which has amass
of 4kg attached at one end and
a light pulley A attached at the
other. Another string passes over
apulley 4 and carries a mass of
3kgatone end and a mass of 1 kg
at the other end. Find;

(i) The acceleration of pulley 4

(i) The acceleration of the 1kg,

3kg and4kg masses.

(iii) The tensions in the strings.

Figure 2.30 Connected masses on a pulley
system
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19. (a) Explain how you would use a
balloon to demonstrate the
mechanism responsible for
rocket propulsion.

(b) Can a rocket move forward
by pushing the air backward?
Explain your answer.

(¢) You are standing perfectly still
and then you take a step forward.
Before the step your momentum
was zero, but afterwards you
have some momentum. Is the
conservation of momentum
violated in this case?

20. If two automobiles collide, they
usually do not stick together. Does
this mean the collision is elastic?
Explain why a head-on collision is
likely to be more dangerous than
other types of collisions.

. (a) Abody that is thrown upwards
to move under the control of
gravity only describes parabolic
path. What are the quantities
that remain constant during the
flight?

(b) A bullet is fired towards the sea
from the top of a tall building
98m high built on the beach
with the velocity of 49ms™
and at an angle of 30° to the
horizontal. Determine the
distance from the bottom of the
building to where the bullet hits
the water.

22. Twoinclined planes of angles 30° and

60° are placed touching each other

at the base as shown in Figure 2.31.

Aprojectile is projected at right angle

with a speed of 103ms™ from point

P and hits the other incline at point

2

@ normally. Calculate the time of
flight.

60°

Figure 2.31 Projectile at inclined planes

]
w

. An object is projected so that it just
clears two obstacles, each 25 m high,
which are situated 160 m from each
other; if the time of passing between
the obstacles is 2.5 s, Calculate the
full range of projection and the initial
velocity of the object.

. (a) A projectile is fired on level
ground. Show that for a given
range and initial velocity
the projection angle has two
possible values. which are
symmetrically spaced, each
side of 45°.

(b) A projectile projected from a
point on a horizontal plane
reaches a greatest height h
above the plane and has a
horizontal range R . If R=2h,
find the angle of projection.

. A particle is projected vertically
upwards with a velocity u , after an
interval of time ¢ another particle
is projected upwards from the same
point and with the same initial
velocity. Prove that the particles will

meet at the height gt .
8g

)
5

2

O

Student’s Book Form Five



Chapter Circular motion, simple
harmonic motion, and
Three

gravitation

Introduction

Circular motion phenomena can be seen in moving objects around us. Examples
of these are a speck of dust stuck on a spinning Compact Disk (CD), a stone
being whirled around on a string, and a driver on a racing car along a curved
road. These objects travel along the perimeter of a circle, repeating their motion
over and over. Circular motion takes place on flat and inclined planes, and
surprisingly, even though the objects move at a constant speed in a uniform
circular path, they still retain acceleration. Likewise, simple harmonic motion
is a periodic motion that can be produced using circular motion. One of the
simplest forms of periodic motions is uniform circular motion. Simple harmonic
motion occurs around us in the form of oscillatory motion. Circular motion is
also notable through objects, such as the earth, the moon, and other heavenly
objects, moving along their orbits, and held in place through gravitational force.
In this chapter, you will learn about uniform circular motion, simple harmonic
motion, and gravitation.

of the circular path. Secondly, a force
which is always directed at right angle to
the velocity vector must act on the body
towards the centre. Moreover, in uniform
circular motion, the distance (radius) from
the axis of rotation remains constant all the
time. Through the end of this section, you

3.1 Uniform circular motion

Objects move in circular path in a wide
variety of situations such as rotating
machine parts, a car rounding a curve with
constant radius at constant speed, motion
of satellites and so on. So it is important
to study this special class of motion in

details. Circular motion can be classified
into two types namely, uniform and non-
uniform motion. Uniform circular motion
describes the motion of a body that moves
ina circular path ata constant speed. There
are two necessary conditions for a body to
move in circular motion. The body must
be given some initial velocity. The velocity
vector is always tangential to the path of
the object and perpendicular to the radius
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will be able to explain and apply angular
displacement, angular velocity and angular
accelerationof uniform circular motion.

3.1.1 Concept of uniform circular
motion

In uniform circular motion, the speed

of the object remains constant but its

direction is constantly changing.
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For this to happen the force must not act
along the direction of motion, but towards
the centre (Figure 3.1).

v

(On Object

Figure 3.1 Forces in uniform circular motion

Though the force F does not act along
v, but it has a component Fcosf along
vectorv . This component will change the
speed; consequently for uniform circular
motion, Fcos@=0. Since F#0, then,
cosf=0, hence 6=90°.

Therefore, the force F acting on an object
in uniform circular motion is always
perpendicular to velocity v. This force is
directed towards the centre of the circle,
hence is called centripetal force (F, ). The
force will produce a centripetal acceleration.

There are some parameters regarding
circular motion that need to be well
described. Such terms include angular
displacement, angular velocity and
centripetal acceleration.

(a) Angular displacement

Angular displacement () is the angle
turned through by an object moving along
a circular path of radius 7 . It is measured
in units of radians (rad). Let the object
move from point A to point B in time ¢

and it sweeps out an angle @ about the
center O (Figure 3.2).

Figure 3.2 A body moving along a circular path

FromFigure 3.2, the angular displacement
(in radians) is given by
_ arclengthAB _ /[

" lengthOB T &n

(b) Angular velocity
The angular velocity (@ ), of an object
moving in circular path is defined as the
rate of change of angular displacement of
the object.

o= % but, L’fl},%e = %= o (32

where @ is called instantancous
angular velocity: it is measured in radians
per second (rads™). If the object makes
a complete trip around the circle, its
angular displacement is 2r radians and
the time taken for the trip is called period
(7). Therefore, equation (3.2) can be

X N 2n
expressed in terms of period T'as @ = T
Hence, equation (3.2) can be expressed in
terms of equation (3.1) as,
1_dl

7x Z: @ or dl =rodt (3.3)
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Consider a body that is moving with a
uniform linear velocity (v) on a circular
path of radius 7 having a centre at O as
shown in Figure 3.2.

Linear velocity,

v =ﬂ: dl =vdt
dt

(3.4)

Comparing

you get
v=rw

equations (3.3) and (3.4);

(3.5)

Equation (3.5) shows a fundamental
relationship between v and @.

(c) Centripetal acceleration
Centripetal acceleration (&) is the
acceleration of the body moving around
a circle and it is always directed along
the radius towards the centre of the circle.
This acceleration is also known as radial
or normal acceleration.

Considera body moving on a circular path
of radius » such that it passes from point
A to B through P with constant speed v
(Figure 3.3).

Figure 3.3 Acceleration of a body in circular

path

The horizontal acceleration a_ of the
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body along x-direction is given by,

t t
It then follows that, acceleration along
x-direction is zero. i.e.,

vcos @ —veosh
1 =———=0,
t
The vertical acceleration a, of the body
along y-direction is given by
v vlh = v:ﬂ‘
Yo t
_ vsin@—(-vsinf)
=
2vsinf
a ="

= (3.6)

If ¢ is the time taken by the body to move
from A4 to B; then,

yo arclengthAB _ 201 qyerepore,
t t
=20 3.7
v

Substituting equation (3.7) into (3.6):
v’ sinf

g = 8
Yoor o8

If A and B are considered to be coincident

(3.8

at P then 6 tends to approach zero and that
lim ﬂ: 1, so that from equation (3.8);
ag—0 @
\’: — . .
a,=— anditis directed along PO acting
”
towards the centre. Hence,
v
a, =—.
,

An object of mass, m moving in a circular
path of radius » with a constant speed v has
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acentripetal force £, whose magnitude is
given by F, =ma, . Hence,

2
my

E =

.
Centripetal force is a net force due to
combined effects of inertia from Newton’s
first law of motion. When a body is moving
in a circular path and the centripetal force
vanishes, the body would leave the circular
path and move with tangential acceleration.
Tangential acceleration is the rate of change
of linear velocity and lies along the velocity

i o dv .
line and is given by @, = 7 where v is
dt

the varying velocity (Figure 3.4). When
the linear velocity is constant its tangential
acceleration is zero.

Figure 3.4 Tangential and radial acceleration

oodv  doo
Since — =p—, itimplies that, a, =or
dt

dt

where @ is the angular acceleration.

The resultant acceleration a, =

3.1.2 Motion in a horizontal circle

Consider an object of mass m tied to one
end of a string and whirled in a circular
path on a horizontal plane as shown in

Figure 3.5.

F

m

Figure 3.5 Motion in a horizontal circle

There are two forces acting on the object;
its weight (W =mg) and the tensionT .
The weight has no component towards
the centre O of the circle. Therefore, the
only force acting on the object directing
it towards the centre is the tension. Hence
the tension will provide the necessary
centripetal force to keep the object in
circular path. It follows that;

my-

T=ma, = (3.9)

r

A special case of motion in a horizontal
circle is that of a conical pendulum.
Suppose a small object of mass m is tied
to a string 4B of length / and then whirled
in a horizontal circle of radius r, with B
fixed directly above the centre O of the
circle as shown in Figure 3.6.

/1774

mg
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Ifthe speed is constant, the string turns at a
constant angle @ to the vertical. Hence, the
only unbalanced force directed towards
the centre O of the circle is 75in6. The
horizontal component of tension provides
the centripetal force expressed as

Tsing =22 (3.10)
r

where T is the tension on the string.

The vertical forces, (mg) and Tcos@
counter balances each other and produce
zero acceleration. That is;

Tcos® = mg (3.11)
dividing equation (3.10) by (3.11) gives

v 3.9
tan@=— but v’ =@ thus,
g

tan0=ﬂ
4

Also,

w= 277[, implies that, ’

T=2n|——
gtan@

where 7'is the period.

From Figure 3.6, r=/sin@, thus,

T=2 ’Icose
g

which is the period of revolution of
conical pendulum.

[ \exampies. ) ]

A 500 g stone attached to a string
is whirled in a horizontal circle at a
constant speed of 10.0 ms™'. The length
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of the string is 1.0 m. Neglecting the

effects of gravity, find:

(a) The centripetal acceleration of the
stone; and

(b) The centripetal force acting on the
stone.

Solution

(a) The centripetal acceleration is
given by
v

a.=—
pe

a2
__L(lOms‘ =100ms™

‘ Im

(b) The centripetal force F =Y
=
F =0.5kgx100ms™ =50N

Therefore, centripetal acceleration

and force acting on the stone are
100ms ™ and 50N respectively.

[ Vanpesz)

A rubber stopper 13g is attached to a
0.93m string. The stopper is swung
in a horizontal circle, making 10
revolutions in 31.4 seconds. Find the
tension in the string.
Solution =
Using the relation T = MV \where

7
v=wr; v=02rxf)r
Then, T'= 47" *mr,
7= X105 013kgx0.93m = 0.048N

(31.45)

Therefore, tension in the string is
0.048N.
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A small mass of 1kg is attached to the
lower end of a string 1m long whose
upper end is fixed. The mass is made
to rotate in a horizontal circle of radius
0.6m . If the circular speed of the mass
is constant. Find:

(a) Tension F. in the string; and

(b) The period of motion.

Solution
(a) Consider vertical forces.

Fcos@=mg; F=ﬂ

cos@
From figure 3.6,
confie N _) (lm) —(O.Gm)
! 1m
=028

Fo lkgx 9.8ms™

=1225N
0.8

(b) Using the relation

lcosf
T=21 cos T=2m lmx().fl:l_85
g 9.8ms™

Therefore, tension in the string and
period of the motion are 12.25N and
1.8s respectively.

3.1.3 Motion in a vertical circle

In linear vertical motion, the speed of
the body may be constant throughout of
the motion. But if a body of mass mis
whirled in a vertical circle by a string with
constant speed, the tension in the string
changes with position of the body along the
circular path. On the other hand, the speed

as well as the direction of the body may
constantly change. Earth’s gravitational
force is constantly either speeding up
the object as it falls or slowing the object
down as it rises: thus non-uniform motion.

Consider a block of mass m whirled at
the end of the string in a vertical circle of
radius 7 such that it moves from 4 to B
through Eand C as shown in Figure 3.7.
As the body moves from Ato E,it loses
potential energy and gains kinetic energy.

AN

“mgcosf

Figure 3.7 Motion in vertical circle

So, from the principle of conservation of
mechanical energy: the total energy £, at

4 is equal to the total energy £, at E, that

is; mg(2r)+ %mvj =mg(r)+ %mv;.

Thus,

Vi=2griy?
Similarly, the velocity at C and B
can be attained using the principle of
conservation of mechanical energy.
Suppose the block is at an arbitrary point
D. The resultant force F,on the block

is such that; F,=T,~mgcos@ but
5
mvy,
F, =2
.
—
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Then,

5

my,

=T,—mgcosf

7= +mgcos@ (3.12)
£

D

Equation (3.12) can be used to obtain
tension at any point on the circle.

At point 41 §=180°, cos@=—1, then,

mv‘; P .
—= — mg (minimum tension).
¥

At point B:0=90°, cos@=0, then,
mv,
T, =—2% the weight has no horizontal
r
component towards the centre.

At point C:6=0° cos@=1, then,

mvf, s
T.= +mg hence maximum
7

tension.

In order for an object to successfully
complete the circle (loop the loop) in a
vertical motion, it must have a minimum
(critical) velocity v, at the top of the
circle. This velocity is required to avoid
sagging of the string. Therefore, the
velocity corresponds to the lowest value
of the tension.

Since the lowest possible value of T'is 0,

o mg=0. Thus, critical

velocity v, is the minimum velocity with

which a body passes at the highest position
so that it just completes the loop. i.e.,

[ \eampess]

A body of 50gis whirled in a vertical
circle of radius 60cm . Determine the
maximum and the minimum tensions
in the string when its velocity at
horizontal position is 8ms™.

Solution
Maximum tension 7, is obtained when
the particle is at the bottom of the circle,

2

7 =Y (i)
"

max

From energy conservation,

v, =+V; +2gr, where v, andy, are the
velocities at the bottom and horizontal
position respectively, and 7 is the radius
of the circle.

V= \/(Sms“‘)l +2x9.8ms > x0.6m
=8.7ms™
Substituting the value of v, inequation (i),
_005kgx(8.7ms™)’

e 0.6m
=6.8N

+0.05kg x 9.8ms™

Minimum tension 7, is obtained when
the particle is at the top of the circle,

2

my o
Las—, & (i)

,M 2gr where v, is the velocity

f
at the top position

v =\/(8ms")z ~2%9.8ms™ x0.6m

=7.2ms"
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0.05kgx(7.2ms™)
=L—(m)5kgx9.8m§2
= 0.6m

=3.8N

Therefore, the maximum and the
minimum tensions in the string are 6.8 N
and 3.8N respectively.

3.1.4 Vehicles on a level and banked
curved road

When a vehicle turns in a circular path,
it behaves differently when on flat
and banked road. The centripetal and
frictional forces acting on the vehicle
determine the maximum safety velocity
the vehicle can travel. On flat surface,
cars must rely only on friction to prevent
skidding. During rainy season friction is
reduced, hence the turning force becomes
smaller. Therefore, banked curves were
introduced to prevent skidding. With
banked curves, the normal force provides
a component of force directing a vehicle
towards the centre of the curve. Hence,
reducing the vehicle’s dependency on
friction only to safely navigate a curve.

(a) A car on a level rough curved road
Considera car making a turn (Figure 3.8.)
The portion of the turn can be approximated
by an arc of a circle of radius r. If the car
makes the turn at a constant speed v ; then
during that turn, the car goes through a
uniform circular motion.

T mg
Figure 3.8 A cartaking a turn on a
rough level road

The necessary centripetal force is provided
by the frictional force between the tyres
of the car and the road. If R and R, are
normal reactions of the road of the inner
and outer pairs of wheels respectively, then
f, and f; are frictional forces between
tyres and the road. Let A be the height of
the centre of gravity G, above the ground
(road), a is distance between the car
wheels and 7 is radius of the circular path.

Vertical forces;
R +R, =mg (3.13)

Horizontal forces;

fitfo= % (3.14)
Taking moments of force about G:

Lh+ fh+ R{%):%Rl

(fi+f)h= %(RZ—R,) (3.13)
Substituting equations (3.13) and (3.14)
into (3.15) gives,

2mvh

mg—2R,

ar
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Substituting equation (3.15) into (3.13)
gives,

R,:m[§+hlj
b 2 ar

(3.16)

(3.17)

The maximum speed v, at which the
vehicle can take the curve without toppling
is obtained by setting R =0. Since m# 0,

h?
then s M _ 0
2 ar
rg
Vo= 3.18)
e 0 (3.18)
Alternatively,
m VZ
S+ ===
-

my?
HR, + R, =—5=pmg

v =qlrg, since f=pumg

A smooth road offers no friction to the
wheels of the vehicle. Therefore, the
vehicle taking a corner on such a road
will skid outwards away from the road.
For this reason, most of the roads are
banked at the corners so that the car will
not depend on friction only.

(b) A car on a banked rough curved
road

In banked road the outer edge is raised to
a certain angle 6 making a curve above
the level of the inner edge. Consider a car
moving in a circular curved road above
the level of the inner edge as shown in
Figure 3.9. Let v, be the maximum

speed of the car before it skids.
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I
e
fsin@ v
Figure 3.9 A car on a rough banked road

Horizontal forces, Rsin+ fcos®=ma,
where R=R +R, and f=f + f,. But
f=HuR

2

R(sing+ picosg) = 2ms (3.19)
-
Vertical forces,
RcosO= f8inf +mg
R(cos@— usin@) =mg (3.20)

dividing equation (3.19) by (3.20) gives,

5 = rg(tanf+ 1)
e 1- ptan®

Equation (3.21) gives the expression
for the maximum possible speed of the
car before it skids to the outside of the
curve (up the banking). For the minimum
possible speed of the vehicle before
skidding, the direction of frictional forces,
J; and £, in Figure 3.9 will be reversed.
By similar procedures as above, the final

result willbe v = M
G 14 utan@

(3.21)
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(¢) Acar on abanked smooth curved
road

A smooth surface offers no friction, but

when such a surface is inclined, it can

provide the necessary centripetal force

for a vehicle to successfully take a corner

(Figure 3.10).

X Reos®

vie

Figure 3.10 A car on banked smooth road

Vertical forces,

Rcosf =mg (3.22)
Horizontal forces,
Rsing="""_ (3.23)

-
Dividing equation (3.23) by (3.22) gives,
Vo =\/rg1an9. This is the maximum

speed a car can take a corner in a smooth
banked road without skidding off.

[ \ampiess )

A car is moving at 30kmh™ in a circle
of radius 60m. Find the minimum
value of u_for the car to make the turn
without skidding.

—

Solution

3 2
From the equation g =—.
i

but; r=60m; g =9.$ms”

3
yem sl ms™' =83ms™
3600
(8.3ms“’)2
H=————=0.12
* 60mx9.8ms™

[ \ampeds )

A car whose wheels are 1.4 m apart
laterally and whose centre of gravity is
0.5 m above the ground moves round
a curve of radius 60 m. Assuming no
slipping of the wheels on the road, find
the highest speed at which the car can
round the curve without overturning.

Solution
Using the equation,

=g e

& 2h

v = 1.4m x60m x9.8ms
‘ 2x0.5m

=28.69ms™

Therefore, the maximum speed is
28.69ms .

(d) Cyclist on a curved rough level road
A cyclist (such as of motor cycle) taking a
corner on a curved rough level road must
bend inwards towards the centre of the
curved road so as to create the friction
force between the tyres and the road (or
ground) which is required in order to
provide the necessary centripetal force
(Figure 3.11).
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Figure 3.11 Cyclist taking a corner

By principle of moments,

S clockwi =3 anticlockwisemoments

Thus, fh=Ra.Where fis the frictional
force, Ris the normal reaction,ais the
distance between R and mg. and & is
the height of the centre of gravity.

[ _a

Hence, —=—;
R h  mgr

mv:
= tan@

and y=%=tan0

Therefore,
v, =/rgtan®

This is the maximum speed a cyclist
can move along a curved rough level
road. However, for a smooth level road
(taus =0 ) the cyclist will have velocity
of zero and thus skid outward from the
road or at rest without bending. It should
be noted that the speed limit shown
by road symbols are based on these
principles.
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A highway road designed for an
average speed of 72kmh™ has a turn
of radius S0m. To what angle must the
road be banked so that cars travelling at
72kmh™ may not overturn.

Solution N
3 E v

Using the relation tanf =— | but
g

3
= 723:;: ms™, r=50m, g=9.8ms™
0=tan™' £
rg)
i 2
6=tan" (ZOms )

50mx9.8ms™

6=tan '(0.8163)=39°

Therefore, the road should be banked
at 39°.

3.1.5 Applications of circular motion

There are several applications of circular
motion in daily life; these include the
following:

(a) Rotating fluids

When a liquid in a container is stirred, the
centre of the liquid surface forms a hollow.
The surface of the liquid will be defined
by how the centripetal acceleration
changes with radius. A parabolic surface
of the liquid may be used in liquid mirror
telescopes. The most common liquid
used is mercury (or low melting alloys of
gallium). In these telescopes, the liquid
and its container are rotated at a constant
speed around a vertical axis, which




—i

causes the surface of the liquid to assume
a “paraboloidal” shape regardless of the
container’s shape.

(b) Centrifugal pump

The main part of a centrifugal pump is
the impeller which has a series of curved
vanes fitted inside the shroud plates. When
a fluid (e.g. water) enters the pump along
or near the rotating axis, it is accelerated
by the pump impeller. The fluid particles
then accelerate radially outward into a
volute chamber (casting) from where it
exits (Figure 3.12).

(¢) Centrifuge

A centrifuge is a device that is used for
separating mixtures. It can be used to
separate sugar crystals from molasses,
cream from milk, bee wax from honey, and
constituents of blood and urine samples.

The centrifuge works using the
sedimentation principle. The sample of
liquid mixture is spanned at relatively high

Path length
—_——

Position during
centrifugation

Discharge

Volute
casting \ v
‘anes

'_‘ Suction eye
. 1]

Impeller

Figure 3.12 Centrifugal pump

speed, creating a strong centripetal force
on the liquid and its content. This force
will make denser particle to accelerate
outward in the radial direction. When the
centrifuge is settled, the heavier (denser)
particles settle to the bottom while lighter
(less dense) particles rise to the top
(Figure 3.13).

Axis of rotation

LD

Position
at rest

i —>
— o ——»
r >

max >

Figure 3.13 Schematic diagram of a centrifuge
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1. Give explanation for each of the
following observations:

(a) Ifthereisanet force ona particle
in uniform circular motion, why
does the particle’s linear speed
not change?

(b) As a car rounds a banked
circular curve at constant speed,
several forces are acting on
it: for example, air resistance
towards the rear, friction from
the pavement in the forward
direction, gravity, and the
normal force from the tilted
road surface. In what direction
does the net force point?

2. Imagine you are a driver on an icy

road, you approach a curve that has
the banking angle calculated for
90 kph . Your passenger suggests
you slow down below 90 kph | just
to be on the safe side, but you say
that you should maintain your speed
at 90 kph .
(a) Who is correct, you or your
passenger?
(b) What would happen if you were
to slow down (or speed up)?
(¢) Would your passenger’s
suggestion be a good one on
an unbanked road?

3. Considera | kg brick being whirled

in a vertical circle at the end of 1 m

rope,

(a) What critical velocity must the
brick achieve in order to pass
safely through the top of its
circular path?

Cireular motion

(b) What would be the critical
velocity of the brick if it were to
be whirled on the moon where
the acceleration due to gravity
is onesixth that on the earth?

A 500 g stone attached at the end
of'a I m long string is whirled in a
vertical circle whose centre is 10 m
above the ground. The breaking
tension of the string is 100 N . If
the string breaks, determine:

(a) The position of the stone in a
circle where the string is most
likely to break; and

(b) The horizontal distance where
the stone will strike the ground.

A body of mass 8 kg is moving in
a horizontal circle of radius 3 m
with a constant speed of 10 ms™.
Determine:

(a) The angular velocity; and

(b) The centripetal force.

. A car is supposed to move safely

around the smooth corner of 200 m
radius with the speed of 60 kmh™.
Find the banking angle for the car
to move safely?

A mass of 1.5 kg is attached to a
lower end of a string of 2 m whose
upper end is fixed to a rigid support.
The mass is then made to move in
a horizontal circle of radius 0.8 m.
If the circular speed of the mass is
constant determine:

(a) The tension in the string; and
(b) The period of the motion.

. A curve in a road has radius of
60m. The angle of the bank of
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]

. A ball of mass 0.3kgis tied to one

. Prove that the velocity vwith whicha

the road is 47°. If the coefficient
of static friction between tyres and
road is 0.8.Find the maximum and
minimum speed a car can move
without skidding.

A hemispherical bowl of radius R is
rotating about its axis of symmetry
which is kept vertical. A small block
is kept in the bowl and rotates with
it without slipping. If the surface of
the bowl is smooth and the angle
made by the radius through the block
with the vertical is 8, show that the
angular speed of the bowl is given
gcos@

R

A simple pendulum is suspended
from the ceiling of a car taking a
turn of radius 10 m at a speed of
36 kmh™'. Find the angle made by
the string of the pendulum with the
vertical if this angle does not change
during the turn.

by,

end of a string 0.8m long and
rotated in a vertical circle. At what
speed of the ball will the tension
in the string be zero at the highest
point of the circle? What will be the
tension at the lowest position?

body must be projected at the lowest
part of a loop apparatus of radius R
in the vertical plane so that it passes
at the highest position with minimum
velocity, is given by v:N/Sg_RA

3.2 Simple harmonic motion

You are most likely familiar with several
examples of periodic motion, such as the
oscillation of an object on a spring, the
motion of a pendulum, children playing on
a swing, and the vibrations of a stringed
musical instrument. When an object
vibrates or oscillates back and forth, over
the same path, each oscillation taking
the same amount of time, the motion is
periodic. Periodic motion is a motion of an
object that regularly repeats. In this motion
the object returns to a given position after
a fixed time interval.

Simple harmonic motion (SHM) is a
special case of periodic motion. It occurs
in mechanical systems when the force
acting on an object is proportional to the
displacement of the object relative to the
equilibrium position. The force is always
directed towards the equilibrium position.
Simple harmonic motion forms a basic
building block for more complicated
periodic motion. It also forms a basis for
understanding mechanical waves essential
for explaining other phenomena in nature
and man-made. For example, when
engineers and architects build bridges and
tall buildings understanding of mechanical
waves plays an important role.
Inthissection, you willacquire knowledge
and skills on simple harmonic motion,
explore its characteristics and application
in daily life.

3.2.1 The concept of simple
harmonic motion

As a model of simple harmonic motion,

consider a block of mass m attached to

the end of a spring, with the block free

to move on horizontal frictionless surface

(Figure 3.14).
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When the spring is neither compressed
nor stretched (Figure 3.14(b)), the
block is at equilibrium position, that is
x=0. When the block is displaced to a
position x (stretched for Figure 3.14(a)
and compressed for Figure 3.14(c)), the
spring exerts on the block a force £, that
is proportional to the displacement and
is given by Hooke’s law, F, =—kx. This
force is called a restoring force, because
it is directed towards the equilibrium
position, hence oppose the displacement
from equilibrium.

® bl

£ ¢
— !
© ’N\]\\I\\NWW.
K
x=0

Figure 3.14 A block of mass m attached to a spring

(a) /5\

iarmonic motion

Applying  Newton’s  second law,
EF; =ma, 10 the motion of the block,

the net restoring force in the direction of x
will be ~kx=ma_, thus a = —ix. This
m

implies the acceleration is proportional
to the displacement of the block, and its
direction is opposite to the direction of
the displacement from equilibrium.

Any system that behaves in this manner is
said to exhibit simple harmonic motion. An
object moves with simple harmonic motion
whenever its acceleration is proportional
to its displacement and is always directed
towards the equilibrium position.

Sinusoidal representation of SHM

A sinusoidal expression for simple
harmonic motion can be derived by
comparing the motion to that of an object
moving uniformly in a circle. There is
nothing actually moving in a circle when
a spring oscillates linearly, but it is the
mathematical similarity that finds it useful.

Consider a small object of mass m
revolving counterclockwise in a circle of
radius A, with constant speed v on a table
(Figure 3.15).

X —>|
-— 4 —>

(b)

Figure 3.15 View of circular motion from (a) above and (b) sideways
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As viewed from above, the motion is
circular in the x-y plane. But a person who
looks at the motion from the edge of the
table sees an oscillatory motion back and
forth, and this one-dimensional motion
corresponds precisely to simple harmonic
motion. What the person sees, is the
projection of the circular motion onto the
x-axis (Figure 3.15(b)). The position ofan
object undergoing simple harmonic motion
as a function of time can be found using the
reference circle. From (Figure 3.15(a)), it can

be seen that,cos@ =i so the projection
of the object’s position on the x-axis is
x=Acosh.

The object in the reference circle (Figure
3.15) is rotating with uniform angular
velocity @. This can then be written
as O=w¢ where @ is in radians. Thus
x=Acoswt. Furthermore, since the
angular velocity (specified in radians per
second) can be written as @ =27 f , where
fis the frequency. then, x=Acos(27f)t.
Because the cosine function varies between
1 and —1, x-component equation shows
that x varies between A4 and —4. If a pen
is attached to a vibrating object as a sheet
of paper is moved at a steady rate beneath
it, a sinusoidal curve will be drawn that
accurately follows the cosine (sinusoidal)
function. Figure 3.16 demonstrates how
an oscillating mass models sinusoidal
wavelike signal.

Figure 3.16 A pen attached to an oscillating
object of mass m

xample
| \Bumple3s) ]

Which of the following forces would
cause an object to move in simple
harmonic motion?

(a) F = =05 (b) F'= —2.5y
(c) F=98x (d) F= -56
Solution

Both (b) and (d) will give simple
harmonic motion because they give force
which is proportional to displacement,
and minus sign indicates acceleration
towards the centre. (a) does not produce
SHM since its motion is not proportional
to displacement. Similarly, (c) does not
produce SHM since its motion is not
towards the centre.
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3.2.2 Equations of simple harmonic
motion

To explore further sinusoidal characteristics
of simple harmonic motion, Figure 3.17
will be used to establish its displacement,
period, velocity and acceleration. This
figure is a combination of ideas presented
in Figure 3.15 and 3.16.

AN
NV

Figure 3.17 Relationship between SHM and
circular motion

(a) Displacement

This is the linear distance of the particle

from the equilibrium position of the

motion i.e., distance ON (Figure 3.17). It

is given by, y= Asiné, but 6 =wor
y=Asinwt

(3.24)
The displacement time curve is shown in
Figure 3.18.

Figure 3.18 Displacement-time curve

(b) Period

The period 7, is the time taken by
an oscillating object to complete one
oscillation or cycle (Figure 3.18).
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T circumferenceof a cycle
speed
2mr
T=—
v
. 2n
Since V=0r; therefore, T'=—.
[0
(¢) Linear velocity

Velocity is the rate of change of
displacement, that is v = ‘;—‘ . but
1

y=Asinwt

dy

—= Awcoswt. Thus,
dt
v=Awcoswt

~
w
o
(>
)

Alternatively, squaring both sides of
equation (3.24) and (3.25) gives,
V' =A7sin’ ot (3.26)
v =A@’ cos” ot (3.27)
Adding equations (3.26) and (3.27) and
solving for v gives,

v= iw\/A: = ,V:

The velocity time graph is shown in
Figure 3.19.

(3.28)

I /
\
A

o L1,
- = & \
-

(a) (b)
Figure 3.19 (a) Velocity-time curve against
time and.

(b) velocity-displacement curve
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[ \eampiess ]

A particle executing simple harmonic

motion has a period of 4 seconds and

an amplitude of 2 cm. Find:

(a) Maximum velocity: and

(b) Velocity athalfway ofits maximum
displacement.

Solution

(a) Using the relation v=ay 4" -

maximum velocity is obtained when

=a)A=2—x A,

=0, hence
y Vpu ==

2: Sl 1
Voo =4—Hx2x10’1m=3.14x10"ms !
S

(b) The velocity of the particle when

y (Figure 3.20(b)). Thus SHM can be

defined as a to-and-fro motion of an object
about an equilibrium position whose
acceleration is directly proportional to the
displacement.

A m |, (1Y
=2 ispivenby v=—= |42 =| =4
v is given by v T\/ [2 ]

e (0.02m)" - Lio0om
4s 2
Hence,v=2.72x10"ms .

Therefore, the maximum velocity is
3.14x107ms ™ and veloc1ty ataposition
half way is 2.72x10 7 ms ™.

(d) Acceleration

Acceleration is defined as the time rate of
change of velocity, ie., a = ?
T

Thus, a= %( Aw coswt),

a=—o*(Asinwr)

a=-w’y (3.29)
If the angular speed @ is constant,
then acceleration of a body performing
SHM varies linearly with displacement,

(b)

Figure 3.20 Variation of (a) acceleration with
time, and (b) acceleration with
displacement

[ \eampiesio)

Calculate the period for a particle
executing simple harmonic motion with
acceleration of 16cms™ at a distance of
4cem from the equilibrium position.

Solution
Using the relation a=-@"y

[ KJ |, hence T= 27:\/:.
i a

Substituting values of @ =16cms™ and
y=4cm gives T =3.14s

ld=

Therefore, the period of oscillation of
the particle is 3.14 s .
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The velocity of a particle executing
simple harmonic motion is 16 cms™
at a distance of 8cm and 8cms™ at
a distance 12cm from mean position.
Determine the amplitude of the motion.

Solution

Using the relation v =@/ 4* — y*
16ems™ =a)1’A3 —(Scm)z (D
8ems ™ = w,/A1 —(12crm)z (i)

Dividing equation (i) by (ii) gives,
A=%13.06 cm

Hence the amplitude of the system is
+13.06 cm.

3.2.3 Examples of simple harmonic
motion
Simple harmonic motion can be well
explained using various examples
including: vertical oscillations of a loaded
helical spring, oscillations of a liquid in
a U-tube, simple pendulum and foating
loaded test tube.

(a) Vertical oscillations of a loaded
helical spring
Consider a massless helical spring
suspended vertically as in Figure 3.21(a).
When a mass m is attached on it, the spring
stretches to point O (Figure 3.21(b)).
Suppose the system is stretched to a further
displacement y and then released
(Figure 3.21(c)). The resulting vertical
oscillation is approximately simple
harmonic motion.
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mg

(a) (b) (o)

Figure 3.21 Suspended helical spring with

mass m
If the system is in equilibrium, then net
vertical force is zero. Thatis T, = mg,
where 7] is the tension in the spring given
by Hooke’s law as T, =—ke, where e is
the extension.

Therefore,
—ke=mg, (3.30)
where / is spring constant or force constant.
Vertical forces in Figure 3.21 (¢) when
the mass is displaced downwards by the
length y is given by;

YF=T,-mg

where T,=—k(e+y)

(3.3

sz is called restoring force, since it is
directed opposite to displacement y and
towards the equilibrium position (point
D). Itis responsible in bringing the system

back to the equilibrium. Since ) F, isa
net force, it can be written as
S F =ma (3.32)

Equating equation (3.31) and (3.32),
gives, ma=—mg— ke— ky, but mg =—ke

(3.33)
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Since k and m are constants, then ae<—y.

Hence a loaded helical spring executes

simple harmonic motion. Comparing

equations (3.29) with (3.33) gives,

2k

w'=—
m

(3.34)

The period of oscillation T'is obtained from

equation (3.34). Since @ = 2—“; T= n
T @
Therefore,
= Zn\/z (3.35)
= T .35
also,  ke=mg: L
g k
Therefore, T= Zn\jg (3.36)
4

In practical situations, usually two or
more springs are connected either in
series or in parallel to each other.

A 3.0kg ball is attached to a spring
of negligible mass and with a spring
constant k=40 Nm™. The ball is
displaced 0.10m from equilibrium and
then released. What is the maximum
speed of the ball as it undergoes simple
harmonic motion?

Solution
Maximum speed occurs at equilibrium,
when y = 0, thatis v, =®A4

But o = L, Vi =[ i]A,
Vm ‘ m
40Nm
= f— 0.1m=0.37ms™"
Vinae 3kg il 5

Therefore, the maximum speed is
0.37ms™.

Consider two springs of force constants
ki and k,respectively arranged in series
and a force Fis applied at a free end of
lower spring as shown in Figure 3.22.

mg

Figure 3.22 Springs with mass m each
arranged in series

At equilibrium, F produces different
extensions € and e, on the springs of

k; and k, respectively. If e, is the total
extension, then e, =¢ +e, .

But from Hooke’s law,

Dividing both sides by F gives
I 1 1

sl
k kK

Generally for n springs connected in series

For identical springs k, =k, =k, then,
L A=k
k, k o
In parallel connections (Figure 3.23), the
same extension is produced in both springs,
but the force in the springs is different.
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mg
Figure 3.23 Springs connected in parallel

Then, F=F+F,, ke=ke+ke.Forn
springs connected in parallel,

kye=ketke+..+ke
"
= ez k,
=l
For n identical springs.

>k =k, =nk

2

C Wiampies.is)

A car with a mass of 1300kg is
constructed so that its frame is supported
by four springs. Each spring has a force
constant of 20000 Nm . If two people
riding in the car have a combined mass
of 160kg, find the frequency of vibration
of the car after it is driven over a pothole
in the road.

Solution

To analyze the problem, we first need to
consider the effective spring constant
of the four springs combined. For a
given extension e of the springs, the
combined force on the car is the sum of
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the forces from the individual springs:
F=2(_k")=_(zk)". where e has
been factored from the sum because it
is the same for all four springs.

The effective spring constant for the
combined stream =k, = (ZA)

’k
Frequency, f:zl —, where m is
T\ m

mass of the car plus people.

le 4x20000N/m _118Hz
R 1460 kg

Therefore, the frequency of vibration
of the caris, f=1.18 Hz-

(b) Oscillation of liquid in a U-tube
Consider a liquid of density P ina U-tube
atequilibrium as shown in Figure 3.24(a).
If the liquid on one side of the U-tube is
depressed by blowing gently down as in
Figure 3.24(b) and released. the liquid
will oscillate for a short time about the
respective initial position O before finally
coming to rest.

—=

(a) (b)
Figure 3.24 Liquid in a U-tube

At some instant, suppose that the level of
the liquid on the left side tube is at D, at
a height above its original (undisturbed)
position O. The level B of the liquid on
the other arm is then at a depth y below
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its original position O. So, the excess
pressure on the whole liquid is 2ypg.
This excess pressure will exert a force
F on the liquid in the tube and restores
equilibrium at O;

F =-2ypgA where 4 is the cross-section
area of the tube. Since F = ma,

_2ypgd
m

The mass m of the liquid is given by

m=px Ax2h, thus, a= ﬂv.
2pAh -~
It follows that,
a:—[gjy (3.37)
h

Note that, acceleration ‘@’ is directly
proportional to displacement °y" then
the oscillations are simple harmonic.
Comparing equations (3.37) with (3.29)
gives,

2_& 2
=S 0=— . .
h T~ which gives,
h
T =21 |— (3.38)
g

where T is the period of oscillation of a
liquid in a U-tube.

(¢) Oscillations of a simple pendulum
A simple pendulum consists of a thread
of length / and a bob of a mass m attached
at its end, leaving the free end of a string
be attached to a fixed-support as shown in
Figure 3.25.

mgsinf

mg
Figure 3.25 The simple pendulum

There are two forces which act on the
bob, the weight mgand the tension 7 in
the string.

Resolving the force mg along the tangent
and along the thread:

Along the tangent F = mgsin6, and along
the thread mgcos@. Since the force,
F =—mgsin® tends to take the bob towards
an equilibrium position, then this should
be the restoring force. Thus, a=—gsin@
where, F =ma.

Suppose the bob moving from Q to O
accelerates with an acceleration equal to
a=—gsinf. For strictly SHM, the setting
of oscillating body has to be at small
angle, whereby, for small angle sin€=6.
Thus, a=-g6. For small oscillations,

X ; <
from are length, 7=€. this results into

a:-%x. Hence from equation (3.29)

y
a=-'x, then, ®* = %
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but, 7= 2—ﬂ= 2n JZ Therefore. the period
(€] &

of oscillation of a simple pendulum is

T:Zn‘jz.
4

(d) Floating loaded test tube

Consider a loaded test tube of total mass
m floating in a liquid of density P
(Figure 3.26)

Figure 3.26 Loaded test tube floating
in a liquid

When a loaded test tube is placed in the
liquid, it is submerged a distance / below
water level. When the tube is slightly
pushed down and released (Figure 3.26(b)),
will oscillate up and down.

The restoring force (F )isequal to
excess upthrust (Flm)due to height y
where 7 =ma and F, =—pAyg. Hence,

ma=—-pAyg (3.39)
but,
m=pAh (3.40)

where m is the mass of displaced liquid.
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Substituting equation (3.40) into (3.39)

gives azAgy, which implies that,
aocs—y.

Hence, it is a simple harmonic motion
’ . h
with a period T =2n,|—.
g

3.2.4 Energy changes in simple
harmonic motion
When a body oscillates in simple
harmonic motion, its energy is constantly
changing between potential energy and
kinetic energy. But the total energy is
always constant according to the law of
conservation of mechanical energy.

Consider a particle of mass m executing
simple harmonic motion with an amplitude
A and constant angular velocity @. Ifx is its
displacement at a time £, then the magnitude
of restoring force F is F=—ma’x.
Suppose the particle undergoes a further
displacementdx, a small amount of work
dW is done against the restoring force. This
work is equal to the change in potential
energy AU of the oscillator given by
AU =—Fdx. Thus, dW = mo’xdx.

The total work done for the displacement

. xrdW_x 2 1 s
xis |, —J'UMCU—\ B W=Emw,\

But, @ = i, thus, #= L
m 2
Therefore, the potential energy

U=t
2

The kinetic energy is given by the relation

(3.41)

K =%mv2, where v is the velocity when




its displacement is x. Then the kinetic
energy can be expressed as,

2

K :%mm’(A’ -x%) (3.42)
The total energy £, of the particle at any
point is the sum of kinetic energy and
potential energy.

1 3o ey Loy
E, =—mw (A —x")+—mw x
2 2m ( i%): 2m x
1 2 2
=—mw A"
2

Therefore, the total energy of a particle
executing SHM is always constant.
The variations of total energy between
potential energy and kinetic energy with
displacement or with time are shown in
Figure 3.27.

Energy Total energy

Figure 3.27 Energy variation in SHM

When the displacement is zero (at
equilibrium position), all the energy is
kinetic energy. When displacement is
maximum (at the end) all the energy is
converted into potential energy.

[ \eampesy)

A particle of mass 0.25kg vibrates
with a period of 2.0seconds. If its
greatest displacement is 0.4m , what is
its maximum kinetic energy?

Solution

M. 50
From K = Smo*(A4* —i0),

1 s
K. .= Emm'A‘ (atx=0)

mitx

1 ) >
K, =Exo.25kgx{£j x(0.4m)
=0.1971

Therefore, the maximum kinetic energy
is 0.1977.

3.2.5 Applications of simple
harmonic motion

Simple harmonic motion plays a role in

functioning of different appliances. These

include clocks, shock absorbers, musical

instruments, gravimeters and seismo-scope.

Clock

A large pendulum clock or vibrating
quartz crystal are in periodic motion
in order to ensure that indicated time is
accurate. This is due to the fact that the
oscillator has a constant period because
it is in simple harmonic motion, thus it
keeps time accurately.

dent’s Book Fors

— —
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Car shock absorbers

Springs attached to car wheels ensure a
smooth car ride in roads with bumps. The
absence of shock absorbers will make the
car to move up and down when it passes
over a bump, thus causing unpleasant
condition to passengers. When there
are springs in the car the wheel will rise
compressing the spring while the car
body remain relatively stationary on the
compressed spring after passing over
the bump. Since the car executes simple
harmonic motion, shock absorbers will
push the car back to normal place leaving
the passengers in pleasant ride.

Musical instruments

In a string instrument, for example violin
and guitar, bowing or plucking the string
provides the force required to make the
spring oscillate and produce sound. The
vibration produced in the string causes
the air column to execute SHM which
will result into producing a regular sound.

Hearing

The ear functions due to SHM phenomena.
The sound waves travel through the air
and when they arrive at the eardrum,
they cause it to vibrate. This signal
from the eardrum is sent to the brain for
interpretation.

Seismometer

Motion of the ground such as that due to
seismic waves from earthquake and volcanic
eruption is measured by seismometer. A
seismometer consists of a pendulum with
stylus at its bottom which is connected to
a frame. The pendulum executes simple
harmonic motion. During earthquake, the
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stylus draws a pattern on a paper which
describes the ground movement. The pattern
represents the strength of the earthquake.
Also, gravimeter pendulum executes SHM
which will enable measurement of local
gravity at a given location.

[ \Example3as)
A particle oscillating with SHM
has a speed of v=8.0ms" and an
acceleration of a=12ms™ when it
is 3m from its equilibrium position.
Find:

(a) Amplitude of the motion;

(b) Maximum velocity; and

(¢) Maximum acceleration.

Solution

3 5 a
(a) Given a=@"y; @ 5

Substituting into V=@ 4
gives,

v= ng [AZ _yl‘ solving for A,
y

e ’v:y+ay:
a

I(Sms" ): *x3m+12ms™ x(}m):

12ms™

A=
=5m
Therefore, the amplitude is S5m.
(b) Maximum velocity,

Vo =0A=4 2
y

Therefore, the maximum velocity is
10ms™.
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(¢) Maximum acceleration,

max

a =w3A:[5]xA.
v

12ms™

X Sm=20ms "

a =
max

Therefore, the maximum acceleration
is 20ms ™.

L
1. Think of several examples in
everyday life of motion that is at least
approximately simple harmonic. In
what respects does each deviate from
SHM?

2. The analysis of simple harmonic
motion neglected the mass of the
spring, how would the spring’s mass
affect the period and frequency of
the motion? Explain your reasoning.

3. Inany periodic motion, unavoidable
friction always causes the amplitude
to decrease with time. Does friction
also affect the period of SHM? Give
a qualitative argument to support
your answer. (Hint: Does the friction
affect the kinetic energy? If so,
how does this affect the speed, and
therefore the period, of a cycle?)

4. A mass attached by a light spring to
the ceiling of an elevator oscillates
vertically while the elevator ascends
with constant acceleration. Is the
period greater than, less than, or the
same as when the elevator is at rest?
Why?

5. (a) Explain the meaning of the

following terms as used in
simple harmonic motion:

(i) Period;
(ii) Amplitude; and
(iii) Restoring force.

(b) How can a uniform motion in
a circle be related to a simple
harmonic motion?

. A butcher throws a cut of beef on a

spring scale which then oscillates
about an equilibrium position
with the period T = 0.5 seconds.
The amplitude of vibrations being
A=2.0em and having displacement
of 4.0cm, determine:

(a) Frequency;

(b) Maximum acceleration; and
(c) Maximum velocity.

Itis found that a load of mass 200 g

stretches a spring by 10.0 cm. The

same spring is then stretched by an

additional 5.0 cm and released. Find:

(a) Spring constant;

(b) Period of vibrations and
frequency;

(¢) Maximum acceleration; and

(d) Velocity through equilibrium
position.

. Atray of mass 12 kg is supported by

two identical springs (Figure 3.28).

When the tray is displaced slightly

and released it executes SHM with

a period of 1.5 seconds .

(a) What is the force constant in
each spring?

(b) When a block of mass m is
placed above the tray, the
period of oscillation changes to
3.0 seconds. What is the value
of m?

Student'’s Book Form Five
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«—Tray

<«— Spring

Figure 3.28 SHM of a loaded tray on two
identical springs

9. Fora particle vibrating with simple
harmonic motion the displacement
is 12 cm at the instant the velocity
is 5cm/s and the displacement is
5cm at the instant the velocity is
12 em/s. Assuming the amplitude
is constant, calculate:

(a) Amplitude;
(b) Frequency: and
(¢) Period.

10. A wooden cylindrical bar is floating
vertically in water 30 em ofits length
below the water surface. The bar is
slightly dipped and then released to
execute vertical oscillation.

(a) Prove that the oscillations are

approximately simple harmonic
motion.

(b) Determine the period of
oscillations.

3.3 Gravitation

Gravitation refers to the force of attraction
that exists between any two bodies that
have mass. It is a universal force affecting
the largest and the smallest objects and all
forms of matter. Gravitation governs the
motion of astronomical bodies. It keeps the
moon in orbit around the earth and keeps
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the earth and the other planets of the solar
system in orbit around the sun. On a larger
scale, it governs the motion of stars and
slows the outward expansion of the entire
universe because of the inward attraction of
galaxies to other galaxies. An understanding
of the law of universal gravitation has
allowed scientists to send spacecraft on
impressively accurate journeys to other
parts of our solar system. Such description
of planetary motion provides astronomical
data which are important test of the validity
of the law.

Typically, the term gravitation refers to the
forcein general,and the term gravity refers
to the earth’s gravitational pull. There
are several laws governing gravitation
and planetary motion. Therefore, in this
section, you will learn laws of gravitation
specifically the Newton’s law of universal
gravitation and Kepler’s laws of planetary
motion. You will also learn how to derive
the relationships existing between the
laws, determine gravitational potential of
a body and applications of the laws.

3.3.1 Kepler’s Laws of Planetary
Motion
Ageneral study of planetary motion played
a big role in the development of Physics.
This began by the earliest scientists,
basically the Greek astronomers, who
attempted to study and explain the
movement of the sun and other planets.
They assumed the earth was the centre
of the universe while the moon, stars and
other planets are revolving around it in
complex orbits.
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In the 15" century Copernicus suggested
that the sun was at rest at the centre of
universe and so the earth was a planet
rotating on its own axis at the same time
moving around the sun and other planets
had similar motions.

The controversy over these theories
stimulated different astronomers to
obtain more accurate observational data.
Then Tycho Brahe obtained good data on
planetary motion. His data were analysed
and compiled by Johannes Kepler, who
was Brahe’s assistant, and found three
important regularities with regard to
planetary motions and these are known as
Kepler’s laws of planetary motion.

(a) Kepler’s First Law

The law states that “Planets revolve round
the sun in elliptical orbits with the sun as
one focus”. This is known as the law of
orbits or ellipses and the phenomenon is
shown in Figure 3.29.

Perihelion Planet Aphelion

(fastest motion) (slowest
X P motion)
/ )
Y
!

4

N
PeriheMphﬁlmn
distance distance

Figure 3.29 Orbit of a planet

Withelliptical orbits, a planetis sometimes
closer to the sun than it is at other times.
The point at which it is closest is called
perihelion, and the point at which a planet
is furthest is called aphelion.

(b) Kepler’s Second Law
The law states that, “An imaginary line

from the planet to the sun sweeps out

equal areas in equal amounts of time "
Kepler’s second law basically says that
the planet’s speed is not constant. It
moves with lowest speed at aphelion and
highest at perihelion. The law allows an
astronomer to calculate the orbital speed
of a planet at any point (Figure. 3.30).
This law sometimes is called law of equal
areas. The area swept A, B and C in time
intervals 7 are equal.
Planet

/

Figure 3.30 Equal areas over equal times

(¢) Kepler’s Third Law

The law states that, “The square of the
period of revolution of a planet in its
orbit is directly proportional to the cube
of the average distance from the sun to
the planet." Sometimes this law is known
as the law of periods.

T2 *, thus, T* =k, where k is the
constant of proportionality.

If T, and r is the period and orbital
radius of planet A and T, and 1, for
planet B, then

#H-)
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T, and T, are periods of two planets
respectively and 7 and r, are average
distances of the planets from the sun
respectively. This law holds for all space
bodies. For example, the moon moving
around the earth and all other satellites of
the earth.

3.3.2 Newton’s Law of Universal
Gravitation

Newton pointed out that everybody in
the universe attracts every other body. He
proposed the law of universal gravitation
which states that, “The force of attraction
between two bodies in the universe is
directly proportional to the product of their
masses and inversely proportional to the
square of distance between their centres”.
Note that, the force of gravitation always
acts along the line joining the centres of
the two bodies.

Consider two bodies of masses m, and
m, separated by distance 7 between
their centres as in Figure 3.31.

Figure 3.31 Mutual gravitation force

According to Newton’s law of gravitation

Focmm, (3.43)
1

Foo— (3.44)
r
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Combining equation (3.43) and (3.44)
gives,
=k

mm \
‘.—13 (3.45)
where a constant 4 is called universal
gravitational constant,

G=6.67x10""Nm’kg ™.
Re-writing equation (3.45), gives

mm,
F=G—5=.

(3.46)

Kepler’s Third Law and Newton’s Law
of Universal Gravitation

Kepler’s third law of planetary motion
can be derived from Newton's law of
universal gravitation. In order to show
this relationship, an approximation of
circular orbits of planets must be used.
Consider a planet of mass m, revolving
around the sun of mass M in a circular
orbit of radius R as in Figure 3.32.

Vi

/\\/-"’

&

Figure 3.32 Planetary orbit around the sun

Since the mass of the sun is much
larger than that of a planet, it is correct
(for circular orbits) to assume the sun’s
position at the centre of the circular
orbit. Therefore, the centripetal force
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on the planet is provided by the sun’s

gravitational pull given by,

GM‘m,,
Rl

m,v

2
But v=@R and w=? . then,
. _ 4R’
T oM,

s

The term ) is constant, hence

T’ <R,

eampiesio)
Two masses of 800kg and 600kg are
at a distance of 0.25m apart. Calculate
the magnitude of gravitation force of
attraction between them.

Solution
F=G m,lznz
P
_ 6.67x107 Nm’kg™ x800kg x 600kg
(0.25m)

F=5.12x10"N

(\ampies

Assuming the orbit of the earthabout the
sun to be circular (it is actually slightly
elliptical) with radius 1.5x 10" m, find
the mass of the sun. The earth revolves
around the sun in 3.12x 10" seconds.

Solution

For the earth to revolve around the
sun it requires a centripetal force. This
centripetal force is provided by the

gravitational pull of the sun. Therefore,

centripetal force( ok ) =

gravitational force(Fg )

> 2
m.,v m.m, vr
— =G m =

r

2
but v=wr and w=Tﬂ, then

4°r?
m= G
418><(1A5><10“m)3
(3.12x107s)" x6.67x10" Nmkg™

m =

=2.0x10" kg

Therefore, mass of the sun is about
2.0x10" kg

C\apiesis)
There is a point along the line joining the
centres of the Earth and the moon where
an object of mass 7, does not experience
a force of gravity due to the earth and
the moon. Determine the position of an
object with respect to the earth (Mass of
the earth, m_=6.0%10* kg, mass of the
moon m, =3.35x107kg. earth-moon
distance R=3.8x10"m)

Solution

Let x be the distance from point of zero
gravitational force to the centre of the
carth as illustrated in Figure 3.33.

m F m E m

Q 0 m t
L4

|e—— X —> | «—R-—x—>
[ R |

Figure 3.33 Gravitational force

| Physics Form V.indd 80




The net gravitational force on mass m.
Y F=F,+(=F)but, 3, F=0,

Gmm  Gm m
h Py —f e
ehos: £y =iy = (R—x)?

; . m, )
Solving forx gives, x=(R—x)| —
m

m

1

24 2

x=(3.8%10°m— 1) M
3.35%10%kg

=3.54x10°m

The position of an object with respect
to the earth is, x=3.54x 10" m.

3.3.3 Acceleration due to gravity (g)
Consider an object of mass m placed on
a uniform spherical earth of mass m_ and
radius 7, as shown in Figure 3.34.

m

Figure 3.34 A body placed on the surface of the
earth

The gravitational force of attraction on
mass m is obtained from Newton’s law of

3y d
gravitation F = GM s

e

The attractive force which the earth exerts
on the object is the weight of that object.
mm

F=mg=G—5
%
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Therefore,

g=G™%
r

e

(3.47)

The mass of the earth can be calculated
from equation 3.47,
&
G
and the density of the earth
m g 3
v.© G
sphere, therefore,
3g
p= 4nr,G

m (348

3

, since the earth is
4nr!

(3.49)

Equation (3.47) provides the value of g
on the surface of the earth. Experiments
show that g varies from place to place on
the surface of the earth as well as with
altitude.

(a) Variation of g with altitude
Suppose that an object of mass m is at a
height / above the surface of the earth
(Figure 3.35).

Pm

Figure 3.35 Value of g above the carth’s surface

—_— ‘\\——/‘/”M;
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Assume the earth to be a uniform sphere
of radius 7, and mass m,, then the value
of g at point P is

’ mu
g'=G= (3.50)
Dividing equation (3.50) by (3.47), gives

,_gn

8= R

. .
Therefore, g’ < — since gr,” is constant.

3

Ifthe object is at height close to the surface
of the earth, then

2
&,

=(,‘?+h)g=[ 7> or

_8&
Hh}
%
- [ /1)‘:
gr=g|l=
I',

By Binomial expansion and neglecting

.

g

the higher powers of ﬁ,

, 2h
g=g|1--

(b) Variation of g with depth

Consider a body of mass m placed at a
depth d below the surface of the earth as
shown in Figure 3.36.

Ie

(3.51)

Figure 3.36 Variation of g with depth

The value of acceleration due to gravity
on mass m at a depth d is given by,
8"=G u

R

(3.52)

Where m/ is the effective mass of the
carth that exerts gravitational force on
mass m given by,

m = p[%n’R“ J

)

m_. Substituting into

(3.53)

4
t,m,=p| =
but, m, p( 3 7

hence, m' =

equation (3.52), gives,

, | Gm, |R Gm
g"= £ |—, but —~t=g
" »

2

Therefore,

(3.54)

since LS is constant, then g”e<R, then
P

R=r,—d, and equation (3.54) can be

written as,

o d
g'=gll-=
[

The acceleration due to gravity decreases
with increase in depth. If d =r,, then
g =0 Therefore, at the centre of the earth
an object feels weightless. Equations
(3.51) and (3.54) can be presented
graphically as shown in Figure 3.37.

(3.55)
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g
At the earth’s surface
[
&/ ,
p \g}/ // ! Outside
oA i
i
|

\

Figure 3.37 Variation of g inside and outside

R

the carth’s surface

(¢) Variation of g with latitude

Alatitude of a place is the angle which the
line joining the place to the centre of the
carth makes with the equatorial plane. As
the earth spins on its axis, different places
on the surface experience different speed
with respect to the earth’s axis of rotation.
The variation of speed means that there is
variation of force of gravity and therefore
variation on the acceleration due to
gravity. The effect of earth’s rotation on
the acceleration is shown in Figure 3.38.

1 hi f&
,,,,,,,,,,, <

Figure 3.38 Effect of earth’s rotation on the
value of g

Suppose the weight of a body is W,
part of this weight is used to provide
the centripetal force F, on the object.
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Therefore, at point P the measured
weight is /¥ (the apparent weight). The
relationship between W and W is given
as W2 =F’ + W} =2W, F cos6.

(mg’) =(mor) +(mg)* ~2me)mo*ricosd (3.56)

Substitute r=rcos@ and simplifying
equation (3.56) gives,

p [ 'r’cos’® ZafrlcosleJ
g=gll4—e—"2 " 77
3 4

4.2 2
The quantity @708 0 s very small

such that, it can be ignored, hence,

1
, 2w*rcos’d |? X
g'=g|l-————| , by expanding
4
and ignoring higher terms,
’ @’rcos’d
g=gll-———

g'=g-wrcos’d (3.57)
The value of g increases from the equator
to the poles. At the equator,§=0%
g =g—’r andatpoles, §=90°% g’ =g.

[ WEmpresiy)
A body weighing 72N on the surface
of the earth, moves to a height half the
value of the radius of the earth. What is
its new weight?

Solution
Using the relation,

W=G—* (i)
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Crt h)? (i)
dividing equation (ii) by (i) gives

2
r

W=—2="=W
(r,+h)y

W= '"; XT2N=32N
(';+E’:’):

Hence, the weight at height, 4 is 32N.

[ iampiesz)

At what height from the surface of earth
will the value of g be reduced by 36%
from the value at the surface? (Radius
of earth 7, = 6400km ).

Solution

From equation g’ =g[l—ﬁ}
The change ing, §=& - 2h

4 L

6
:0A36><6.4><10 m=1_15><10"m

h
Hence, the value of g will be 36%
at a height of 1.15x10°m above the
earth’s surface.

[ empiesay

What is the acceleration due to gravity
ona surface of a planet that has a radius
one third that of the earth and the same
average density?

Solution

mf and for the planet,
2

Using g=G

& _ [’_] [’"_pj i)
g oz o,

Since two planets have same density,

3
L
=== (ii)
m, i
substituting (ii) into (i) gives,

T L
8,8 '— . But rng , thus,

1
8=3¢

Therefore, taking g= 9.8ms™ gives,
&= 3.3ms™.

3.3.4 Gravitational field and field
strength

Gravitational field is defined as the region
around a body where another massive
object will experience gravitational force
of attraction. The concept of field shows
that a body due to its mass “modifies” the
space around it such that another object
(also due to its mass) when brought near the
first object. experiences the “modifications™
in form of force of gravity. Therefore, the
gravitational field of one object will not
act as a force of gravity on itself. The
gravitational force on a body is exerted
by the gravitational field created by other
massive bodies. This means that if a very
small massive object (called test mass) is
placed at a point in space and experiences
a gravitational force: then, there is a
gravitational field at that point.
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Gravitational field strength (:g ) ata point

is therefore defined as the gravitational

force (F ) experienced by unit mass of
'

s F
a test mass at the point, 1,e.,§ =—. InSI
m

units, in which the unit of force is IN,
and the unit of mass is 1 kg, the unit of
gravitational field strength is one newton
per kilogram INkg™ or Ims™. Hence,
gravitational field strength at a point is
equal to the acceleration due to gravity that
a unit test mass would experience when
placed at that point.

(a) Gravitational potential and
potential energy

Gravitational Potential (V) at a point
in the gravitational field is numerically
equal to the amount of work done (77) in
bringing a unit mass from infinity to that
point. Consider a body of mass m placed
outside the earth at point P at a distance
 from the centre of the earth. Suppose
that the body is moved from point 4, a
distance r, to a distance 7, at point B by
force of gravity as shown in Figure 3.39.

i Infinity point
i

'
'
'

ﬁ’f

A
t dr
1B

Figure 3.39 Gravitational potential at a point
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The total work done per unit mass
when a body is moved from 4 to B by
gravitational force is

W W F
J:VB:J'" £ dr,
m oom

substituting F, =G
gives,

pe-on L1

and integrating,

(3.38)

B

In calculations of gravitational potential,
a reference point is always chosen at
infinity. The potential at infinity is taken
to be zero. Hence

(3.59)

Therefore, the expression for the potential
ata given point is,

Md
7
The negative sign in the equation for
potential signifies that the object at
infinity would fall towards the earth but
work is required to move objects from the
earth to infinity.

Gravitational ~ potential ~ energy (U)
at a point in the gravitational field is
numerically equal to the work done in
bringing the body from infinity to that
point. That is,

V,==G (3.60)

U=, (.61)
From equation (3.60) and (3.61),
Mm

U,=W=mV, hence, U, =-G =
Hence, gravitational potential enérgy is
a property of a system of two bodies of
masses M, and m not of a single body.
The negative sign shows that objects will
have more potential energy as they move
away from the earth.
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(b) Relationship between gravitational
field strength and gravitational
potential

The gravitational field strength on the

earth’s surface is given by g =G

The gravitational potential on earth’s
o M,
surface is given by V' =-G—=

dividing the two equations and solving
for g gives,

== K (3.62)
7
For small changes,
dv
=—— 3.63
g ar (3.63)

Thus, the gravitational field strength (g)
is also called the negative gravitational
potential gradient.

[ \oiampiesz)

Calculate the gravitational intensity on
the surface of Mars assuming it to be
a uniform sphere of mass 6.4x10% kg
and radius of 3.375x10° m. Use

G=6.67x10"Nmkg*
Solution

g=GA{

_ 6.67x107"'Nm’kg™ x6.4x10” kg
(3375%10°m)’
=0.375Nkg™

The gravitational intensity on the
surface of Mars is 0.375Nkg ™.

[ \ampies2y

Calculate the distance from the earth to
the point where the gravitational field
due to the earth and the moon cancel
out. Given that earth-moon distance is
3.8%10° m and the mass of the earth is
81 times that of the moon.

Solution

Let x be the distance from the earth
where the resultant gravitational field
strength cancels out. Suppose a unit
mass # is put at this point (Figure 3.40).

Earth
Moon

3.8%10°m —x |
S

X —>

e 38x10°m ——

Figure 3.40 Distance between the earth and
moon

Gravitational field strength cancel out
at g, =&u

M
G———m  but
a0

M_=81M  solving for x gives,

x=3.42x10"m

Therefore, the gravitational field
strength will cancel outat 3.42x10°m
away from the earth.
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(¢) Motion of satellites

Asatellite is a body that revolves around another
larger body (planet) in space. There are two
types of satellites. These are natural satellites
and artificial satellites. A natural satellite is a
celestial body that revolves around a planet. It is
called natural satellite because it is not man-made.
For example, the moon is a natural satellite of the
planet earth while Titania and Aerial are natural
satellites of Uranus.

On the other hand, artificial satellites are man-made
satellites that orbit the earth for communication
or other purposes. For example, the international
space station (ISS), Skylab, sputnik (1 and 2) and
Telstar. Artificial satellites orbiting the carth are
now quite common and many. They are called
carth satellites.

(i) Launching of a satellite

To understand the principle of launching a satellite,
consider a ball projected horizontally from a point
above the earth’s surface (Figure 3.41).

Point of
projection

Part of ellipse

Speed v --- - v<Agr

v ] Circle s
Parabola | v:\/g—r /
v=a4/2gr % /!

Elijiﬁe

\/Zg—r>v> gr

Figure 3.41 Launching of a satellite

Gravitation

If gravity did not act on the ball, then
it would follow a straight line path
shown by the solid line. But there
is gravity so that the ball follows a
parabolic path and hits the surface of
the earth. If the horizontal velocity
is increased the ball will travel a
greater horizontal distance before
hitting the surface of the earth. As
a result, the horizontal range of
the ball also increases. Finally, a
stage is reached when the horizontal
velocity is large enough that the
ball’s path follows the curvature
of the earth. This is the launching
velocity which places the ball (or
any other body) in a circular orbit
around the earth. Further increase
in velocity results in the other orbits
as shown.

Thus the object in the circular orbit

| ‘may be regarded as falling but as it

falls, its path is concentric with the
carth’s spherical surface so that the
object maintains a fixed distance
from the centre of the earth. The
velocity required to put the object in
its orbit is called the orbital velocity.

(ii) Orbital velocity of a satellite
Orbital velocity is the velocity
required to put a satellite into a
given circular orbit around the
carth. Consider that a satellite of
mass m__ is put into a circular orbit
around the earth. Suppose m, and R
are the mass of the earth and radius
of the orbit respectively as shown
inFigure 3.42, whereR=r,+h 1,
is radius of the earth.
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Figure 3.42 Satellite into circular orbit around
the earth

The centripetal force on the satellite is
provided by the gravitational force of
attraction between the satellite and the
earth. It then follows that,

mm,
S0

(3.64)

where v is the orbital velocity and R is the
orbital radius of satellite.

From equation (3.64) it can be realized
that, orbital velocity of a satellite is
independent of its mass and decreases as
the height increases.

When a satellite revolves close to the
earth’s surface, the height becomes very
small as compared to radius of the earth,
such that 7 +h=r. Then the orbital
velocity can be approximated to:

Gm,
v=

”

v=4/9.8ms > x6.4x10° m =8x10°ms™

Thus the orbital velocity of a satellite
close to the earth is about 8 10*ms™.

0 2
=./gr, . since Gm, = gr;

(iii) Period of a satellite (T)
This is the time taken by a satellite to
complete one revolution. Consider a
satellite of mass m, put into a circular
orbit of radius R at height s above the
earth’s surface (Figure 3.42).

The period of the satellite is given by

7 - Circumference of theorbit _ 27R
orbital velocity v
Substituting v = G":‘ and R=r,+h
gives
/( +hy’ ’
T=2n 3.65
Gm, (365

T is the period of a satellite at a distance
h from the earth’s surface. The period of
the satellite depends on the distance from
the earth’s surface. The greater the height
above the earth’s surface, the greater the
period of revolution.

For Satellite close to the earth, ie.,

r.>>h, it follows that, T =2mx
¢ V Gm,

Hence, the period of revolution of the
satellite revolving very close to earth’s
surface is about 85 minutes.

[ \ampieszy

A satellite takes 24 hours to revolve
on its orbit around the earth. Find the
height above the earth at which the
satellite should be placed.

Solution

(. +h)' Y
From; T=2r [~ p= =N =
K Gm,_ b g[ 2 ] #
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- 7
h=ij9,8ms’3 x[6.4x 10 m;( 24 %3600 s)
T

—64x10°m=3.6x10"m

Thus, the satellite should be placed
at 3.6x10"m high above the earth’s
surface so that it revolves with the
period of 1 day.

(iv) Energy of satellites

A satellite revolving around the earth has
both kinetic energy (K) and potential energy
(U). Thus the total mechanical energy of
the satellite is the sum of its kinetic energy
and potential energy (Figure 3.39).

Consider a satellite of mass n1, revolving
the earth in circular orbit at a height &
above the surface of the earth as shown
in Figure 3.42.

n,m m.m,

my
=G, vt =G,
R R ' R

From

multiplying by % both sides gives,

but, %m\v: =K.and R=r,+h

K =G (3.66)
2(r,+ 1)

The potential energy U = work done (m }')

where Vis the gravitational potential. But

V:_ﬂ and R=r,+h,
R

Therefore,
U=-G mm (3.67)
B r+h ’
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The total energy of the satellite is the sum

of kinetic energy and potential energy.
m,m, mm,

2Ar+h)y rth

E,=K+U. E, =G

E = mumy
T 2r,+h)

[ \ampiesas

A geostationary satellite orbits the earth
at the height of nearly 36000 km from
the surface of the earth. What is the
potential due to earth’s gravity at the
site of the satellite? Take radius of the
earth r, =6400km , mass of the earth
m, =6x10"kg.

(3.68)

Solution
Consider Figure 3.43 with a geostationary
satellite.

( Satellite

Satellite
'\‘/ orbit

Figure 3.43 A geostationary satellite orbit

The gravitational potential at a height
h above the earth’s surface is given by:
V=—G£[:"—, where R=r,+h,

6.67x10" Nm’kg? x6x 10 kg
(64x10°m+3.6x10"m)
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=-94x10°Jkg™

Potential due to earth’s gravity at the
site of the satellite is —9.4x10° Jkg .

(v) Parking orbit

The orbit in which a satellite revolving
around the earth has period equal to the
period of rotation of the earth is called the
parking orbit. The satellites placed in parking
orbit are called geostationary satellites or
synchronous satellites. Since geostationary
satellites move with the same period as that
of the earth, they appear on the same positon
above the surface of the earth all the time
as they move. These satellites are coplanar
with the equator and move from west to east
as the earth; this is the reason why they are
called synchronous satellites.

Since the period of revolution is known,
we can calculate velocity in the parking

orbit. From y= G

vl
R=— 3.69,
2n (3i6%)
also v= (3.70)

Equating equation (3.69) and (3.70) gives
5 2nGm,
vV=—-=
T

but GM, = gr’

(3.71)

Substituting the values r, =6.4x10°m,
g=98ms™, T=24x60x60s gives
velocity of parking orbit 3.08kms™.

The height of the parking orbit can be
T
calculated using the relation, R:‘z—
e

Since, R =1, +h, then, h= £~1'
2n

Gl (3.08x10°ms™)x (24 x 3600s)
B 2n

6.4x10°m
h=3.6x10"m

Therefore, the parking orbit should be at
3.6x10" m highabove the earth’s surface.

(vi) Escape velocity

Suppose a ball is thrown into air; it rises
up to a certain height and then falls back.
If it is thrown with a large velocity, it rises
to a higher height and falls back again.
If a body is projected vertically upwards
with sufficient velocity to allow it to move
infinitely away from the earth, then, the
body never returns and this velocity is
called escape velocity. Therefore, escape
velocity is defined as the minimum velocity
with which a body may be projected such
that it escapes from the earth’s influence of
gravitational force completely.

Suppose the escape velocity of a body is
v, then its kinetic energy at the point of
projection is given by K = %mvﬁ.

The work done to remove the body from
the surface of the earth is obtained by
conserving mechanical energy of the
body at the earth’s surface and at infinity.

That is,

—i
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—mv,_=

2 r
Therefore,

2Gm
Vg = e or v =287

Substituting the values
G=6.67x10"Nm’kg™, m =6.0x10" kg

and r, =6.4x10°m gives, v, =11200ms ™.

Therefore, in order for the body to escape
from the influence of earth’s gravitational
field, it should be projected with the
velocity greater or equal to 11.2kms™.

If the body is ata height 4 from the surface
of the earth, then its escape velocity is

given by
2g
rVv =1
En +h

(d) Uses of artificial satellites

When a satellite is to be placed in orbit,
it is first carried to a desired height by a
rocket. The satellite then turns into the
required orbit. The earth’s satellites have
several uses including; learning about
the atmosphere near the earth, weather
forecasting and studying radiations from
the sun and outer space. Also they are
used in receiving and transmitting radio
and television signals, and visualization
of the actual shape and dimensions of the
earth, research and security purposes.

2Gm,
— o
r+h

Physics Form V.indd 91

6.

A student wrote, “The reason an
apple falls downward to meet the
earth instead of the earth falling
upward to meet the apple is that the
earth is much more massive than the
apple and therefore exerts a much
greater pull than the apple does.” Is
this explanation correct? If not, what
is the correct one?

In discussions on satellites by

laymen, one often hears questions

such as “What keeps the satellite
moving in its orbit?” and “What
keeps the satellite up?” How do you
answer these questions? Are your
answers also applicable to the moon?

“Astronauts in satellites orbiting

around the earth are weightless

because the earth’s gravity is so
weak up there that it is negligible”. Is
the statement true or false? Explain.

‘What are the differences between

gravitation and gravity?

An object of mass M is broken into

two pieces. What should be their

masses if the force of gravitation
between them is to be minimum?

Explain the following:

(a) Since the moon is constantly
attracted toward the earth by the
gravitational interaction, why
does it not crash into the earth?

(b) Which takes more fuel, a voyage
from the earth to the moon or
from the moon to the earth?

Calculate the percentage decrease in
weight ofa body when taken 32 km
below the surface of the earth.
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10.

1

o

—
L

. Deduce Newton’s law of universal

. Twomasses 800 kg and 600 kg are

. Gravitational potential at a point

. Discuss the following:

. Discuss the importance of parking

. Given that the mass of the moon

gravitation from Kepler’s laws of
planetary motion.

atadistance 0.25 mapart. Calculate
the magnitude of the gravitational
field intensity at a point a distance
0.2 m from the 800 kg mass and
0.15m from the 600kg mass.
Given G=6.67x10"" Nm’kg™
What is the change in gravitational
potential energy of a body with a
mass of 10 kgwhen taken to a height
of 7, from the earth?

2500 km from the surface of the
earth is -1.5%x10" Jkg'. Find
the gravitational field strength
at this point (Radius of the earth,
r, =6400km ).

(a) The importance of the artificial
satellites and their uses with
regard to the planet earth;

(b) A person sitting in an artificial
satellite that is moving around the
carth feels weightlessness; and

(¢) Is it possible for a pendulum to
vibrate (oscillate) in an artificial
satellite?

orbit for our earth.

is 7.5x10%kg with a mean
radius of 1.75%10°m and the
universal gravitational constant,
G=6.67x10""Nm’kg™.
Determine the escape velocity from
the moon.

2

15. Assume the radius of the earth to be

6400 km. A body with a mass of

40 kgis moved to a height of 100 km

above the surface of the earth.

(a) Determine the weight of this
body at this new position.

(b) What causes the acceleration
due to gravity to vary over the
earth’s surface?

1

=N

. If the acceleration of free fall at
the earth’s surface is 9.8ms™ and
the radius of the sarth is 6400 km,
calculate the mass of the earth.
(G=6.67x10" Nm’kg™).

17. The gravitational force on a mass of
1 kg at the earth’s surface is 10 N.
Assuming the Earth is a sphere of
radius R , calculate the gravitational
force on a satellite of mass 100 kg
in a circular orbit of radius 2R.

18. What is the amount of energy needed
to launch a satellite of mass 2000 kg
from the earth’s surface in a parking
orbit? (Neglect air resistance).

19. A satellite is revolving in the
parking orbit around the earth. If it
is suddenly stopped and allowed to
fall freely on to the earth, find the
speed with which it hits the surface
of the earth.

20. If two uniform spheres each with

mass M and radius R, touch one
another, show that the magnitude of
their gravitational force of attraction

is G M .
2R

. According to Newton’s law of
universal gravitation, gravitational
force is a mutual force. Why then
only objects “fall” towards the earth
and not the earth “falling” towards
other objects in its vicinity?

e
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. At what point in the motion of a
simple pendulum is

(a) thetension in the string greatest?
(b) the string tension least?

(c) the radial acceleration greatest?
(d) the angular acceleration least?
(e) the speed greatest?

. A passenger in a car rounding a

sharp curve feels “thrown™ toward

the outside of the curve.

(a) What causes this to happen? Is
the person really thrown away
from the center of the curve?

(b) Make a free-body diagram of
the person.

. If two planets have the same mass,

will they necessarily produce the

same gravitational pull on 1.0 kg

objects that are

(a) at their surfaces?

(b) the same center-to-center
distance from both planets (but
above their surfaces)? Explain.

. “If a rock is acted upon by a

gravitational force F from the earth
when it is at a distance d above the
surface of our planet, it will be acted
upon by a force ]ifil is raised to
2d . Ts the statement true or false?
Explain

. What is wrong with this statement?

“A satellite stays in orbit because
the outward centrifugal force just
balances the inward centripetal
force.” Make a free-body diagram
of the satellite.
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. A child is sitting 1.50 m from the

centre of a highly polished wooden,
and rotating disc. The coefficient
of static friction between the disc
and the child is 0.30. What is the
maximum tangential speed that the
child can have before slipping off
the disc?

. An object of mass m is resting on

top of a hemispherical mound of ice
whose radius of curvature is R. The
object is given a small push and start
sliding down the mound. Show that
the object will lose contact with the
surface of ice at a vertical height of
2R
5>

. The radius » of a rotating room

is4.50m and the speed v of a
child standing against the wall
is 12.0ms™. Find the minimum
value of coefficient of static friction
required to keep the child pinned
against the wall.

Determine the angle at which a
cyclist should bend to the vertical
when he moves a circular path
of 64.6 m in circumference for a
duration of 10 seconds only.

. Arod of 20 em length pivoted on one

end is made to rotate in a horizontal
plane with a constant angular speed.
A ball of mass m is suspended by a
string of 20 cmlength from the other
end of the rod. If the string makes an
angle of 30°with the vertical, find
the angular speed of the rod.

. A mass of 0.5kg is vibrating in
a system in which the constant of




1
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the spring used is 100 N/m. The

amplitude of vibration is 0.2 m.

Determine:

(a) The energy of the system:

(b) The maximum velocity:

(c) The potential energy and kinetic
energy when x=0.1m ; and

(d) The maximum acceleration.

A simple pendulum has a period of
4.2 seconds. When the pendulum is
shortened by 1 m, the period is 3.7
seconds. From the measurements,
calculate the acceleration due to
gravity and original length of the
pendulum.

. (a) Ifa displacement of oscillating

particle at any time is to be
given by an equation
¥ =asint+ bsin wt. Show
that the motion is SHM.

(b) If a=3cm, b=4cm and

®=2rads™. Determine the
period, amplitude, maximum
velocity and acceleration of the
motion in (a).

. A person of mass 50 kg stands on

a platform. The platform oscillates
with a frequency of 2Hz If
the amplitude of oscillations is
0.05 cm, calculate the maximum
and the minimum weight of the
person recorded by a machine of
the platform.

15. Calculate the gravitational field
strength and gravitational potential
at the surface of the moon given that
mass of the moon,
m=7.34x10% kg, radius of the
moon, R=1.74x10°m and the
gravitational constant
G=6.67x10" Nm’kg ™.

16. A satellite with a mass of 1000 kg
moves in a circular orbit with a
radius of 7000 km round the earth.
Calculate the total energy required
to place the satellite in the orbit
from the earth’s surface, assuming
it to be at rest initially. (Take radius
of the earth, » =637x10°m and
2=9.8ms7).

17. A rocket is launched vertically
from the surface of the earth with
an initial velocity v,. Show that its
velocity v at a height 4 is given
2gh

2
fi
R
the radius of the earth and g is the
acceleration due to gravity.

by v =v'— where R is

18. The international space station (ISS)
makes 15.65 revolutions per day in
its orbit around the earth. Assuming
a circular orbit, how high is this
satellite above the surface of the
earth?

Student’s Book Form Five




Chapter

Four

Introduction

Rotation of rigid bodies

Rotational motion is common phenomenon observed in different moving rigid
bodies. Examples of these are the motions of whirled buckets, Digital Video
Discs (DVDs), car tyres, circular cutting saws, and ceiling fan blades. Each of
these examples involves a body that rotates about an axis that is stationary in
some inertial frame of reference. Rotational motion occurs in all scales, from
motion of electrons in atoms, to motion of the earth and entire galaxies in the
universe. In this chapter, you will learn about the rotation of rigid bodies. It
covers the following concepts: angular momentum, centre of mass, moment of
inertia, torque, and the kinetic energy of a rotating rigid body.

4.1 Centre of mass

Arigid body is one which does not deform
easily under the action of an applied force.
A centre of mass of a rigid body or a system
of particles refers to a point at which the
whole mass of a body or a system of
particles is assumed to be concentrated. It
can also be defined as the point at which all
the mass of the body can be considered to
be concentrated when applying an external
force. That is, the motion of centre of mass
represents the motion of entire body. You
can replace the mass of a body by a mass
of a single particle placed at the centre of
mass of that body. Therefore, the centre of
mass of any object is the average position
of all the particles of mass that makes up
the object. Hence, the centre of mass of
regular shape objects (such as rod, disc,
cylinder and sphere) is at its geometrical
centre of the object. For an irregular object,
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its centre of mass depends on the shape and
mass distribution of its particles.

Consider an irregular object of mass M
consisting of a large number of particles
each havingmassm, , m, . my, ... m, rotating
about an axis OP (Figure 4.1).

Figure 4.1 Rigid body with axis of rotation OP

Each particle experiences an external force,
F=ma,F, =mya,F,=ma,..F,=ma.
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The total force experienced by the body is

F=ma+ma+ma+..+ma 4.1)

Equation (4.1), can be expressed in terms
of the second derivative of displacement as,
2

Fe d
Z dt

(S
=1

Where g, is the acceleration of the
centre of mass.
&’x

% % and
= ap

2

(m‘x‘ +mX, +mx +.+m X, )

“2)

Since, ¢
(ol

"
mx, +mx,+mx, +...+mx = Zm‘xl.
i=l

then equation (4.2) reduces to,

IH‘,\‘
Ko =" 4.3)
Il’l‘.
i=l
Similarly,
my,
P
Yo =" 4.4)
m

=

For the two dimensional plane figures,
the coordinate of the centre of mass is at
(x, ) and its distance from the origin is

ans Vem

V)

e = NXem ¥ Vi

“.5)

For two connected particles of mass m;
and m, with position vector 7 and 7
respectively (Figure 4.2), the centre of
mass is given by

i '

rmn e+l

S ok 1 § il S

Fy =——% (4.6)
my +m,

1 1 T 1 1 1
where, 7 =X+ and 1, =x, +,

Figure 4.2 Two particle system

The positon of the centre of mass depends
upon shape, size and distribution of mass
of the body. In addition, the centre of mass
of a body may lie within or outside the
body. When an external force is applied at
the centre of mass, only linear motion is
produced (no rotation motion). The motion
of the centre of mass is the motion of the
whole body.

et
Two bodies of masses 0.8 kg and
1.2 kg are located at (1,-2) and(-3,4)
respectively. Find the coordinates of the
centre of mass of the system.
Solution
From equation (4.3) and (4.4),

myx, +m,

om

my+m,

_08 kg><1+l‘2kg><(—3)__l 4
T 08kg+llkg :
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and
L ny, +my,
e r—
_08kex(2)+12kexd | o
0.8kg+1.2 kg '

The coordinates of the centre of mass
of the system are (—1.4, 1.6).

[ \Bxampled2 ] |
Two bodies of 100 g and 300 g have
positon vectors 2i +57+13k and
—6i +4]'AZI€ respectively. Find:

(a) Position vector of the centre of
mass; and

(b) Distance of the centre of mass
from the origin.

Solution

Form equation (4.5) and (4.6)
Lomptmp
Fo=—tl 22,

@ o m +m,

100 g(27 +5/+13%)+300 g(~6i + 4/~ 2k)
B 100 g+300 g

= 2 17~ T2
=4fpilalp

By =—dit=—fts

(b) 7,,, =452 + 30+ 25,

= (—4)3+[%j +[%j =6.09 units

The total mass M of a rigid body can be
expressed in terms of the individual mass

"
of the particles as Zm. . Therefore, from

=l
equation (4.3), the centre of mass of a

Rotation of r

rigid body can be expressed as,
"

“.7)

T

— =l

M
The centre of mass in the xyz directions
can be expressed as,

M

Since the rigid body is a continuous
distribution of particles (not discrete
particles) equation (4.8) can be expressed as,

= 1 = 1
X, = H_J‘xdm, V= H-‘. ydm and

2= [zdm 9
In general, the centre of mass of a rigid
body of continuous mass M can be
expressed as,

i % [rdm (4.10)

[ Wanpess )

Find the centre of mass of uniform rod
of length L, along its length.

Solution

Consider a uniform rod with a small
element dm of length dx at a distance
x from the fixed point.

The mass dm can be expressed in

M
terms of mass density as, dm =de,

Therefore, from equation (4.10), the
centre of mass of the rod is,




—

1. Explain where the centre of mass of
a two particle system lies when one
particle is more massive than the
other.

)

Does the centre of mass of a rigid

body always lie within the body?

Give examples to support your

answers.

3. What is the difference between
centre of mass and centre of gravity?

4. Under what consideration does the
centre of mass coincide with the
centre of gravity?

5. Prove that the centre of mass of

(a) two-particle system divides the
line joining the particles by the
inverse ratios of the masses.

(b) semi-circular hoop of radius R

LR 2R
is given by —.
T

4.2  Moment of inertia

Moment of inertia of a rigid body is a
measure of how difficult it is to change the
state of rotational motion of a rigid body.
That is to say, how difficult it is either, to
cause a body to rotate when at rest, to stop
it when rotating, or to increase or decrease
its angular velocity. The moment of inertia
of'abody depends on the following factors
namely: mass, axis of rotation and mass
distribution from the axis of rotation of the
body. This implies that, a single body will
have different values of moment of inertia
about different axes of rotation. Hence, the
moment of inertia of a body is not unique.

This is the reason why it is much easier to
rotate a uniform meter rod about its centre
(where its moment of inertia is small) than
rotating it at one-end (where its moment
of inertia is large). The moment of inertia
of a rigid body can be deduced from the
kinetic energy of the body.

Suppose a rigid body of mass M is rotating
with an angular velocity @ about an axis
through O perpendicular to the plane of
the figure (Figure 4.3).

Figure 4.3 Rigid body with several particles

Consider a particle at point 4, with mass
my, which is at a distance 7 from O.
The velocity at 4 is v, =no, where @
is the same for all particles of the rigid
body. The rotational kinetic energy of the
particle at 4 is

1 EREE
—lni\»‘“ = Em‘r'['w“

4.11)
2 (

The total kinetic energy of the body is

the sum of the kinetic energies of all its

particles.

kE=Lmror +dmpet+. v tm e
. —2 ‘I‘ 217211 2 Vl"I"

or
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K.E= Zémlr;’ml (4.12)
i=l

Factoring out the constant values in
equation (4.12) the kinetic energy is

e
KE=0 Z‘rmm (4.13)

The quantity Z‘”"r’l =mp s ot m
is called the moment of inertia denoted
by 7. Therefore, the moment of inertia is
the sum of the product of the mass of each
particle of a rigid body and the square of its
distance from the axis of rotation. That is,

I= anll;l =mp +myr] + A my (4.14)
=

The SI unit of moment of inertia is kgm’.
Therefore, from equations (4.13) and (4.14),
rotational kinetic energy can be expressed
in terms of moment of inertia / as,

KE= %laf (.13

Note that, mass is an intrinsic property
of an object, whereas moment of inertia
depends on the physical arrangement of
that mass and the choice of rotation axis.
Can you think of a situation in which an
object’s moment of inertia changes even
though its mass does not?

4.2.1 Moment of inertia of a
rotating uniform rod

The moment of inertia of a rotating uniform

rod (e.g. metre rule) can be determined

from its axis of rotation passing either at

the centre or at its end.

Rotation o)

(a) Moment of inertia of a uniform
rod rotating about an axis through
its centre

Consider a uniform rod AB of mass

M, with length L rotating about an axis

PQ passing through the centre of the

rod. Then, consider, a small length dx

counting for the small mass dm located

adistance x from the axis PQ as shown

in Figure 4.4.

g T —

Figure 4.4 Uniform rod with axis of rotation at

its centre

The mass of the small element dm is given
by

dm =%dx (4.16)

From equation (4.14), the moment of
inertia of the element about an axis PO
passing through the centre of the rod is
given as,

dl = %;fd.\- (4.17)

The total moment of inertia 7 of the
whole rod is the sum of the moment of
inertia ¢/ of the small mass elements dm
from A4 to Band can be achieved by
integrating equation (4.17) that is,

M i 3.5
Isz';:Lx dx (4.18)
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Simplifying equation (4.18), the total
moment of inertia / for a uniform rod
about an axis through its centre is

1 3
I=—ML (4.19)
12

(b) Moment of inertia of a uniform rod
rotating about an axis passing at
one end

Consider a uniform rod 4B of massM

and length L rotating about an axis PQ

passing at one end of the rod. Then,
consider, a small length dx counting for

the small mass dm located a distance x

from the axis PQ (Figure 4.5).

P
Yo
A ——idx fe— »
Tam] ing
b
f L <
Q

Figure 4.5 Uniform rod with rotation axis at
one end

The mass of the small element is
z[m:%d\', thus from equation (4.14)

the moment of inertia of the element about
an axis PQ passing at one end of the rod
F M
is, dl =—x"dx.

il
Hence, the total moment of inertia of the
rod rotating about an axis PQ passing at
one end of the rod is

JRECH L (4.20)
L

Simplifying equation (4.20), the total

moment of inertia 7 for a uniform rod

about an axis at one end of the rod is

4.21)

4.2.2 Moment of inertia of a ring
rotating about an axis through
its centre

Consider a uniform ring of mass M and

radius r rotatingaboutan axis PQ passing

through its centre O, perpendicular to the

plane of the ring (Figure 4.6).

Figure 4.6 Uniform ring with rotation axis
through its centre

From equation (4.14) the moment of
inertia of small elements 4,B,C of mass
m, ,m,,my, located a distance r from the
centre of the ring is given as

1,= mll'z, 1= m:r:, and /.= 17731‘:.
Thus, the moment of inertia of the whole
ring about an axis PQ through its centre
O is given by

I=mp? +mp +my” +.+mr’ (4.22)
Equation (4.22) can be written as,

1= (m‘ +m,+m, +...+m»)r: =Mt (4.23)

where, m +m, +my+...+m, =M which

F
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is the mass of the uniform ring. Therefore,
the total moment of inertia of a uniform
ring about an axis through its centre is
given as,

1=M? (4.24)

4.2.3 Moment of inertia of a disc
rotating about an axis through
its centre

Consider a uniform disc of mass M anda

radius 7 rotating about anaxis PQ passing

through its centre O, perpendicular to the
plane of the disc. Now consider a small
ring element of mass dm and thickness

dx at a distance x , rotating about an axis

PO through its centre O, as shown in

Figure 4.7.

Figure 4.7 Uniform disc with rotation axis
through its centre

From equation (4.14), the moment of inertia
of the small mass element dm is given as
x*dm . Thus, the total moment of Inertia
of the disc about an axis through its centre
can be expressed as,

I= jﬂ 2 dm (4.25)
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Rotation of r bodies

Since dm is the fraction of the total
mass M of the disc, then, the mass and
area for both the disc and the ring can be
expressed as,
W (4.26)
dd 4
But, in equation (4.26) the area 4 of the
disc is 7zr* and the area d4 of the ring
is 27xdx, then, equation (4.26) can be
written as,

(4.27)

Therefore, from equation (4.25) and
(4.27), the total moment of inertia / of
the whole disc about an axis through its
centre is
= 2]:1 J.V.\'3 dx
#

o

(4.28)

Integrating and simplifying equation (4.28),
the total moment of inertia/ of the whole
disc about an axis through its centre is

I= %Mr: (4.29)

Cempieds)
Ifa flywheel of mass 30 kg and diameter
Im is rotating at 300 revolutions per
minute about an axis through its centre,
what is the kinetic energy of the flywheel?

Solution

Using equation (4.15) for the kinetic
energy (K.E) of a rotating rigid body
and equation (4.29) for moment of
inertia of flywheel (disc), then,




ondary Schools

kE=1iat=1x Lo |02
2 2\ 2
_lx l 2 | x(2 2
=5 G @rf),
where @ =27/
30kgx(0.5m)3x4ngx[%)

KE=

4
=1850.6 ]

Therefore, the kinetic energy of the flywheel
about an axis through its centre is 1850.6 J.

4.2.4 Moment of inertia of a sphere

The moment of inertia of a solid sphere (e.g. ball
bearing) and hollow sphere (e.g. football) rotating
about an axis through its centre can be derived as
follows:

(a) Moment of inertia of a solid sphere rotating
about an axis through its centre

Consider a solid sphere of mass M and radius r

rotating about an axis PQ passing through its centre

O.Now consider an elemental disc of radius @ and

small mass dm of thickness dy at a distance y

from the centre O of the solid sphere (Figure 4.8).

P
> @

Figure 4.8 Solid sphere with rotation axis through its

—i

centre

Then, from equation (4.29), the
moment of inertia d/ of the
disc is,

dl = %(dm)a2 (4.30)

Since dm is the fraction of the
total mass M of the disc, then,
the mass and volume for both
the sphere and the disc can be
expressed as;
dm M
— = 4.31)
v v ;
The volume ¥ of the sphere is
iﬂ:r" and the volume d¥ ofthe

discis dV = wa’dy. Substituting
Vand d¥ into equation (4.31),
dm can be expressed as,

3Ma*

43

dm = MdV = dv (4.32)
4

From Figure 4.8, a* =1 - ).

Substituting the value of dm

and a into equation (4.30), the

moment of inertia ¢/ ofthe disc

can be obtained by

(P -y

dl -
8

dy (4.33)
Thus, the moment of inertia of
the solid sphere about an axis
through its centre is obtained
by intergrating equation (4.33)
as follows:
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(4.34)

Integrating equation (4.34),
M|, 2Ky yS ’ _
="y 2 35
= [1 == 5| (4.35)

Simplifying equation (4.35), the total
moment of inertia/ of the solid sphere
about an axis through its centre is

2

I= ng2 (4.36)

s )
The mass of a solid sphere increases
by 1%. What will be the percentage
increase in the moment of inertia about
its axis of symmetry?

Solution

Differentiating the moment of inertia
1 of a solid sphere about the axis of
symmetry i.e. equation (4.36), with

respect to M then, dI = %rsz

The fractional changes in / is the ratio
of dI to that of 7 which gives

dl _dM

1 M
But the percentage increase in the
moment of inertia [ about axis of
symmetry is

ﬂ% = %% =1%

1 M
Therefore, since the percentage increase
in the mass of the sphere is 1%, it
follows that, the percentage change in
the moment of inertia is also 1%.

Rotation of r

(b) Moment of inertia of a hollow

thin sphere
Consider a hollow sphere of mass M
and radius 7 rotating about an axis PQ
passing through its centre O . Now consider
an elemental ring of radius @ and small
mass dm, of thickness dy, at a distance
v from the centre O of the solid sphere
(Figure 4.9). P

Figure 4.9 Hollow sphere with rotation axis at
its centre

Then, from equation (4.24), the moment
of inertia, dI of the ring is

dI = (dm)a’ (4.37)

Since dm is the fraction of the total mass
M of the ring, then, the mass and area
for both the sphere and the ring can be
expressed as,

dm M

da A
From Figure 4.9, the area, A of the sphere
is A=47mr® and the surface area d4 of the
ring is dA =2mady=2nrad0 (consider
dy to be very small such that dy =rd6).
Substituting 4, d4 and ¢ into equation
(4.38), dm can be expressed as,
Ma
2r

(4.38)

do (4.39)
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Since a=rcosf (Figure 4.9), then, from
equation (4.37) and (4.39) the moment of
inertia, / of the ring can be expressed as,

I= ﬁj; cos’ Bcos0.db
2 5

jeE
2

= (1-sin?6)cos 046 (4.40)
Integrating and simplifying equation
(4.40), the total moment of inertia, / of
the hollow sphere about an axis through
its centre is

1= %Mrl (4.41)
Now, suppose the solid and hollow sphere
have the same mass and radius, then the
ratio of the moment of inertia of solid
sphere i.e. equation (4.36) to that of the
hollow sphere i.e. equation (4.41) is given
<1

Toitow *

3 .
as Loy =g1hollou Jthatis 7,

From the definition of moment of inertia,
this implies that, solid sphere rotates much
easier than hollow one. The reason for this
is, mass distribution in solid sphere is closer
to the axis of rotation than in hollow sphere.

4.2.5 Moment of inertia of a cylinder
The moment of inertia of a solid cylinder
(e.g. circular iron rod) and hollow cylinder
(e.g. hose pipe) rotating about an axis
through its centre can be derived as follows:

(a) Moment of inertia of a solid cylinder
rotating about an axis through its
centre

Consider a solid cylinder of mass, M

and radius, » rotating about an axis PQ

passing through its centre.

Let the cylinder be divided into small
discs of masses my,m,,..m, each with
radius 7 (Figure 4.10).

Figure 4.10 Solid circular cylinder with
rotation axis at its centre
From equation (4.29), the moment of
inertia of the small discs of mass m, . m,
and s, located a distance r from the

1 .
centre of the disc, is given by /, = Emir',

1, %mjr", and llzémzrz.
Thus, the total moment of inertia of the
solid cylinder about an axis PQ through
its centre is the sum of moment of inertia
of such small discs for the whole solid
cylinder given as,

1= lm 7 +I~m.,r: + Ifm ” +..,+im P (4.42)
27" T2 T bEN y

Equation (4.42) can be written as,

I=(mtmmcem )2 =St (443)

where, m, +m; +my +...4+m, = Mwhichis
the mass of the solid cylinder. Therefore, the
total moment of inertia of a solid cylinder
about an axis through its centre is given as,

= %M; (4.44)

Note that, the formula of the moment of
inertia of a solid cylinder about an axis
through its centre, equation (4.44), is
similar to that of a disc, equation (4.29).

F
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(b) Moment of inertia of a hollow
cylinder rotating about an axis
through its centre

Consider a hollow cylinder of mass, M
and radius, » rotating about an axis PQ
passing through its centre. Let the cylinder
be divided into small rings of masses
mmy,....m, each with radius » (Figure
4.11).

m \ v
\ &&U o

Figure 4.11 Hollow circular cylinder with
rotation axis at its centre

From equation (4.24) the moment of inertia
of a small rings of mass m,; located a
distance » from the centre of the rings is
given by,

N
IL=mr*

Thus, the total moment of inertia of the
hollow cylinder about an axis PQ through
its centre is the sum of moment of inertia of
the small rings for the whole solid cylinder.
hence,

I=mp? +myr” +mr” ..+ mp? (4.45)
Equation (4.45) can be written as,
1 =(m‘ +m,tmtt mn)r'l =Mr* (4.46)

where, m, +m, +m; +...+m, = Mwhichis
the mass of the hollow cylinder. Therefore,
the total moment of inertia of hollow
cylinder about an axis through its centre
is given as;

1 =M

(4.47)
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Note that, the formula of the moment
of inertia of a hollow cylinder about an
axis through its centre, equation (4.47) is
similar to that of a ring, equation (4.24).

Now, suppose the solid and hollow cylinder
have the same mass and radius. Then the
ratio of the moment of inertia of solid
cylinder (equation (4.44)) to that of the
hollow cylinder (equation (4.47)), is given as

1

salid = 7 Lpotio thatis, £y < 1, From

the definition of moment of inertia, this
implies, solid cylinder rotates much easier
than hollow one. The reason is that, mass
distribution in solid cylinder is closer to
the axis of rotation than in hollow cylinder.

I E

1. Must a rotating object have a non-
zero moment of inertia? Explain.

2. Explain why changing the axis of
rotation of an object changes its
moment of inertia.

3. Experienced cooks can tell whether an
egg is raw or hard boiled by rolling it
down a slope (and taking care to catch
it at the bottom). How is this possible?
Which type of egg should reach the
bottom of the slope first?

4. Can you think of a body that has
the same moment of inertia for all
possible axes? If so, give an example,
and if not, explain why this is not
possible. Can you think of a body
that has the same moment of inertia
for all axes passing through a certain
point? If so, give an example and
indicate where the point is located.
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Calculate the moment of inertia of a

uniform rod of mass 60 g and length

20 cm about an axis perpendicular

to its length through

(a) its centre.

(b) one end.

Find the moment of inertia of a rod

4cm in diameter and 2m long,

weighing 8 kg about an axis

(a) perpendicular to the rod and
passing through its centre.

(b) perpendicular to the rod and
passing through one end.

(c) longitudinal axis through the
centre of the rod.

Four particles of masses 4kg,

2kg.3kg and Skg are fixed at

the four corners 4 ,B, C, and D

respectively of a square of each side

1 m. Calculate the moment of inertia

of the system about

(a) anaxis passing through the point
of intersection of the diagonal
and perpendicular to the plane
of the square.

(b) the side AB.

(¢) the diagonal BD.

Caleulate the moment of inertia of

a circular disc of diameter 40 cm,

thickness 7 cm and uniform density

9 g(:m‘S , about a transverse axis

through the centre of the disc.

. Assume the earth is a uniform

homogenous sphere of radius
637x10°ecm  and  density
5.45 gem™. Calculate its moment
of inertia about the axis of rotation.

4.3 Axis theorem of rotating

bodies
The axes theorems of rotating bodies include
the parallel axis theorem and perpendicular
axis theorem. These theorems are useful for
determining the moment of inertia about
axes given that the moment of inertia about
other axes are known.

4.3.1 The parallel axis theorem

The moment of inertia of rigid bodies
with simple geometry (high symmetry)
is relatively easy to calculate provided
the rotation axis coincides with an
axis of symmetry. The calculation of
moment of inertia about an arbitrary
axis can be cumbersome. Rigid bodies
may have infinitely many moments of
inertia because there are infinitely many
axes about which they might rotate.
Fortunately, the use of an important
theorem, called the parallel-axis theorem,
often simplifies the calculation.

The parallel-axis theorem states that,
“The moment of inertia 1 of a rigid body
about any axis is given by the sum of the
moment of inertia 1. about a parallel axis
passing through its centre of mass and the
product of its mass M and the square of
the perpendicular distance between the
two parallel axesd i, I =1, +Md’.

To prove the parallel-axis theorem,
consider a rigid body of mass M rotating
about an axis y located at a distance d
from the centre of mass G . Then, consider
a particle of mass m,, at a distance x from
a centre of mass G (Figure 4.12).
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Axis through
centre of mass

, Rotation

Figure 4.12 Irregular rigid body with rotation
axis at its centre

The moment of inertia df of a particle
of mass m,, a distance x from the axis of
rotation is given as,

dl = m'(d+x): (4.48)

Then, the moment of inertia [ of the
whole rigid body is then given as

1= ﬁ:m‘(dfr)z=2":m.‘(d3+2xd+x:)
=l =l

I= dliml+2dimr\'+imf.¥l (4.49)

= = =
n

From equation (4.49), Zm, = M is thetotal
=l

mass of the rigid body and Y mx* =1 is
=l

the moment of inertia of the rigid body

about an axis through its centre of mass G.

n
Zm,rz Mx, where ¥ is the average
=t

distance from the centre of mass G to the
axis of rotation y, which is zero, since
the axis is at the centre. Taking these
considerations, the moment of inertia / of
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arigid body about any axis is expressed as,
I =1 +Md* (4.50)

Applications of the parallel axis theorem
Parallel axis theorem is used to determine
moment of inertia of homogeneous rigid
bodies with different geometries, for
example, cylindrical shell, uniform rod,
uniform solid sphere, hollow cylinder,
and rectangular plate.

For a uniform rod of mass M and length
L, (Figure 4.4) the moment of inertia
about an axis through one end is

I=16+Md3,where d=§

(IS A
I=—MIP+M| = | ==—ML
12 2 3
For a solid sphere of mass M and radius
r, the moment of inertia about an axis
tangential to the surface is
s 2 5 Ry )
I=1_+Md =—Mr+Mr=—=M-".
G 5 5

For a uniform solid cylinder of mass M and
radius 7, the moment of inertia about an
axis on the surface parallel to its length is

1=1,; +M¢12=%Mr2 + M7 = %Mrl

[ Wanpieds )

(i) Consider a uniform ring of mass
200 g and radius 5 cm. Find the
moment of inertia of the ring about
an axis passing through its edge
and perpendicular to the plane of
the ring.

(ii) A part of car mechanical linkage
(Figure 4.13(b)) has amass of 3.6 kg.
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Its moment of inertia / about an axis through
point P, 0.15m from its centre of mass, is
1=0.132 kgm’. What is the moment of inertia
1. about a parallel axis through the centre of
mass?

Solution
(i) Considera sketch diagramshown in figure 4.13 (a).

(b)

Axis through
centre of mass

Axis Lhr(dgh
the edge

through P

Figure 4.13 (a) Moment of inertia of a ring about its edge.
(b) car mechanical linkage part

Using the parallel axis theorem, equation (4.50) and
the moment of inertia /, of a ring about its centre
equation (4.24), the moment of inertia / of a ring of
radius » rotating about its edge can be expressed
as;

I=1+ Mr® = Mr? + Mr* =2Mr*

I=2x%(200x10"kg)x (5x107 m)*
=110 kgm?

where d =r and I, =Mr*

Therefore, the moment of inertia of the ring rotating
about its edge is 1107 kgm’.

(ii) The target variable /.
is obtained by using the
parallel-axis theorem
equation (4.50).
Rearranging the
equation,

I.=I—md*
md* =3.6 kgx0.15m*
=0.081kgm’

1, =0.132 kgm® - 0.081kgm®
=0.051 kgm*

4.3.2 The Perpendicular
axis theorem

The moment of inertia of a
planar object about an axis
perpendicular to the plane
intersected by two perpendicular
axes can be determined using
the perpendicular axis theorem.

The theorem states that,
“The moment of inertia of
a plane body about an axis
perpendicular to its plane is
given by the sum of the moments
of inertia about any two
mutually perpendicular axes
in the plane intersecting the
Sirst axis”. ie., I.= [+ 1.

Unlike the parallel axis
theorem, the perpendicular axis
theorem works for planar (two
dimensional) bodies only.
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Consider a planar body of mass M rotating
about z-axis, then, consider a particle P
of'mass m , ata distance » from a centre of
the planar body O (Figure 4.14).

v

Figure 4.14 Planar rigid body with a rotating
axis at its centre

The distance 7 of the particle m situated at
P(x,y)fromapoint O, can be expressed as,
r* =x*+ y. Then, the moment of inertia
of the particle at P(x,y) about z-axis is
mrt =m(x* + 7).

The moment of inertia of the whole planar
body about z-axis is equal to the sum of
the moment of all particles of mass m; at
a distance 7, can be expressed as,

L= Ymr=3m(+57)
n':l "
L=3ma+ Ymy?
=l =l

451)

"
whereZm;x‘zzlv is the moment of

=l
inertia of the whole body about y-axis and

n

m.y; =1I_isthe moment of inertia of the

il
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whole planar body about x-axis. Therefore,
the moment of inertia about z-axis can be
expressed as,

L=1+1, (4.52)

[ \mpedr)

The moment of inertia of a uniform
circular disc of mass M and radius
R about an axis passing through its
centre and perpendicular to its plane

is %MRZA Find the moment of inertia

of the disc about,

(i) any diameter.

(ii) an axis passing througha point on the
edge of the disc and perpendicular
to the disc.

(iii) a tangent in the plane of the disc.

Solution
The plane of the disc is the x-y plane as
shown in the following figures

(2)
(i) Using perpendicular axis theorem

(Figure (a));
=140

now, I, =1 = %MR2 from the

symmetry, 7, =1,

21, =%MR2, thus, 7

x

-1,=1ur?
"4
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(ii) Using parallel axis theorem (Figure (b)),
I = I +Md*, thus
1,=1 +M(CDY'=I+MR*
15— | e
I =—MR"+MR =—MR"
2 )

(iii) Using parallel axis theorem (Figure (c))
Lyp =1+ MR* = iMRH MR* = %MRZ

Applications of the perpendicular axis
theorem

The perpendicular axis theorem can be
used to determine the moment of inertia
of a lamina (e.g. a thin planar layer)
rotating about an axis perpendicular to
the plane. It is also used to determine the
moment of inertia of a disc rotating about
an axis along its diameter.

(i) Moment of inertia of a lamina rotating
about an axis perpendicular to the plane

Consider a lamina of mass M with
dimension x X y, rotating about axis OY,
passing through its centre O perpendicular
to the plane (Figure 4.15). The moment of
inertia about this axis can be determined
using the perpendicular axis theorem as

follows: y ’Z
Lo /
da
T L b
v h] 0 im |1 X
nl a
/ X

Figure 4.15 Lamina with a rotating
axis at its centre

Consider a small mass element om
rotating at a distance ¢ from the axis
OY . The moment of inertia d/, of dm a
distance a rotating about axis OY can be
expressed as,

dl, =a’dm (4.53)
Since, dm is the fraction of the total mass
M of the lamina, then, the mass and area
for both the lamina and the small element
dm can be expressed as,

in M

dA4 A4

(4.54)

But in equation (4.54) the area A of the
lamina is xy and the area d4 of dm is yda,
then equation (4.54) can be expressed as,

dm =%11A =—da (4.53)

X

Then, from equation (4.53) the total moment
of inertia, 7, of the lamina rotating about
axis OY can be expressed as,

S
e M M 56)
3 f, 12

The integral part in equation (4.56) is
multiplied by 2 to account for the second

half of lamina, as the integral is carried
for half part of the lamina.

Similarly, the moment of inertia, /, of
the lamina rotating about axis OX can be
expressed as,

1, =%y: (4.57)

Using perpendicular axis theorem, the
moment of inertia /. of the lamina rotating
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about axis OZ can be expressed as,

M
I = 2

== (5
=12 y (4.58)

(ii) Moment of inertia of a disc rotating
about an axis along the diameter
Considera disc of mass M rotating about
x—axis or y—axis along the diameter of
the disc (Figure 4.16). The moment of
inertia of the disc about these axes can be
determined using the perpendicular axis

theorem.

Figure4.16 A disc with rotating axis along its

diameter

Since x-axisand y-axis are along the
diameter of the disc, the moment of inertia
1, of the disc about x-axis is equal to
moment of inertia /, of the disc about
y-axis . That is,

I=I,=1 (4.59)
In addition, from equation (4.59), the
moment of inertia /_of the disc of radius
r about an axis through its centre and
perpendicular to its plane (z-axis ) is

I= %Mr’ (4.60)
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Using perpendicular axis theorem ie.
equation (4.52) and (4.59) the moment
of the inertia I. of the disc about an axis
through its centre and perpendicular to its
plane ( z-axis ) can be expressed as,

L=1+1,=2=21,=21 (46])

Therefore, from equation (4.61) the
moment of the inertia /, or /, of the disc
about an axis along its diameter (x -axis
or y-axis) is,

(4.62)

1. A uniform disc has a mass of 4 kg
and a radius of 2 m. Calculate the
moment of inertia about an axis
perpendicular to its plane,

(a) through its centre.

(b) through a point of its
circumference.

A ring has a radius of 20 cm and a

mass of 100 g. Calculate the moment

of inertia about an axis,

(a) perpendicular to its plane
through its centre.

(b) perpendicular to its plane
passing through a point on its
circumference.

(c) inits plane passing through the
centre.

3. The moment of inertia of a solid
sphere of mass 2.5kg is 4 kgm®.

Find its moment of inertia about a

o

parallel axis at a distance of 0.2 m
from its centre.

4. A thin sheet of aluminium of mass
0.025 kg has a length of 0.25 m and
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width of 0.1 m. Find its moment of

inertia

(a) about an axis perpendicular to
the width and passing through
the centre of mass m in its plane.

(b) about an axis parallel to the
length and passing through the
centre of mass m in its plane.

(c

about a perpendicular axis to

the plane passing through the

centre of mass.

5. Calculate the moment of inertia of
thin circular disc of radius 50 cm
and mass 2 kg about an axis along
the diameter of the disc.

4.4 Radius of gyration of a rotating
rigid body

Consider a solid disc of radius » and

a total mass M which is uniformly

distributed across the area of the disc

(Figure 4.17a). The moment of inertia /

of the disc about an axis passing through

its centre O is I = %Mrz.

Suppose the mass M of the disk is shifted
to concentrate at a distance k from the
axis of rotation (Figure 4.17b), so that, the
resulting thin-walled disc has the same
moment of inertia as that of the solid disc.
The radius k& at which the moment of
inertia of the solid disc is the same as that
of the thin-walled disc is called radius of
gyration of the disc.

Radius of
gyration

€
x / ¥

(@) (b)
Figure 4.17 (a) A solid disc, and
(b) a thin-walled disc

In general, the radius of gyration k& of
a rigid rotating body is defined as the
distance from the axis of rotation to a
point where the moment of inertia / of
the body remains unchanged if the mass
of the body is assumed to be concentrated
at that point, That is,

(4.63)

If mass M of the body is assumed to be
concentrated at a point with a distance k
from the axis of rotation, the moment of
inertia, by definition is,

(4.64)

If the body of mass M is made of n
particles each of mass m, then M =mn

M . %
and m=— . Therefore, from equation
n

(4.64) and (4.63), k can be expressed as,

Thus, & represents the root mean square
distance and is some kind of an average
effective distance of the particles from
the axis of rotation. Therefore, the radius
of gyration of a body about a particular
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axis of rotation is equal to the root mean
square distance of its particles from the
axis of rotation.

[ \eampeds )

(a) Deduce the radius of gyration & of
a rigid body of mass M rotating
about various axes as follows:

(i) Auniform rod with axis passing
at its centre;

(ii) Auniformrod with axis passing
at one-end;

(iii) A uniform ring of radius 7 with
axis passing through its centre
perpendicular to its plane;

(iv) A uniform disc of radius » with
axis passing through its centre
perpendicular to its plane; and

(v) Asolid sphere of radius » with
axis through its centre.

(b) The radius of gyration of a hollow
sphere of mass M and radius R about
a certain axis is R. Find the distance
of the axis from the centre of the
sphere.

Solution

(a) (i)Using equation (4.63) and (4.18),
the radius of gyration of a uniform
rod with axis of rotation through its
centre can be expressed as,

Wy
12

(ii) Using equation (4.63) and (4.21), the
radius of gyration of a uniform rod
with axis of rotation through one-end

can be expressed as, k = L\E.

Rotation of r

(iii)Using equation (4.63) and (4.24),
the radius of gyration of a ring with
axis of passing through its centre
perpendicular to its plane is, k=

(vi) Using equation (4.63) and (4.29),
the radius of gyration of a disc with
axis of rotation passing through its
centre perpendicular to its plane can

be expressed as, f = ;'\/I,
2

(v) Using equation (4.63) and (4.36), the
radius of gyration of a solid sphere of
radius » with axis through its centre

can be expressed as, f =

(b) Letx be the distance of the axis from
the centre of the sphere. From the
parallel axis theorem:

4 g
x>
B Y

Ly =L t-Mx?;
Thus, Mk*= %MR2 + Mx®
Given k=R, then
R2=ZR1+.7CZ; x= X
3 5
Therefore, the distance of the axis from

N

the centre of the sphere is
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4.4.1 Compound pendulum

The radius of gyration of a rigid body
can be determined by finding the period
of rotation about an axis which is at a
distance 4 from the centre of mass of
the rigid body. Consider a rigid body
suspended from a fixed pegand oscillating
about a fixed axis O. Suppose / is the
distance OG where G is the centre of
mass and @ is the angle made by OG with
the vertical at an instant (Figure 4.18).
The equilibrium state of the compound
pendulum corresponds to the case in
which the centre of mass lies vertically
below the pivot point. i.e. §=0°.

Centre
of mass

Figure 4.18 Oscillation of rigid body

The torque on the body (compound
pendulum) is then /¢, where ais the

2

angular acceleration given by a;‘? , and
dr

the opposing torque when 6 is small is
equal to mgh. Since the perpendicular
distance from G to vertical through O is
hsin@, and sin@=6 when the angle is

small, then Jor=—mghf. Hence,

P —mgh 6.
I

It is clear, by analogy with our previous
solutions of SHM equations, that the
angular frequency of small amplitude
oscillations of a compound pendulum is

given by o= m—fh So the period of

oscillation T'is given by,

r=2 oy | L
@ mgh

Therefore, for a compound pendulum
(such as a rod, disc and lamina), the
period 7' is given by

T=2rx o A
Mgh

where, / is the rotational inertia about the
axis of suspension and M is the mass of
compound pendulum. Using the parallel
axis theorem, / is given as,
I=M(h*+k%)

where & is radius of gyration.

(4.66)

(4.67)

4.4.2 A solid sphere and cylinder

For a torsional motion of a solid sphere or
cylinder, the period 7" can be expressed as,

I
T=2m,|—
23

where Cis the torsional constant of the wire
material and /is the moment of inertia of a
solid cylinder or sphere about vertical axis
through its centre. For a rolling motion of
asolid sphere and a cylinder on an inclined
plane, the period 7 can be expressed as,

(4.68)

(4.69)
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where / is the height of the inclined
plane, ris the radius of the rolling object
and k is the radius of gyration.

1. (a) Define radius of gyration.
(b) Why is the radius of gyration of
a body not unique?
(c) What is the physical meaning
of radius of gyration?

]

Calculate the radius of gyration
about a tangent of a hollow sphere
of radius 0.5 m parallel to the axis
through its centre.

3. Aflywheel consists of a solid disc
30 cm in diameterand 2.5 cm thick
and two projecting hubs 10 cm in
diameter and 7.5 cm long. If the
flywheel is made of material with
density 8000 kgm ™, find the radius
of gyration about the axis of rotation.

4. Small blocks, each of mass m.
are clamped at the ends and at the
centre of a light rigid rod of length L.
Compute the radius of gyration of the
system about an axis perpendicular
to the rod and passing through a point
one-quarter of the length from one
end. Neglect the moment of inertia
of the rod.

5. What is the radius of gyration of a
slender rod of mass 90 g and length
120 cm about an axis perpendicular
to its length and passing through
20 cm from one end?
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4.5 Torque of a rotating rigid body
When loosening or tightening a bolt or a
screw, a twisting force is required to turn
the screw about its axis of rotation. The
twisting force required to turn the screw is
called torque or moment of force. Torque
therefore is the force required to rotate an
object about an axis of rotation. The effect
of torques resembles the translation force
which is used to push or pull objects, but
torque rotates or twists an object when
applied. Thus it can be said that, torque
is a turning force or twisting force. In
general torque is defined as the product
of force applied and the perpendicular
distance from the point of force applied.
Torque is a vector quantity and its
direction is determined by the right hand
rule and is perpendicular to both linear
force and radius (distance from the axis
of rotation). That is,

T=FxF (4.70)

Its SI unit is newton-metre denoted as

Nm. The magnitude of 7 is Frsinf
where @ is the angle between F and 7.

From equation (4.70), the rotation effects
depend on the distance from the point of
application of force and the magnitude
and direction in which the force is applied
called the line of action of the force. This
can well be explained when shutting or
opening a door.

Consider an open door with hinges at
point PCO (Figure 4.19). It is evident
that, it is easy to turn the door from point
Awith larger distance from the hinge
(axis of rotation) than point B which is
closer to the hinge. Likewise. turning
becomes easier when the line of action of
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the force is applied perpendicular to the
door at 4 than when applied parallel to
the door at that point.

Figure 4.19 Hinged door with points of action
of force

4.5.1 Expression for torque of

a rotating rigid body
Consider arigid body rotating about an axis
PO with an angular velocity @, in which,
every particle of the body rotates with the
same angular velocity (Figure 4.20).

Figure 4.20 Rotation and torque

Let particles 4 and B with masses 7, and

m, rotate with angular velocity, @. Also,

let the line of action of applied force be
perpendicular to the position vectors of
the particles. Then from Newton’s second
law of motion, the net force acting on 4
can be expressed as,

F =ma=mno (4.71)

do . .
where o = o is the angular acceleration
1

which is the rate of change of @. Thus,
using equation (4.70), the moment
of force (torque) on particle 4 can be
expressed as,

T,=F xn=mrlo (4.72)
Similarly, for particle B, the force can be
expressed as,

Fo=ma,=mro (4.73)
Hence, the moment of force (torque) on
particle B is

T, = Fyxn=mie (4.74)
Finally, the total moment of the force for the
whole body about an axis PO is equal to:

=1, 4T+ FE,

= mptor+ mytor+ mpt o+ A m o

Wl
which simplifies to,

7= (m,r\: + mlr; + '"3"32 +ot m"r”: )a (4.75)
2 2 2 2
But myy +myrs +myry +o+m; =1

is the moment of inertia of the body about
axis through O.

From equation (4.75), the moment of
force (torque) of the whole body about an
axis through O can be expressed as,

r=loo=1— (4.76)

.L

| Physics Form V.indd 116




[ Nesampieds )

Masses 1, = 0.20 kg and m, =0.25 kg
are suspended (Figure 4.21) from a
light cord which passes over a wheel of
radius 0.15 m and moment of inertia
0.12 kgm®. Initially, the two masses
are held at the same horizontal level.
Assuming that the wheel rotates freely
about its axis, calculate the speed of
each mass and the angular velocity of
the wheel when the vertical distance
between the masses is 0.3 m.

Figure 4.21 Connected masses passing over
a wheel

Solution

Since the torque 7 is developed on the
wheel, then, tension T, # T,. Thus,

T-mg=ma 0
mg—T,=m,a (it)
Adding equation (i) and (ii), it follows
that;

myg—m g+T —T, =ma+ma
(m:—mx)g—(]‘:—ll)=(mz+ml)a (iii)

but, 7=Tr=Ic, where T=T,-T,
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Since, £ _ , then,
r
Pl (iv)
Substituting equation (iv) into (iii),
(m:—ml)g—lr%=(m:+mx)a
_ ("'1_”")3

1
5+ +m,
re =

(0.25-0.20) kgx9.8 ms™

a= 3
012 keot +(0.20+0.25) kg
(0.15m)?

=0.085ms”

From the third equation of motion,
v =’ + 2as, wheress is distance moved
by eachmass and u=0ms™". Therefore,

v=4/2x0.085 ms?x0.15 m

=0.16ms™.
Therefore, the speed of each mass is
0.16ms™.
The Angular velocity @ of the wheel
is given by,
v_016ms”

0.15m

=1.07 rads™

Therefore, the angular velocity of the
wheel is 1.07 rads™.
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4.5.2 Work done by torque

Consider a force F applied tangentially
to a wheel of radius rand allowed to
rotate about its centre O through an angle
6 (Figure 4.22).

Figure 4.22 A wheel with tangentially applied
force

The work done W by the force £ on
turning the wheel an angle @ (subtended
by an arc 4B8) about an axis O is
W = (Force)x (arcdistance AB). The arc
distance 4B is equal to r6. Therefore
can be expressed as,

W=Fxr, Frx0=16 4.77)

[ \Wanpiedio)

Calculate the work done by a torque of
6 Nm if it rotates a wheel through four
revolutions.

Solution

‘Work done,

W =1x60=6Nmx(4revx2n)
=150.8Joules

Therefore, the work done by the torque
is 150.8 Joules .

4.5.3 Work-energy in rotating
objects

Consider a rigid body of moment of

inertia / displaced a small angle 6 from

Ato B (Figure 4.23).

Figure 4.23 Rigid body with a small
displacement

The work done W by a torquetin
turning the object through a small angular
displacement d@ from 4 to B is given
by:

dW =1d6
Using equation (4.76), the work done
dW in (4.78) can be expressed as,
dw =1 [11'15

dt

(4.78)

)t/w: lodw (4.79)

The total work done Win turning the
wheel from initial @, to final angular
velocity @ can be expressed as,

W= J': lodo= II:' wdw

1

o o 5 9,
W= 51(1); -Elw, (4.80)

From equation (4.15), the total work done
W in equation (4.80) can be written as,

W=AK.E

(4.81)

rotational
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Therefore, equation (4.81) is the rotational
work-energy theorem which implies,
the work done in rotating a rigid body
corresponds to the change in its rotational
kinetic energy.

4.5.4 Deter of the
of inertia of a flywheel

The moment of inertia of a flywheel about
a horizontal axle can be determined when
one end of string is attached to a mass M
and the other end is passed through a hole
inthe axle of the flywheel, and winding the
string round the axle (Figure 4.24).

The mass M reaches reference level (e.g.
the ground) when the string is completely
unwound from the axle. The number of
revolutions n, made by the wheel from
when M is released up to it strikes the
ground (when the string is released from the
axle) is recorded. The flywheel will perform
addition rotations after the string is released
from the axle. The additional number of
revolution #, made by the flywheel and
the time ¢ taken from when the string is
released from the axle until it comes to
rest, are also recorded in reference to a
mark on the wheel.

VMg

Figure 4.24 Flywheel with axle as its axis of
rotation

Physics Form V.indd 119

Rotation of r bodies

Now when M is released, the loss in
potential energy of M is equal to the gain
in kinetic energy of M plus gain in kinetic
energy of flywheel and work done against
friction. That is,

Mgh:%]\lrz(o: +%1m2 +nf

(4.82)
where # is the distance M has fallen,
r is the radius of the axle, @ is the
angular velocity, / is the moment of
inertia of the wheel, and f is the energy
per turn expended against friction. Since
the energy of rotation of the flywheel
when the mass M reaches the ground
equals to the work done against friction

: ; 1 lw®
in n, revolutions, then, f=———. Then

nl
equation (4.82) can be expressed as,

1,5 1 n
Mgh=—Mro +=Io"| 1+—
Igh 3 (0] +2 (0} [ +n‘J (4.83)

Since the angular velocity of the wheel
when M reaches the ground is @, and
the final angular velocity of the wheel is
zero after a time 7, the average angular

27
velocity is %:Tn' Thus the angular

4mn,

velocity @ is = . Using @ and

the magnitude of the other quantities in
equation (4.83), the moment of inertia /
of the flywheel can be determined.

Angle turned through during the n*
time

Suppose 6, and 6, are the angular
displacements turned through by a
rigid body at times £, =n and 1,=n-1
respectively. From, @ =, +at; where




—i
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« is the angular acceleration, w, and

 are initial and final angular velocity

respectively.

0= 9= o,dt+(ot)dr; integrating
dt

within limits,

j'::tle =waﬂktlr+ aﬂltdr results to;
0,6, =wu(n7(n~l))+%(n:—(na 1?)

0,-6,=6

"

through during the #’

this is the angle turned
" time

6 =0, (n—n+ l)+%(nz~n" +2n— l)

a
6 =0, +7(2nAl) or

1
0"—w0+0!(n—5)

This is the angle turned through by a body

during the 7" time.

C \anpieday

Aflywheelwithaxle 1.0 cm indiameter
is mounted on frictionless bearings
and set in motion by applying a steady
tension of 2.0 N toa thin thread wound
tightly round the axle. The moment of
inertia of the system about its axis of
rotation is 5.0x 107 kgm®. Calculate:
(a) The angular acceleration of the
flywheel when 1.0 mof the thread
has been pulled off the axle; and
(b) The constant retarding couple which
must be applied to bring the flywheel
to rest in one complete turn when
tension in the thread having been
removed.

Solution
(a) From definition, the torque of
the flywheel can be expressed as
t=Iloe=Fr. Thus, the angular
acceleration is,
Fr 2Nx05x107 m
(i e B
T 5% 107 kgm®
=20rads™
Therefore, the angular acceleration
of the flywheel is 20 rads .

(b) Since the radius of the flywheel is
p=d IO o5s10%m
2 2

and the length pulled off the axle
s=1m. Using circular motion, the
motion of the flywheel when 1.0 m
of the thread has been pulled off the
axle can be expressed as,

s
) =} +200 =m"1+2a[—)
-

©}=0+2x20 rads™ x#md
0.5x10"m
o, =89.44 rads™

Now, when the constant retarding
couple brings the flywheel to rest in one
complete turn, then, the circular motion
equation is 0= @] +2e'6” which gives

>

. . 5 , -0
its angular acceleration &, as " = z—eﬁ—
Therefore, the constant retarding couple
which is required to bring the flywheel
to Test in one complete turn is

w;
P Tt
t=lo'=-1—

7/==5x10" kgm® x

(89.44rads)’

2 x2nrad

=-0.32 Nm
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4.5.5 Kinetic energy of rolling
objects

When an object such as a cylinder or ball
rolls down a plane, the object is rotating
as well as moving down the plane.
Therefore, it has both rotational motion
and translational motion.

Consider a uniform cylinder of radius
rand mass M rolling without slipping
down an inclined plane of an angle 6 at
a height / above the horizontal plane
(Figure 4.25).

Masing A
sim
g /I e

\0

R
B

Figure 4.25 Cylinder with axis of rotation
along the inclined plane

At any instant, the line of contact AB
with the plane is at rest, and therefore,
AB can be considered as the axis of
rotation at the surface of the cylinder.
Then from equation (4.15), kinetic energy
of the cylinder about an axis of rotation
AB can be expressed as,

K.E =%lww’ (4.84)
Using the parallel axis theorem equation
(4.50), the moment of inertia [/,
about the surface of the cylinder can be
expressed in terms of the moment of
inertia /; about the centre of the cylinder

as [, =1, £ M.
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Therefore, equation (4.84) can be expressed
as.

1o, 1,
KE=—1,0 =My

4.85
3 (4.85)

1 5 . : G
where Elﬂm‘ is the rational kinetic

1 2. . R
energy and EMV‘ is translational kinetic

energy. Therefore, for rolling objects
along an incline, the total kinetic energy is
the sum of the rotational and translational
kinetic energy.

4.5.6 Conservation of mechanical
energy in rolling objects

When an object is rolling about an

incline (Figure 4.25) its total mechanical

energy (E) is the sum of the potential

(P.E = Mgh) and kinetic energy (K.E).

Then, E can be expressed as,

E=PE+KE
E= Mgh+[%15wz +%Mv3) (4.86)

The principle of conservation of mechanical
energy requires E of the system to remain
unchanged (conserved) if no external force
(such as friction) is applied to the rolling
object. Therefore, the conservation of
mechanical energy in a rolling object at
any instant can be expressed as,

1 > 1 3,
Mgh+[51ﬂ0)“ +;Mv’ )= constant (4.87)

C\Wmpediy

Determine the velocity at the bottom of
a rigid body of mass M rolling from
the top of the inclined plane of length /
elevated at an angle 6.
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Solution

When a rigid body rolls from the top
of the incline, its mechanical energy
(potential and kinetic) at any instant
is conserved. As soon as it begins the
rolling, part of its potential energy (U) is
converted into kinetic energy (K.E). Its
mechanical energy is purely potential at
the top and purely kinetic at the bottom
of the incline. Then, the conservation
of energy for rolling objects equation
(4.87), can be expressed as,

Mgh+0= 0+[ 1w* +2Mv) (i)

Since the inclined plane is of length /,
elevated at an angle @ (Figure 4.25),
then from trigonometry, 4 = /sind, and
(i) can be expressed as,

Mglsin@:llw: +lef (ii)

Using w— Y into (ii) and simplifying,

the velocuy of the rolling body at
the bottom of an incline plane can be
expressed as,

1+C ()

1
where C=—= is a coefficient (less
Mr

than or equal to 1) depending on the
shape of the body. For example, for a

disc C‘=%. solid cylinder C=%and

solid sphere, C =§‘ Substituting the

value of € in (iv) for different objects,
one can compare their respective
velocities at the bottom and therefore
determine which object will reach the
bottom of the incline first.

[ \ampiedty

Determine the order in which a solid
sphere, disc and solid cylinder arrives
at the bottom of an incline if all were
released at the same time to roll at an
inclined plane elevated at an angle 6.

Solution

Using the C for solid sphere, disc and
solid cylinder inexample 4.12, equation
(iv), their respective velocities are

10 4
Vo 7&17' Vige =4 58’7 sl

4

Vonie =43 &
Therefore, the sphere arrives the
bottom first followed by both disc and
the solid cylinder as they have same
value of C. An alternative approach
is to use acceleration where, an object
with larger value of linear acceleration
a will finish first.

[ \anpiediy)

Consider a solid cylinder of mass M and
radius R which is made to roll down a
plane without slipping. Find the speed of
its centre of mass at the moment when
the cylinder reaches the bottom of an
inclined plane (Figure 4.26).

F
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Figure 426 A solid cylinder rolling down the
plane without slipping

Solution
Using the moment of inertia of a solid

cylinder (1=1MR:) about an axis
2

? v . :
through its centre, @ = z in equation

(4.87), the conservation of energy of
a rolling object at the bottom can be
expressed as,

Meh+0=0+ L1+ Lap?
21

1., 1 ., 3 5
Mgh= ZMV‘ +5Mv‘ = ZM\" (i)

Then from (i), the speed Vv is

4
a2 i
v 3g1 (ii)

Therefore, equation (ii) is the velocity
of'the centre of mass of a solid cylinder
at the bottom of inclined plane.

[ ampiests

A body rolling down an inclined plane
has radius R and radius of gyration k.

The body starts moving from the height 4
and reaches the bottom with velocity v.
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Show that, V=

Solution

Consider free body diagram for a body
rolling down an inclined plane and
has radius R and radius of gyration &
starting from height 4 and reaches the
bottom with velocity v (Figure 4.27).

Figure 4.27 A body rolling down an inclined
plane

Since the total energy £ at the top of
incline is purely P.E thatis (K.E=0)
and at the bottom of the incline the
total energy E is purely K.E that is
(P.E =0). Using the moment of inertia

5 v .
1 = mk*and w:;,the conservation of

mechanical energy (4.87) for the rolling
body can be expressed as,




F
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4.5.7 Linear acceleration of rolling
objects

Consider a rigid body of radius rand

mass M rolling down an inclined plane

(Figure 4.28).

Figure 4.28 Rigid body with axis of rotation
along the inclined plane

Atany instant, the line of contact 4B with
the plane is at rest, and therefore, 4B can
be considered as the axis of rotation at the
surface of the rigid body. The component
of weight along the incline is mgsin@
which provides the torque (/er)on the
object about an axis 4B . That is,

(Mgsin@y=t=1,0=1,% (488
r

From equation (4.88), the linear acceleration
of the rigid body with axis 4B can be
expressed as,

= Mr*gsin@ (4.89)
IAH
From the parallel axes theorem in

equation (4.50), then, equation (4.89) can

be expressed as,

. Mr’gsin® _ gsin® _ gsinf
I+M? 1+C

1+ S
Mr*

(4.90)

where ¢ = Lﬂ is a coefficient (less than
Mr*

or equal to 1) depending on the shape of
the body.

[ \umpiedio)

Determine the order in which a solid
sphere, disc and solid cylinder arrives
at the bottom of the inclined if both are
released at the same time to roll at an
inclined plane elevated at an angle 6.

Solution

Substituting the values of C for solid
sphere, disc and solid cylinder in
equation (4.90), their respective linear
=

accelerations @ are a_, =
phere 7

2 .
G %g sin@ and L ;g sin@
Therefore, the sphere arrives the bottom
first followed by both disc and the solid
cylinder as they have same value of C.

[ \eampiedi)

A sphere and a cylinder having the
same mass and radius start from rest
at the same point on an inclined plane
and they are left to roll down the plane.
Determine which one reaches at the
bottom first?

Solution

Consider a sphere and cylinder (Figure
4.29a) and its free body diagram
(Figure 4.29b)

| Physics Form V.indd 124




(2)

(b)

mgsin@

mgcos@

mg

Figure 4.29 (a) Objects on an nclined plane,
and (b) free body diagram

Then, the net force F in taking the body
down the plane based on Newton’s 2%
law is,

F =mgsin@— ' =ma (i)
The moment of force of friction about
Ois fR which is equal to torque e,
aboutO. Then, the friction force f can
be expressed as,

lo =

=t (i

Using (ii), equation (i) can be expressed as,
mgsinf— 1 ma (iii)

R
Using the moment of inertia of a solid
sphere in equation (4.36) and that of
solid cylinder in equation (4.44), the
linear acceleration a for a sphere and a”

fora cylinder respectively, a = %gsin@
2 ’
and o’ = ;gsin& Since @ >da’, then the

sphere will reach the bottom first.
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Cimpieiin)

Asolid cylinder of massm is placed in a
rough inclined plane of inclination 6 to
the horizontal (Figure 4.30). Show that
the minimum frictional force applied for

rolling without slipping is %mgsine,

and the minimum coefficient of friction

1

is —tanf.
153311

/ ‘3" N )
mgsin ngcost

m;

)9

Figure 4.30 Solid cylinder rolling on a rough
inclined plane

Solution
For translational motion,

f =mgsinf—ma (i)

But for rotational motion,

(i)

Since o= % and o =%(relationship
between liner and rotational acceleration).
Using (i) into (i),

2
f= nxgsine—m[%]

. 2mfR® . :
=mgsinf— [I""_IRZJ =mgsinf-2 f (iii)

since / =%mRz for a solid cylinder.
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Therefore, (iii) simplifies to,
f:%mgsine (iv)

Similarly, from (Figure 4.30),
f =pumgcos@ and therefore (iv) can
be written as,

1 .
Hmg cosf = Smg sin@

Thus, the minimum coefficient of

friction is, p= %taue

1. Isitpossible to change the translation
kinetic energy of an object without
changing its rotational energy?
Explain.

2. Ifyou see an object rotating, is there
necessarily a net torque acting on it?
Why?

3. Can a stationary object have a
nonzero angular acceleration?
Explain.

4. When tightening a bolt, mechanics
sometimes extend the length of a
wrench handle by slipping a section
of pipe over the handle. Why could
this procedure easily damage the
bolt?

5. (a) Ifthe forcesonanobject balance,
do the torques necessarily
balance? Explain.

(b) If the torques on an object
balance, do the forces necessarily
balance? Illustrate your answers
with clear examples.

6. A grinding wheel is in the form of

a uniform solid disc of radius 7 cm

and a mass 2 kg . It starts from rest

and accelerates uniformly under
the action of a constant torque of

0.6 Nm that the motor exerts on the

wheel.

(a) How long does the wheel take
toreach its final operation speed
of 1200 rev/min?

(b) Through how many revolutions
does it turn while accelerating?

Amodelairplane with mass 0.750 kg

is tethered by a wire so that it flies in

acircle 30 m in radius. The airplane

engine provides a net thrust of 0.8 N

perpendicular to the tethering wire.

Find:

(a) The torque which produces the
net thrust about the centre of the
circle:

(b) The angular acceleration of
the airplane when it flights at
horizontal level; and

(¢) The linear acceleration of the
airplane tangent to its flight path.

A 15 kg object and a 10 kg object

are suspended, joined by a cord that

passes over a pulley with a radius of

10 cm and a mass of 3 kg

(Figure 4.31). The cord has a

negligible mass and does not slip

on the pulley. The pulley rotates
on its axis without friction. The
object starts from rest 3 m apart.

Treat the pulley as a uniform disc,

and determine the speed of the two

objects as they pass each other.

| Physics Form V.indd 126



Figure 4.31 Objects suspended on a cord
passing over a pulley

9. An object with a weight of 50 N
is attached to the free end of a light
string wrapped around a wheel of
radius 0.25 mand amass 3 kg. The
wheel is a solid disc free to rotate in
a vertical plane about the horizontal
axis passing through its centre. The
suspended object is released 6 m
above the floor.

(a) Determine the tension in the
string, the acceleration of the
object, and the speed with
which the object hits the floor.
Verify your last answer by using
the principle of conservation of
energy to find the speed with
which the object hits the floor.
10. A uniform solid sphere of radius »

is placed on the inside surface of'a

hemispherical bowl with much larger
radius R . The sphere is released from
restat an angle 6 to the vertical and

rolls without slipping (Figure 4.32).

Determine the angular speed of the

sphere when it reaches the bottom

of the bowl.

(b
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Figure 4.32 Uniform solid sphere inside
surface of a hemispherical bowl

11. A solid sphere of mass /7 and radius
rrolls without slipping along the
track (Figure 4.33). It starts from rest
with the lowest point of the sphere at
height 4 above the bottom of the loop
ofradius R , much larger than 7.
(a) What is the minimum value of
A (in terms of R ) such that the
sphere completes the loop?
(b) What are the force components
on the sphere at the point P if
h=3R?

Figure 4.33 Solid sphere rolling without
slipping along the track

12. Show that the minimum coefficient of
friction for rolling without slipping
ofa hollow cylinder and solid sphere

e 1
on an inclined plane are Elan @ and

%taue respectively, where @ is the

angle of the inclined plane with the
horizontal.
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4.6 Angular momentum

When an object is rotating about an axis,
its rotational inertia can be characterized
using angular momentum. The angular
momentum L can be defined as the
moment of linear momentum of a body
rotating about a fixed axis. It is a vector
quantity whose direction is that of the axis
of the rotating body and is given a positive
sign in the direction in which a right-hand
screw would advance if turned in the similar
direction. Mathematically, £ is defined
as the product of the linear momentum
(p = mv) times the perpendicular distance
7 from the axis of rotation. That is,

L=Fxp (4.91)

and its magnitude given as prsing where
@ is the angle between 2 and 7.

Consider a particle 4 atadistance , from
the axis O of a rotating rigid body that
rotates with an angular velocity @
(Figure 4.34).

(0]

Figure 4.34 Angular momentum and
moment of inertia

From equation (4.91), the angular
T
momentum L, of particle 4 rotating with

angular velocity @ =— about axis O, with

6 =0, can be expressed in magnitude as,

L, =(my)xn=(mnw)xr, :m,r,zw (4.92)

Similarly, for particle B of mass m,, its
angular momentum L, about axis O is

L, :mzrzlm (4.93)

In general, the total angular momentum
L for n particles about an axis O is,

n'n

L:(m’/f+mzrzz+m+m )'l)lu (4.94)

where, mr?+mp} +.+m i’ =1 is the
moment of inertia of the rotating rigid body.

Therefore, the magnitude of angular
momentum L of a rigid body rotating
with angular velocity @ about an axis O
can be expressed as,

L=1w (4.95)
The vector form of equation (4.95) angular

momentum can be written as,

L=Io (4.96)

4.6.1 Angular momentum and torque
Using the product rule of differential
calculus to equation (4.91), the time rate
of change of L can be expressed as,
d—L: mi(iz'xf'): m(£X5+de—v)
dt dt dt dt
dv.

) (4.97)
dt

=m(F x
%xF:FxG:O

Equation (4.97), is the linear acceleration,
and therefore, equation (4.97) can be
written as,

o= dL
FXmi=rxF= 1-:[— (4.98)
dt

F
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Thus equation (4.98) provides the
relation between torque 7 and the angular
momentum L , that is, the torque acting
on a body is equal to rate of change of
angular momentum of the rigid body. This
is analogous fo NE\'yton‘s second law of
motion. i.e., F=ma

4.6.2 The principle of conservation
of angular momentum
Suppose no external torque 7, is applied
on a rotating rigid body, equation (4.98)
can be expressed as,
£ o

4.99,
@ (4.99)

This implies, from equation (4.99), the
angular momentum, L=/ is constant
and is called the principle of conservation
of angular momentum. The principle
states that, “If there is no external torque

Rotati bodies

acting about the axis of the rotation then
the angular momentum of a body about
that axis of rotation is constant ",

The principle is also expressed as,

I/wl :],w, =constant (4.100)
Note that, it is the angular momentum
(which is the product of inertia and the
angular velocity) that remains constant
and not the angular velocity . For the
angular momentum to remain constant,
the moment of Inertia decreases and
the angular velocity increases and vice
versa. The angular momentum, L=1d is
analogous to linear momentum, p=mv,
in that, the moment of inertia is replaced
with mass, and angular velocity with linear
velocity. A summary of the comparison
of the dynamic equations for linear and
rotational motion is as shown in Table 4.3.

Table 4.3 Comparison of dynamic equations for linear and rotational motion

Linear motion
Mass (linear inertia) m

| Rotational motion
Moment of Inertia /

Momentum 3 = mv

Momentum L= /¢

Newton’s second law, p_‘:mﬂ
dt

Newton's second law 7 = %
it

Work W = Fd

Work W =16

Kinetic energy K.E = %nn;:

Kinetic energy ' E = llwl
2

Power P= Fv

Power P= 1w

Velocity, v=u+at

Angular velocity, @ =@ + ot
'

Distance, s =urt +%atl

vi=u’+2as

. 1,
Angular displacement, 8= ¢ +Em~

o =0 +200

1
=u+a(n——
s, =u+ta(n 2)
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[ Nenampied o] =

Ifthe earth were to suddenly contract to
half of its present radius (without any
external torque acting on it). by how
much would the day be decreased?

Solution

Consider the earth to be a perfect
solid sphere of mass M whose radius,
angular velocity and moment of inertia
of the earth before contraction are
Ry w‘:Z_n:Z_n and zMR|2 and

T 24 5
. 2n

after contraction are R,. @, =7and

%MR; respectively.

During contraction, the angular
momentum of the isolated earth is
conserved. Therefore,

2
R[E|=r| 2 @
24 Az
since the earth contracts by a half its

radius, using RZ=%,iu (i) it gives

T =6 hours. This means a day will
last for 6 hours only, and therefore, a
day will decrease by 18 hours.

4.6.3 Applications of rotational
motion of rigid bodies

Torque has various applications in many
common tools used domestically and in
industries where it is necessary to turn,
tighten or loosen devices. Such tools
include spanners and screwdrivers. In
general, a longer handle will enable
smaller force to accomplish a task. It is

casier for example to open a door when
the force is applied at a longer distance
from the hinge. All these are some of the
applications of torque in daily life.

In addition, the basic property of angular
momentum is to stabilize objects. For
example, if a coin or cycle tyre is placed
vertically on a horizontal surface without
rolling, and released, it will immediately
flip on its side. However, the coin or wheel
will sustain its vertical position if rotating.
This basic property of angular momentum
is gyro-airplane which maintains its
position regardless of the change in position
in airplane body, hence stabilize airplane
position.

Similarly, skaters and divers regulate their
rotational motion by just movements of
their arms and legs inwardly or outwardly.
This is the application of the principle
of conservation of angular momentum.
When the skater or diver stretch her arms
and legs outwards, increases her moment
of inertia / , thus, her angular velocity @
is reduced to maintain the initial angular
momentum.

1. If two spinning objects have the
same angular momentum, will they
necessarily have the same rotational
kinetic energy? If they have the same
rotational kinetic energy, will they
necessarily have the same angular
momentum? Explain.

IS}

A circular metal disc of mass 4 kg
and diameter 0.4 m makes 10 rev/s
about an axis passing through its
centre and perpendicular to its plane.
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(a) What is the angular momentum
about the same axis?

(b) Calculate the magnitude of the
torque which will increase the
angular momentum by 20% in
10seconds .

. Alightrigid rod 1 m in length joins

two particles, with masses 4 kg and

3 kg at its ends. The combination

rotates in the x-y plane about a

pivot through the centre of the rod.

Determine the angular momentum

of the system about the origin when

the speed of each particle is 5 m/s.

. A horizontal platform in the shape

of a circular disk rotates freely in a

horizontal plane about a frictionless

vertical axle. The platform has

a mass M =100kg and a radius

R =2m. A student whose mass is
m =60 kg walks slowly from the
rim of the disk toward its centre. If
the angular speed of the system is

2 rads” when the student is at the

rim, what is the angular speed when

he reaches a point »=0.5 m from
the centre?
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5. A car of mass 900 kg is moving
around a circular path of radius
300m with a steady speed of
72 km/h . Calculate its angular
momentum.

6. A 2kgdisc travelling at 3 ms™
strikes a 1 kg stick of length 4 m
that is lying flat on nearly frictionless
ice (Figure 4.35). Assume that the
collision is elastic and that the disc
does not deviate from its original
line of motion and the moment of
inertia of the stick about its centre
of mass is 1.33kgm’. Find:

(a) The translational speed of the
disc:

(b) The transiational speed of the
stick; and

(c) The angular speed of the stick
after the collision.

-1
v, =3ms Vyr
a— - e

2m Do

Figure 4.35 A travelling disc striking a stick
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. Explain why the angular velocity

of the earth about the sun increases
when it comes closer to the sun?

. Givea physical quantity obtained by

a product of moment of inertia and
(a) angular velocity,

(b) angular acceleration.

. How will you determine the direction

of a torque? Explain.

. Why do you use a single finger to

turn the door but you use a thumb
and finger to open a bottle cork?

. Suppose you remove two eggs from

a refrigerator, one boiled and the
other fresh. If you wish to identify
the boiled egg without breaking
the eggs, you can spin them on the
floor and compare their rotational
motions. Which egg spins faster?
Which rotates more uniformly?
Explain.

. A solid sphere and a solid cylinder,

each having the same mass and
radius, are released together at
the top of an inclined plane and
roll without slipping but also with
negligible rolling friction. Explain
why, despite the fact both must have
the same total energy at all times, the
sphere will always reach the bottom
first.

. Determine the moment of inertia

of a 50 kg thin uniform meter rod
rotating about an axis passing through
the 25 cm mark perpendicular to its
length.

8.

=

The diameter of a ring increase by
2% . What will be the percentage
increase in the moment of inertia
about the axis of symmetry?

. Two circular discs of the same mass

and thickness are made from metals
having different densities. Which
disc has the larger rotational inertia
about its symmetry axis?

. What is the purpose of the spin cycle

of a washing machine? Explain in
terms of acceleration components.

. Explain briefly why a wheel rolling

on a flat horizontal surface cannot
be slowed down by static friction?

. A solid ball, a solid cylinder, and a

hollow cylinder roll down a slope.
Which one reaches the bottom first?
last? Does it matter whether the
radii are the same? What about the
masses?

.A wheel of moment of inertia

0.30 kgm® mounted on a fixed axle

accelerates uniformly from rest to an

angular velocity of 60 rads™ in 12s.

Find:

(a) The angular acceleration;

(b) The torque causing the wheel
to accelerate: and

(c) The number of revolutions in
this 12 s period.

. A constant force of 30 N is applied

tangentially to a rim of a wheel

mounted on a fixed axle and which

is initially at rest. The wheel has a

moment of inertia of 0.2 kgm® and

radius of 15 cm.

(a) What is the torque acting on the
wheel?
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(b) Find the work done on the wheel
in 10 revolutions .

(c) Assuming that no work is done
against friction, use energy
consideration to find the angular
velocity of the wheel after
10 revolutions .

. Adisc and a hoop roll down a slope.

They have the same mass and the

same radius.

(a) Which one has a greater moment
of inertia?

(b) Does one lose more PE than
the other?

(¢) Which one acquires the greater
speed?

. An electric motor supplies power

of 5x10 W to drive an unloaded
flywheel of moment of inertia
2 kgm® atasteady speed of 6x 107
revolutions per minute. How long
will it be before the flywheel comes
to rest after the power is switched
off, assuming the frictional couple
remains constant?

. An ice dancer is spinning about a

vertical axis with his arms extended

vertically upwards. Then he allows

his arms to fall until they are

horizontal.

(a) Will he spin faster or slower
when?

(b) Has his kinetic energy been
increased or decreased? How
do you account for the change?

. A horizontal disc rotating freely

about a vertical axis makes 90
revolutions per minute. A small piece
of putty of mass 2.0x107 kg falls

21.

Rotation of 1 by

vertically on to the disc and sticks to
itata distance of 5.0x 107 m from
the axis. [f'the number of revolutions
per minute is thereby reduced to 80,
calculate the moment of inertia of
the disc.

. A sphere of radius » rolls without

slipping ona concave surface of large
radius of curvature R. Show that the
motion of the centre of gravity of
the sphere is approximately simple
harmonic with a period

I=

where g is the acceleration due to
gravity.

. A thin uniform rod is pivoted about

a horizontal axis which passes
through a point on the rod 20 ecm
from the centre of gravity. If the
period of oscillation of the rod is
1.58 seconds, find the length of the
rod. (Moment of inertia of a uniform
rod about an axis through its centre
is, I = % . where m is mass and /
is length).

A cylindrical rocket of diameter
2.0 m develops a spinning motion
in space of period 2seconds about
the axis of the cylinder. To eliminate
this spin, two jet motors which are
attached to the rocket on opposite
ends of the diameter are fired until
the spinning motion ceases. Each
motor turns the rocket in the same
direction and provides a constant
thrust of 4.0x10” N in a direction
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tangential to the surface of the rocket

and in the plane perpendicular to its

axis. If the moment of inertia of the

rocket about its cylindrical axis is

6.0x10°kgm”, find:

(a) Angular acceleration of the
spinning of the rocket;

(b) Angular speed;

(¢) The time for which the motors
are fired: and

(d) The numberofrevolutions made
by the rocket during firing.

22. Aflywheel has 8 spokes and a radius

2

&

of 30 em. It is mounted on a fixed
axle and spinning at 2.5 rev/s . A
24 cm arrow is to be shot parallel
to the axle through the wheel without
hitting any of the spokes. What
minimum speed must the arrow
have?

A frictionless pulley has the shape
of uniform discs of mass 2.5 kg and
radius 20 em. A 1.5 kg stone is
attached to a very light wire that
is wrapped around the rim of the
pulley and the system is released
from rest. How far must the stone

2

2

2

o

O

5

fall so that the pulley has 4.5 J of
kinetic energy?

A centrifuge in a medical laboratory
rotates at an angular speed of
3600 rev/min . When switched off,
it rotates 50 times before coming
to rest. Find the constant angular
acceleration of the centrifuge.

. The hub of a washer goes into its

cycle, starting from rest and gaining
angular speed steadily for 8s. At
what time does it turn at 5 rev/s ?
At this point the person doing the
laundry opens the lid, and a safety
switch turns off the washer. The
hub smoothly slows to rest in 12s.
Through how many revolutions does
the hub turn while it is in motion?
Abody rotating with uniform angular
acceleration covers 24 radians in the
4" second and 36 radians in the 6
second. Calculate:
(a) The angular acceleration and
initial angular velocity: and
(b) The angular velocity after 10
seconds.

Student'’s Book Form Five



Chapter

Introduction

Fluid dynamics

Fluids play a vital role in many aspects of everyday life. You drink them,
breathe them, and swim in them. They circulate through your body and control
the weather. Airplanes fly through them; ships float in them. Fluid dynamics
is a study of fluids in motion, which can be described using models that are
based on some assumptions and familiar principles and laws such as Bernoulli’s
Principle, Poisseiulle’s Law, and Stokes™ Law. The study of fluids provides
an understanding of a number of everyday phenomena, such as why an open
window and a door together create a draught in a room. In this chapter you
will learn about the concept of streamline flow and continuity, viscosity, and

turbulent flow.

5.1 Concept of fluid motion

Fluid is any substance that has no fixed
shape and can easily flow. Fluid refers to
liquids and gases. When looking at the
motion of a fluid at different conditions,
you can tell the general behaviour ofa fluid
in motion with respect to varying path it
takes. The branch of physics which deals
with the study of fluids in motion is called
hydrodynamics or fluid dynamics. This
section deals with concepts associated
with the characteristics of fluid motion.

5.1.1 Compressible and
incompressible fluid

Compressibility is an important
characteristics of fluids and varies between
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liquids and gases. A fluid is considered
compressible if its density changes
with change in its pressure. A gas is
considered compressible fluid since it is
easy to compress. A liquid on the other
hand, is considered incompressible since
its density remains the same even if its
pressure changes. In general, liquids are
called incompressible fluids while gases
are called compressible fluids.

(a) Viscous and non-viscous fluid

Viscosity is an intrinsic property of a
fluid. It is an internal friction (also called
viscous force) exhibited between adjacent
fluid layers moving relative to each other.
It arises in fluids because the motion of




or Advance

a molecule relative to its neighbours is
opposed by the intermolecular forces
between them. A fluid with this force is
called a viscous fluid while the one without
it is termed as a non-viscous fluid. For
example, engine oils are viscous fluids
while water is a non-viscous fluid.

(b) Steady flow

In a steady flow, velocity, density and
pressure at each point in a fluid flow
remains constant. Steady flow is also
known as streamline flow, orderly flow
or uniform flow. For a fluid undergoing
steady flow, all particles passing at any
given point follow the same path called a
streamline. A streamline is a curve whose
tangent at any point is along the direction
of velocity of the fluid at that point. A
special case of steady flow (Figure 5.1)
in which the velocities of all particles at
given streamlines are the same (though
the particles of streamline may move at
different speed) is called laminar flow.

A
e o
V2 - 2V
P ~_
- ~
tvy LY,
e . 227
/ ———
P v

Figure 5.1 Laminar flow

In Figure 5.1 the velocities of particles
in the three streams at one particular
time f, are; v;, v, andv, likewise, the
same velocities can be observed at any
other time ¢, . Hence in laminar flow, the
velocities of the particles within a stream

will remain constant throughout the flow.

(¢) Critical velocity and turbulent flow

When the velocity of a steady flow exceeds
a particular value, that is, the critical
velocity, the motion of particles of the fluid
changes from steady to an irregular flow,
known as turbulent flow. In a turbulent flow,
path and the velocity of particles of fluid
change continuously and randomly with
time from point to point. The velocity v of
a fluid flowing through a pipe depends on
coefficient of viscosity 7, density pofthe
fluid and radius r of the pipe which can be
expressed using methods of dimensional
analysisas, v= f—Z, where £ is a constant
called Reynold’s number R_. Therefore, v

can be expressed as,

_Rn
~
When R, is less than 2000, the fluid flow
is laminar or steady, if it is greater than
3000, the flow is turbulent, and between
2000 and 3000, the fluid flow is unstable.
For critical velocity v, the value of R, is
approximately equal to 1100.

(5.1)

v

5.1.2 The law of mass continuity

The equation of continuity is derived
from the principle of conservation of
mass which states that, “Mass of the fluid
entering per second at one point is equal
to mass of that fluid leaving per second
at the other point provided that there are
no leaks or sinks of the fluid”. Consider
a steady flow of a fluid passing through a
tube of cross sectional area A, at point P
and A4, at point Q as shown in Figure 5.2
where Ax, =v,Ar and Ax, =v,At.

F
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Solution
From the equation of continuity, the

|4
volume of water per second —= Ay
t

But K=1000 cm’s™!, area of cross
t

Figure 5.2 Steady flow of a liquid section of the pipe 4=100x cm’

Vo1
Let the density and velocity of the liquid Hence, v = 7><—

at point P is P and v, respectively. The 4

5

mass flux past point P is y= l(l)g:))ils"‘ =3.18 cms™

T em®
Am A(pIA\xI) Ax, : A \
= A P4, T P4y, and The velocity of the liquid is 3.18 cms™.

that at O is %: p.v, 4, . If there are no

leaks along the path of the fluid, the mass 1

. What is meant by the terms:

flux of the compressible fluid at P is equal (a) Steady flow:
to mass flux at Q; (b) Turbulent flow:
¢) Streamline flow; and
4vp, = 4v,p, 4.2 ©

(d) Reynold’s number.
For incompressible fluids, £, = P5, then, 2. When a steadily flowing gas flows

equation (5.2) is reduced to from a larger-diameter pipe to a
Ay, = Ay, (5.3) smaller-diameter pipe, what happens
to:

Equation (5.3) is known as equation of

b (a) its speed,
mass continuity.

(b) its pressure, and
(c) the spacing between its

For incompressible fluids, the product of d
streamlines?

cross-sectional area 4 and velocity v of
the fluid at any point in a pipe is constant.
i.e. Av =constant. This constant is called
volume flux or volume flow rate.

3. (a) State the law of mass continuity.
(b) Water enters a cylindrical tube
PO through one end P with a
speed v, and leaves through the
[ \Examplesi /) | other end O with speed v,. If
Water flows steadily at the rate of the tube. is always ‘completoly
P : . filled with water, show that the

1000 cm’s™ through a horizontal pipe
. s : volume of water per second

of non-uniform cross-section. Find the

: : entering the tube is equal to
velocny of the wat.er a‘l a section where the volume of water per second
the radius of the pipe is 10 cm.

leaving the tube.
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4. The water supply for a city is often
provided from reservoirs built on
high ground. Water flows from the
reservoir, through pipes, and into
your home when you turn the tap
on your faucet. Why is the water
flow more rapid out of a faucet on
the first floor of a building than in
an apartment on a higher floor?

5. Two water pipes of diameters 1.2 cm
and 4 cm are connected in series to
a main supply line. Find the ratio
of velocities of flow in the two
diameters.

6. The flow speed of water through a
pipe of cross sectional area 4.0 cm®
is 5.18 ms™. The water gradually
descends 10 m as the pipe increase
in area t0 6.5 ecm®. Find the speed
of flow at the lower level.

7. The cylindrical tube of a spray pump
has a cross section area of 8.0cm®.
At its end there are 40 fine holes of
diameter 0.1 mm each. If the liquid
flows inside the tube at 1.5 m per
minute, what is the speed of ejection
of the liquid through the holes?

5.2 Bernoulli’s Principle

Why is it that when you press your thumb
over the end of a garden hose so that the
opening becomes a small slit, the water
comes out at high speed? Is the water under
greater pressure when it is inside the hose
or when it is out in the air? The relationship
between fluid speed, pressure, and elevation
was first derived by the Swiss Physicist
Daniel Bernoulli. Bernoulli’s theorem

is derived from the law of conservation
of energy. According to the theorem, the
total energy (potential energy and kinetic
energy) per unit volume remains constant
throughout the flow, provided there is
no source or sink of the fluid along the
length of the pipe. The principle holds
for incompressible, irrotational and non-
viscous fluid in steady flow. In this section
you will learn how to derive Bernoulli’s
equation and its daily applications.

5.2.1 Derivation of Bernoulli’s
Equation

Consider a steady flow of irrotational,
incompressible and non-viscous fluid
flowing in a non-uniform tube (Figure 5.3)
from Q, at height 4 to O, at h, . The cross-
sectional areas at @, and Q,are 4 and 4,
respectively, and the corresponding fluid
velocities are v, and v, . Since the tube is
not horizontal and not uniform, the pressure
of the fluid varies among different points
of the tube.

429

Figure 5.3 Fluid flowing in a non-uniform tube

Let the pressure at O, be F, and at O, be
P,. The force at Q, is B4, work done
W, on the fluid in the region Q0] is
given by,

PA(vAt)= PAV

| Physics Form V.indd 138




and since A, = v, At and 4 Ax, = AV; then,
W, = BAV (5.4)

According to the equation of continuity, the same volume
(V) of fluid will pass through Q,. The work done (W)
by the fluid on the right-hand side of the pipe is given by;

W,=PAV (5.5)
Therefore, the total work done on the fluid is,

AW =W,~W,=FAV — PAV

AW =(P—B)AV
Let the fluid density be p and the mass passing through
the pipe as Am during the time interval Az.

Hence,
Am= pAvAt, Am=pAV

The change in gravitational potential energy A(P.E)
can be obtained by,
A(P.E.)= mgh, —mgh = mg(h,— h)
A(P.E)= pgAV (h,—h)
Similarly, the change in kinetic energy is
A(KAE‘):%pAV(vg )
The total change in mechanical energy is
AU =A(P.E)+A(K.E.), thus,

AU= pgAV(hz—h‘)-ﬁ-%pAV(r;—\f) (5.6)

Applying the work-energy theorem in the volume of
the fluid, AW =AU

(p,— p)AV =%pAV(v; —vi)+pgAV (h—h) (5.7)

Dividing each term by AV, and rearranging equation
(5.7) gives

[ 1
B+ pv; +pgh =B+ pv; + peh, (5.8)

Fluid dynamics

Equation (5.8) is the Bernoulli’s
equation which can further be
written in general form as,

F+%pvl + pgh = constant (5.9)

Thus, Bernoulli’s principle
states that, “For a streamline
motion of steady, non-
rotational, incompressible
and non-viscous fluid, the sum
of pressure at any point plus
the potential energy per unit
volume plus the kinetic energy
per unit volume is always
constant”.

However, for horizontal pipe
(h =h,), equation (5.8) can
be reduced to

P+ %pvl =constant  (3.10)

[(Evamples2 )
Water enters in a house
water system through a pipe
with 2.0 em inner diameter
at an absolute pressure of
4% 107 Pa. The pipe leading
to the second floor bathroom
Sm high is 1.0 em inner
diameter. If the flow velocity
at the inlet pipe is 4ms™',
find:

(a) The flow velocity; and
(b) Pressure in the bathroom.
Solution

(a) The flow velocity from
equation of continuity

4 )

v, =

i
4,
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where A4 and 4, are areas of large
and small pipes respectively, v, and
v, are their corresponding velocities.

But i: . . Substituting the
A d

2 2

values d, =1.0 em, tl1=2.0 cm,
v =4ms™ in(i) gives v, =16 ms™!
(b) Pressure can be found using

Bermnoulli’s equation;

I 2 .2
E=s plyy =y )+ peth=h)
P,=4x10° Pa+;—x1000 kgm™ x

((4 ms")l —(16 ms")z)+
1000 kgm™x9.8 ms ™ x(0—5 m)

P,=231x10* kgms * or 2.31x10° Pa

Therefore. the flow velocity and
pressure in the bathroom are 16 ms™
and 2.31x10° Pa respectively.

5.2.2 Applications of Bernoulli’s
Principle

Thereare several applications of Bernoulli’s

principle which will be explained in this

section. These include flow of a liquid

through a wide tank, aerofoil lift, venture

meter, atomizer of sprayer and pitot tube.

(a) Fluid flowing from a tank

Consider a tank with some liquid
(Figure 5.4). Let point A4 be at a height &
from the bottom and B is at the reference
line.

v,
B <R

Figure. 5.4 Flowing fluid from a tank

The pressure acting at 4 and Bis atmospheric
pressure P. Let v, be the velocity of the fluid
which is flowing out at B, then,

1. 1.
P +Epv;+pgh‘ =P+ Epv; +pgh,

Assuming the cross-sectional area at 4 is
very large compared to that at B, that is,

v, << vy, then; v —v; = v}
Since, £, = P, = P, then, equation (5.8) can

be reduced to pgh= %pvi . Therefore,
v, =+2gh

This is the velocity of the emerging liquid
(velocity of efflux) from a wide tank: it is
equal to the velocity of a free fall. In this
process all the potential energy is changed
into kinetic energy. This process is called
Torricelli’s theorem which states that,
“The speed of efflux of a liquid from an
orifice is the same as the vertical velocity
that would be acquired in a free fall.”

Cempiess)

A cylindrical tank with a radius of 1 m
rests on a platform 5 mhigh. Initially
the tank is filled with water to a height
of 5m. A plug whose area is 10~ m’,

(5.11)

F
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is removed from an orifice on the side
of the tank at the bottom. Calculate:

(a) Initial speed with which the water
flows from the orifice:
(b) Initial speed with which the water

will strike the ground:

(¢) Initial distance from the tank to
the point where water strikes the
ground; and

(d) Time taken to empty the tank.

Solution
Consider the water tank in Figure 5.5.

Figure 5.5 Water tank

(a) From Torricelli’s theorem, velocity
of orifice v=2gh .
v=vy2x98 ms*x5m=9.9 ms™
Hence, the initial speed with which
the water flows from the orifice is
9.9 ms™.

(b) The initial speed (say ") can be
found from trajectory equation

V= v+t

Ve TV,
where v, is the horizontal velocity
and v, is the vertical velocity.
Hence, v, =v, V,==gt and

2h . .
t=,[—, combining these equations
4
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gives v'=24/gh

V'=2y98ms” xSm=14ms"

Therefore, the initial speed with
which the water strikes the ground
is 14ms™.

(¢) The initial horizontal distance from
the tank x, = vt

t= 2—h=1 zxsm,zl.Os
g 9.8 ms™
and

v=42gh=42%9.8 ms” x5m

=9.9ms™

x,=9.9ms™ x1.0s=9.9m

Therefore, the initial horizontal
distance from the tank is 9.9 m.

(d) From Figure 5.5, v, =—‘:1— and

v =+/2gh, then, from equation (5.3);

dh
—A—=A4,\2gh
A‘d/ 2V

The negative sign in the preceding
equation indicates that the height of
water in the tank is decreasing.

By separable integral,

4 -
-TEL"/, 2ah=|di

which simplifies to

24, [n
== |
4, \2g
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Sm
2x9.8 ms

=3.17x10"s

ondary Schools

_2nm?
107 m

Therefore, it will take 3.17x10*s
to empty the tank.

(b) Aerofoil lift

An aerofoil, just as an aircraft wing, is
constructed with the shape, such that,
when it moves across air layers, the air
flows faster at the top than at the bottom
of the wing (Figure 5.6). This creates
the pressure difference which makes the
up-thrust force much higher to uplift the
plane; this is called dynamic lift.
Consider a wing of an airplane in the
streamlines of air as shown in Figure 5.6.

v,(high)
—

B v, (low) B

Figure. 5.6 An airplane wing

The time 7 taken by a volume of particles
of air from 4 to 4" and from B to B’is
the same, such that,

,

A4 BB’ ’
v== and v, :l—; but A4"> BB,

hence v, > v,

From Bernoulli’s principle, the pressure at
B’ is greater than thatat 4’, this creates an
upthrust force (dynamic lift) to the whole
wing, so the whole plane “floats” in air.

(¢) Venturi meter

This is a special instrument which contains
a gauge or meter that can be used to measure
the speed of flowing liquid like water and
oil (Figure 5.7).

Figure 5.7 Venturi meter

Aliquid of density p flows ina horizontal
pipe from Y to Q, such that, the velocity at
Y is v, and thatat Q is v, and, B, and P,
are the pressures at Y and Q respectively.
The U-shaped tube containing a liquid of
density p” is connected with its openings
at Y and Q. Since the pipe is horizontal,
(h =h,), Bernoulli’s equation (5.9) at Y
and Q can be simplified to

B-R=3p(-v}) (.12)

If A and @ are the cross sectional area at Y

and Q respectively, then from equation (5.2)

Yy =—— (5.13)
a

Substitute equation (5.13) into (5.12),

(3.14)

Since / in Figure 5.7 is the liquid column

height difference between the two arms of

the U-shaped tube, then,
B-B=ghp

(5.15)
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Equating equations (5.14) and (5.15) and
solving for v, gives

Knowing the values for densities, cross
section areas and height, the speed of
flowing liquid past a point Y can be
determined.

a B
But, volumeflux at Y is, = Av,; thus,

(d) Atomizer or sprayer

The atomizer or sprayer (Figure 5.8) is
a device that is used to spray paint or an
insecticide. When the rubber ball of the
atomizer is squeezed. air rushes through
the narrow neck of the device. Inso doing,
the pressure in the narrow channel, at A is
reduced.

O—E3—

Rubber ball

Insecticide

Figure 5.8 Atomizer

Once the pressure at A is reduced,
atmospheric pressure pushes the insecticide
up the tube towards the narrow channel.
The insecticide is then pushed outwards
into a fine spray of droplets.

Fluid dynamics

(e) Pitot tube

The pitot tube (flow meter) is a device used
to measure the velocity of a moving fluid.
It is very often used in airplanes to measure
their relative speed. The schematic diagram
of a pitot tube is shown in Figure 5.9.

Static
pressure
Pitot tube tube
Al /
/(total pressure)
B

Figure 5.9 Pitot tube

The fluid enters the tube through C and it is
immediately brought to stagnation. Hence
the pressure Pat A, is sometimes called
stagnant pressure. Applying Bernoulli
principle:
1 5
P+hpg+ Epv“ = constant

The static component is determined from

tube B and given as P+hpg, or P if the
flow is horizontal. (ie. h=0)

The dynamic component is given by % v,

hence, the total pressure B, determined from

I
tube A is given by PT=P+EPV-
l 2
B~P=_pv
V= —2 (5.16)
P

where AP= P, — P, which is the pressure
difference.
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The Bernoulli’s equation can be
written in the form

P+ % pv’ = Constant

(a) Explain the meaning of each
term in the equation.

(b) State two conditions which must
apply for this equation to be true.

(c) What happens to the internal
pressure in a fluid flowing in a
horizontal pipe when its speed
increases?

Explain the following phenomena

related to Bernoulli’s principle.

(a) Aflag flutter when strong winds
blow on it.

(b) When a fluid flows through a
narrow constriction its speed
increases.

(¢) Tornadoes often lift the roofs of
houses.

A fire hose must be able to shoot

water to the top of a building which

is 28.0 m high when aimed straight
up. Water enters this hose at a steady

rate of 0.50 m’s™" and shoots out of a

round nozzle. What is the maximum

diameter of the nozzle?

A manometer connected to a closed

tap reads 3.5x10° Nm™. When

the valve is opened, the reading of
manometer falls t03.0x10° Nm™=,
find the velocity of flow of water.

. Alarge open tank has two holes in

the wall. One is a square hole of side
! at a depth y from the top and the
other is a circular hole of radius # at

a depth 4y from the top. When the
tank is completely filled with water
the quantities of water flowing out
per second from both holes are the
same. Find the value of the radius.

5.3 Viscosity and turbulent flow

Viscosity characterize the degree of internal
friction in fluids. This internal friction,
or viscous force, is associated with the
resistance experienced by two adjacent
layers of fluid moving relative to each
other. Viscosity causes part of the kinetic
energy of a fluid to be converted to internal
energy. Viscosity mechanism is similar
to the one by which an object sliding on
a rough horizontal surface loses kinetic
energy. In previous sections, the discussion
focused only on an ideal fluid (steady flow,
non-viscous and incompressible fluid).
In this section, you will learn about the
characteristics of viscous fluid and turbulent
flow, specifically, the Newton’s law of
viscosity, Poiseuille’s formula, Stokes” law
and applications of viscosity in daily life.

5.3.1 Coefficient of viscosity

Coefficient of viscosity 7, of a fluid is a
measure of the degree to which the fluid
exhibits viscous effects. This effect is
described by Newton’s law of viscosity
which states that, “The frictional force F
between the layers is directly proportional
to the area A of the layers and the velocity

LAy
gradient — .
v

Consider a pipe that contains a fluid
flowing steadily (Figure 5.10).
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Figure 5.10 Friction between successive
layers of a fluid
There are so many cylindrical fluid layers
located at different positions within the
pipe. Layers have varying speed ranging
from zero at the wall of the pipe to the
maximum speed at the center of the
pipe. Fluid layers between C and B have
velocities which are less than that of
C but greater than that at P. If 4 is the

Y=V,

surface area of layers in contact,

is the velocity gradient where # is the
distance of separation of the two layers
with velocities v, and v, .Then according
to Newton’s law of viscosity

V=iV,
FxA[‘ 1]
h

Introducing the constant of proportionality
into equation (5.17), gives,

(v,—v)
F=nA—1_—2~
g h

(5.17)

(5.18)

where the constant 1 is called the
coefficient of viscosity. Making n the
subject of the formula gives

Fh

S L - (5.19)
A(v,—v,)

n

Hence, from equation (5.19) the coefficient
of viscosity 7 is defined as the frictional
force F' per unitarea A per unit velocity
gradient v .
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The units of 7Mcan be obtained from
the method of dimensional analysis as
follows;

[F]

U= xivd

But [Fl= MLT?, [A]=L, [v,|=T""
hence the dimensions of viscosity.
'] = M:IT—I

Therefore, the unit of coefficient of
viscosity is kgm™'s™ or Nsm ™.

Note that, viscosity of an ideal fluid is
zero. The coefficient of viscosity of a liquid
decreases with an increase in temperature.
But for gases, the coefficient of viscosity,
increases with increase in temperature.
Viscosity (particularly of oil and grease)
is utilized in lubricants for various parts
of machines. Viscosity is related to
internal friction and hence it affects heat
generation in bearings, cylinders and gear
sets, therefore, various parts of machines
require specific density of lubricants.
The knowledge of viscosity is therefore
important in measuring and choosing
related lubricants for machinery parts.
This means that the viscosity of an oil is
foremost to be considered when selecting
lubricating oil for a specific application.

5.3.2 Poiseuille’s Formula

Poiseuille studied the flow of a liquid
through a horizontal pipe and found that
the volume of liquid flowing out per second

K . depends on the coefficient of viscosity
t

7 . the pressure gradient £ . and the radius
a of the tube. Thus,
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qug?; where P is the pressure
t

difference between the two ends of the
pipe of length /.

By method of dimensional analysis,

14 (PY
—=kn'a’| =
; 1711[[)

Equating dimensions,

MOET™ = (MLC'T™Y (ML)

(3.20)

Equating powers of like terms,

M:x+z=
L:—x+y-2z=3
L:x-22=-1

Solving forx, y and z;
x=-1y=4,z=1
Substituting the values of x, y and z into
kPa*
nt -
The constant of proportionality & was

equation (5.20) gives, K:
t

experimentally found to be % Hence,
v _mPd
t 8nl

This is called the Poiseuille’s formula.

Through Poiseuille’s formula, the
coefficient of viscosity of a liquid can be
determined. Consider the liquid flowing
steadily from a tank of height /4 through
a capillary tube of length / at constant
pressure (Figure 5.11).

h Capillary
tube

- ="

Beaker »‘\7 ‘

Figure 5.1 Determination of coefficient of
viscosity of a liquid

A volume ¥ of the liquid to be collected
at time interval ¢ is obtained by applying
Poiseuille’s formula,

v _nPd'

t 8yl
where /£ is the height of the liquid column
from the capillary tube to the top of the
liquid level and p is the density of the
liquid.

; but P=pgh

Hence the coefficient of viscosity can be
obtained from the formula

V _npghd’

t 8nl

sam ple 5.4

Water flows through a horizontal tube with
diameter 0.08 m and 4 kmlength at the
rate of 20 litres per second. Calculate the
pressure difference required to maintain
the flow, given that the coefficient of
viscosity of water is 10~ Nsm ™. Assume
only viscous resistance exists.

Solutionl ) R
From Poiseuille’s formula, —= e
¥ 7
v
where — is the volume per second.
t
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The pressure , P= sz_"f
t ma
8x10° Nsm ™ x4x10'm

P=2x107m’s™ x -
©x(0.04 m)

P=7.96x10'Nm~

Therefore, pressure difference is
7.96x10* Nm .

| \Bample55 /|

A tank of cross-section area 4 has a
viscous liquid to a height A above the
base. The liquidisallowed to flow out of
the container through a horizontal tube
which is narrow and long, connected
to the base of the tank. Show that the
height 4 of the remaining liquid at any
time ¢ in the tank obeys the equation,
h=he™.

Solution
Consider Figure 5.12 as a condition for
the problem. H (Atmospheric

?’isc.gus pressure)

iqui

St
h Tube of

Taitk 7 radius a

Figure 5.12 Emptying the tank

The liquid flow rate Q, in the tank is
equal to the flow rate O, in the tube, i.e
0, =0, then, from Poiseuille’s formula;
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dh __mAPa* @
dir— 8nid

B =hpg+H and P,=H ,then
AP=FR~P,=hpg (ii)

Placing equation (ii) into (i);
dh __mpga‘h dh _

3 —=—cdt
d Spd - h
4
where c=n'pga which is constant.
8nid
By integrating, it follows that;
wdh T
o]
In(h)—In(hy)=~ct (iii)

Equation (iii) can be simplified to,
h=he™.

5.3.3 Stokes’ Law and terminal
velocity

When a small solid sphere is dropped into

a viscous liquid, the ball will accelerate

and eventually reach a point where it moves

with a constant velocity known as terminal

velocity (Figure 5.13(a)).

Viscous Body
ey g accelerating  f
liquid downwa.l‘dsg £ ¥
Upthrust + |
viscosity
force
. Body falling
Weight 1 at constant
speed
(a) (b)
Figure 5.13 Sphere falling through viscous

liquid
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There are three forces that act upon the ball
namely, the weight of the ball, the upthrust
and the viscous force (Figure 5.13(b)). At
terminal velocity, the net force is zero, since
the acceleration is zero, then

F+U=W
According to Stokes’ law, “The viscous
force is proportional to the radius a of the
ball, velocity v of the ball, and coefficient
of viscosity 1 of the liquid ™.
By dimensional analysis,
F=ka'n'v (5.21)
[F]=[ka'n'v]
Equating the dimensions,
MLT? =1 (M7 ) (L)
Equating powers of the like terms gives
L: —y+z+x=1
Ti~y-—z= -2,M:y=1
x=Ly=1z=1
Substitution of these values into equation

(5.21) gives, F=kanv

From mathematical analysis the
proportional constant, k= 67.

Therefore, the viscous force Fis expressed
as;

F =6mranv (5.22)

Equation (5.22) is the expression for
Stokes” law. A graph of velocity against
time for motion of a ball falling in a
viscous fluid and attaining terminal
velocity is shown in Figure 5.14.

Velocity Terminal
Crmin:

veloeity (V,)
attained by
aball

Time
Figure 5.14 Terminal velocity

Suppose P is the density of the sphere
and o is the density of a fluid, then, the
weight 7, of the sphere,

4
W=mg, but m= Enpa’ hence,

W= %npalg

Similarly; upthrust U,
4 3
U=—noa
3708
Atterminal velocity, F+U =W, then

L S
6ranv, +;1to’u‘g = gnpu‘g

, 2 (p-0)g

' on
Thus, equation (5.23) represents the
expression of terminal velocity which is
a constant velocity attained by a spherical
body when falling through a viscous fluid.

(5.23)

CEmpiese )

A small oil drop of radius R falls with
a terminal velocity of 2.0x 10" ms™ in
air. Find the new terminal velocity of
the oil drop of half of this radius.
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Solution

Terminal velocity of first drop,

y= A=k ;‘:’)gk (i)
Terminal velocity of the second oil
drop,

o (P=0)eR (i)
& 18n
Dividing equation (i) by (ii)
L4 4 v, = %
vy - 4
~1
—_ =005 ms”

Therefore, terminal velocity of the
second drop is 0.05 ms™.

1. (a) Define coefficient of viscosity.

(b) Stokes’ law for the viscous

force F acting on a sphere of

radius @ falling with velocity

v through a large expense of

fluid of coefficient of viscosity

7 is expressed by the equation

F =6nanv. State why this

equation is true only for
sufficiently low velocities.

(c) Sketch the graph of velocity

against time for the motion of
the ball falling in a viscous fluid.

&)

. Explain the following observation

as related to fluid dynamics.
(a) A sphere released in a fluid
will fall with diminishing

‘ Furl )
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acceleration until it attains a
constant terminal velocity.

(b) Hot water flows more readily
than cold water through small
leaks in a car radiator.

. Calculate the velocity ofan oil drop

ofradius 3.0 x 10~ m falling through
the air of coefficient of viscosity
1.8x10° Nms, given that the
density of the oil is 8.0x 107 kgm ™,
the density of air may be neglected.

. A square plate with edge length

9.0 cm and mass 488 g is hinged
along one side. If air is blown over
one surface only. what speed must
the air have so as to hold the plate
horizontal? The air has a density of
1.212 kgm ™.

Re

n ex

Give differences between the

following terms:

(a) Compressible and non-
compressible fluid;

(b) Viscous and non-viscous fluid;
and

(c) Steady flow and turbulent flow.

. Alarge tank contains water to a depth

of 10 m. Water emerges from a small

hole on the side of the tank 20 cm

below the level of the water surface.

Calculate:

(a) The speed at which the water
emerges from the hole; and

(b) The distance from the base of’
the tank at which the water
strikes the floor on which the
tank is standing.
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. (a) Derive Bernoulli’s equation for

an incompressible non-viscous
fluid.

(b) How is an airplane able to fly
upside down?

. A simple garden syringe used to

produce a jet of water consists of
a piston with an area of 4.00 cm*
which moves in a horizontal cylinder
with a small hole at its end. If the
force on the piston is 50 N, calculate
the speed at which the water is forced
out of the small hole. Assume that
the speed of the piston is negligible.

. Two fast moving rowboats are likely

to crush when moving parallel and

close to each other. Explain why this

is likely to occur.

(a) State Poiseuille’s formula.

(b) Using the method of dimensional
analysis, derive the Poiseuille’s
formula.

(¢) Two capillaries of same length
and radii in the ratio of 1:2 are
connected in series and a liquid
flows through this system under
streamline conditions. If the
pressure across the two extreme
ends of the combination is 1 m
of water, what is the pressure
difference across the first
capillary?

. Water flows through a horizontal

pipe of varying cross-section at the
rate of 10 m’s™. Find the velocity
at a section where the radius of the
pipe is 10 cm.

8. Explain why

1

(a) a parachute is used while
jumping from an aeroplanes.

(b) a flag flutters when strong winds
are blowing on a certain day.

(c) clouds seem floating in the sky.

(d) a bigger rain drop falls faster
than a smaller one.

. Aflat plate of area 0.1 m” is placed

=

=)

ona flat surface and is separated from
it by afilmof oil 10~ m thick whose
coefficient of viscosity is 1.5 Nsm ™.
Calculate the force required to cause
the plate to slide on the surface at a
constant speed of Imms™'. Assume
that the flow is laminar and that the
oil adjacent to each surface moves
with that surface.
Explain why
(a) itis easierto throw a curve with
a tennis ball than a cricket ball.
(b) airplanes extend wing flaps that
increase the area and the angle
of attack of the wing during
takeoffs and landings.

. Two drinking glasses having equal

weights but different shapes and
different cross-sectional areas
are filled to the same level with
water. According to the expression
P=P +pgh the pressure is the
same at the bottom of both glasses.
In view of this, why does one weigh
more than the other?

. Draw sketches of streamline for the

following flow systems. Discuss the
significant features in each case.
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(a) Liquid flowing round a sharp
pipe bend.

(b) Air flowing round a moving
articulated lorry.

. Write down the definition of gauge

pressure. Sketch a simple liquid

U-tube manometer for measuring

the pressure difference between two

regions of a gas. Give an equation
relating the pressure difference to
the difference in liquid levels.

Briefly explain why

(a) cars need different oils in hot
and cold countries.

(b) engine runs more freely as it
heats up.

(c) skin lotions are easier to pour
in summer than winter.

(a) State Bernoulli’s principle and
explain the Bernoulli’s equation
for the flow of an ideal fluid in
stream line motion. Mention any
two applications of Bernoulli’s
equation.
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(b) Describe different types of flow
of fluids. State and explain
equation of continuity.

16. (a) Explain why, when the sphere

is falling with terminal velocity,
F=W-U where F is the
Stokes’ law force.

(b) Hence show that the viscosity
7 can be calculated from the
expression

_2r’g(p-o0)

4 9

where v is the velocity of
the sphere. Explain why it is
important that the experiment
is performed using hot oil.

17.Find the rate of flow of water
through a pipe 3e¢m in diameter
before turbulent flow occurs. The
critical value of Reynold’s number
is 2000 and viscosity of water is
8.01x107 Nsm ™.




Chapter

Six

Introduction

Properties of matter

Everything around us is matter. It can be in a state of solid, liquid, gas or plasma.
Matter can be classified depending on its physical and chemical properties.
Properties of matter enable us to differentiate materials, and to make appropriate
choices of materials for different kinds of tasks. Knowledge of properties of
matter is of great value in industrial products. Examples of these products are
springs made of steel because steel is highly elastic, and insulating materials
used in buildings, or refrigerators. In this chapter, you will learn about some
properties namely surface tension, elasticity, and kinetic theory of gases.

6.1  Surface tension

A paper clip can rest on a water surface
even though its density is larger than that
of water; this is due to surface tension of
water. The surface of the liquid behaves
like a membrane under tension. Surface
tension arises because the molecules of
the liquid exert attractive forces on each
other. The surface of a liquid behaves
like a stretched elastic skin. This is why
liquid drops are spherical in the absence
of gravitational field. There is zero net
force on a molecule inside the volume
of the liquid, but a surface molecule is
drawn into the volume. Thus the liquid
tends to minimize its surface area, just
as a stretched membrane does. Due
to surface tension insects called pond

skaters can walk on water, water rises up
in a capillary tube, a needle may be made
to float on water and a small piece of soap
fixed to the back of a piece of cardboard
that is floating on water will cause
the cardboard to move over the water
surface. Surface tension is the property of
liquid by virtual of which its free surface
at rest behaves like an elastic skin on a
stretched membrane. It has a tendency of
contracting so as to occupy a small area
as much as possible.

In this section, you will analyse surface
tension in terms of the molecular theory
and surface energy, then determine the
coeflicient of surface tension of a liquid
and explain the factors that affect surface
tension.

F
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6.1.1 Surface tension in
terms of the
molecular theory

The cohesive force among liquid
molecules is responsible for the
phenomenon of surface tension.
The molecules inside the liquid
are attracted equally in all
directions by other molecules.
In contrast, the molecules on the
surface experience an inward
pull, because they are partially
attracted by other molecules. As
a result, a network of force is
then formed against the inward
pull in order to move molecules
to the liquid surface. This results
into a large potential energy on
surface molecules. In order to
attain minimum potential energy
and hence stable equilibrium,
the free surface of the liquid
tends to have the minimum
surface area and it behaves like
astretched membrane.

Note that, any equilibrium
configuration of an object is
one in which the energy is a
minimum. This results to liquid
taking in a shape such that its
surface area is also minimum.
This is why a drop of water takes
on a spherical shape. Therefore,
for a given volume of liquid, a
spherical shape is the one that
has the smallest surface area.

(a) Energy of liquid surface

The fact that a liquid surface is in a state of surface
tension can be explained by the intermolecular
forces. In the bulk of the liquid, which begins only
a few molecular diameters downwards from the
surface, a particular molecule such as A (Figure 6.1)
is surrounded by an equal number of molecules on
allsides.

Liquid surface

1 :p}éEA

=9

Resultant
No inward inward
force on A force on B

Figure 6.1 Molecular forces in liquid

The average distance apart of the molecules is such
that the attractive forces balance the repulsive force.
Thus, the average intermolecular forces between A
and the surrounding molecules is zero. Consider
now a molecule such as C or B on the surface of the
liquid (Figure 6.1). There are very few molecules
on the vapour side above C or B. If C is displaced
very slightly upward, a resultant attractive force F
on it, due to the large number of molecules below
it, has to be overcome. If all the molecules in the
surface were removed to infinity, a definite amount
of work would be needed. Consequently, molecules
in the surface have potential energy. A molecule
in the bulk of the liquid forms bonds with more
neighbours than one in the surface. Thus, bonds
must be broken, i.e. work must be done to bring the
molecule into the surface. Hence, molecules in the
surface of the liquid have more potential energy
than those in the bulk.

Consider two atoms or molecules exerting forces
of attraction on each other as shown in Figure 6.2.
If the force F on A moves the molecule a small
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distance Arto the right; then, the work done AW
on A is given by

Figure 6.2 Forces of attraction between molecules

Let AU be the resulting change in the potential
energy, then,

AU =—-AW (6.2)
The negative sign indicates that force is attractive
and the potential energy decreases.

Therefore, AU =—FAr . Thus, in the limit; z = ;d_U
dr

[\ deivin )

Demonstration of a floating pin on the surface
of water

Requirements: Small dish, pin. water
Procedure

1. Fill the small dish with clean water.

2. Carefully placea pin horizontally on the surface
of the water as in Figure 6.3.

3. Observe what happens to the pin.

Floating pin

Figure 6.3 Floating pin on the surface of water

4. What causes the observed effect?

(b) Measurement of surface
tension

Imagine a tangential line 4B

drawn on the surface of a liquid

dividing the liquid into two parts

as shown in Figure 6.4.

Figure 6.4 Measurement of the
surface tension of the
liquid

The two formed parts of the
surface pull each other with
a force directly proportional
to the length of the line. It is
found that the forces of pull
are perpendicular to the line
separating the two parts and
tangential to the liquid surface.

Let F be the magnitude ofthe
forces exerted on each other
by the o parts of the surface
across the line segment 4B
of length /. Surface tension
is the force per unit length
acting in the surface of a liquid
perpendicular to one side of a
line in the surface.

;/:IE, where F is the

force on either side of line
segment 4B and / is the
length of line segment 4B.
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The dimension of surface tension is

7:%:&”’3 and its SI unit is

Nm™.

Therefore, coefficient of surface tension is
the force per unit length of an imaginary
line segment drawn in any direction on the
free surface of a liquid. the line of action of
the force being on the surface and at right
angles to the imaginary line segment.

6.1.2 Surface tension in terms of
surface energy

Another way of viewing surface tension is
in terms of surface energy. A molecule in
contact with a neighbour is in a lower state
of energy than if it was alone (not in contact
with a neighbour). The interior molecules
have much more neighbours compared
to the surface molecules. Therefore, the
surface molecules have higher energy.
In order to increase the surface area of
certain liquid, work will have to be done
against the force of surface tension. This
work done is stored in boundary molecules
(surface layer) of the liquid in the form
of potential energy. Therefore, the liquid
surface will have more surface energy due
to the increased surface area. The work
done against the force of surface tension
to increase unit surface area at constant
temperature is called surface energy (6)
of the liquid.

_ Workdone in i surface area

increase in surface area

ie. §

Surface energy (also called free surface
energy) of the liquid has the same SI units
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as that for surface tension, that is Nm™
or Jm™,

Consider stretching a film of liquid on a
horizontal frame (Figure 6.5). Since the
film has both an upper and lower surface,
the force F on AB due to surface tension
is given by F=2ly.

If AB is moved a distance x to 4'B’, then
work has to be done against this force.
The surface tension is independent of the
surface area of the film because as the size
of the surface increases more molecules
enter it and by so doing maintain the
average molecular separation. However,
surface tension decreases with increasing
temperature, because this decreases the
binding energy. Thus, provided AB is
moved isothermally to A'B’, the force on

AB will be constant and work done = 2xy/.

Smooth movable wire

T

! 2yl <—
! |

Liquid film

frame

Figure 6.5 Stretching of liquid film in a
horizontal frame

The increase in surface area is 2/y (upper
and lower surface) and therefore the
work done per unit area increase (the free
surface energy d) is given by

2y,
T

5 o=y
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Therefore, the free surface energy § is
equal to the surface tension 7- Hence
surface tension is the work done per unit
area in increasing the surface area of a
liquid under isothermal condition. Work
done in increasing or decreasing the
surface area of a liquid is proportional to
the change in area, A4.

W = yA4, where ¥ is the proportionality
constant which is the surface tension.

6.1.3 Coalescing and breaking of
liquid drops and bubbles
Understanding surface energy is important
instudying behaviours of bubbles and drops.
When subjected to various conditions two
or more bubbles may merge during contact
to form a single large bubble. On the other
hand, a large bubble may break down into
smaller bubbles. Hence the work done in
coalescing and breaking drops and bubbles

can be deduced separately.

(a) Coalescence of liquid drops in
vacuum

Liquid drops coalesce in the presence of

external forces. When drops combine form

a single drop (Figure 6.6).

e ()

Figure 6.6 Combined liquid drops in vacuum

Consider two liquid drops of radius 7
and r, respectively coalescing in vacuum
to form a single drop of radius R under
isothermal condition.

By conservation of energy, sum of the
surface energies W, and W, of the two
drops equals to the energy W of the
formed drop: i.e. W +W,=W. It follows
that, W=y xchangeinsurface area ( A),
then,

4m’y +4m’y =47R’Y, on simplifying
gives,

R=

(6.3)

For n drops, R=
This result for coalescing liquid drops
holds also for soap bubbles, except
that, the soap bubble has two surfaces
in contact with air. i.e., inner and outer
surfaces.

Note that, rain drops are a result of
coalescence of smaller droplets.

(b) Coalescence of soap bubbles in air
When soap bubbles combine together, a
common interface is formed. Consider two
soap bubbles of radius 7, r, respectively
combining in air to form a common
interface of radius R (Figure 6.7).

Interface
boundary
Figure 6.7 Coalescing of soap bubbles in air

Pressure £, inside the small bubble is larger
than the outside pressure P, pressure P,
inside the large bubble is larger than P,
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and A, is larger than P,.

It then follows that,

p-P = g p-p =2
11 - : l'l

(refer section 6.1.4)
Excess pressure of the two bubbles,

p-p=p P2 %
- "

| 3

4 LN E——

R 47[ Z‘ Z]‘ simplifying this

expression gives

. (6.4)
n=h

Therefore, the radius of curvature of the
7 3 3, h, 3
interface is given by R=—"—. This

sl
equation holds only under isothermal
condition.

(c) Breaking of liquid drops

When a large liquid drop is subjected to
external pressure greater than its pressure
holding its molecules, it breaks into small
droplets. When the drop of radius R
breaks into small droplets each of radius
r, there is an increase in surface energy
but the volume remains constant.

Let the drop break into two small identical-
drops. The increase in energy W =y x A4,
where A4 is the increase in surface area.

Original surface area of a large drop is
4nR* and that of the two droplets is twice
the area of one droplet. i.e. 2x4m>.

A4 =8mr* —4nR*

It then follows that,

W=y><(8m~2-47rRZ) (6.5)

Generally, if a drop breaks down into n
equal droplets, then
W =(nx4mr ~4nk* )y

Since the volume is constant,

dowe= imf - imf +im-"‘ oy
3 3 3 3 3

Since the droplets are identical, i.e.
r=n=r=r=r, then,
4 4
—nR* = nx—mr
3 3

3

By simplifying, n=—-, hence

W=y><(n><4m'1—47:R:)

.'.W=4nyR:[£—lj (6.6)
-
. R N .
Since — > I, there is an increase in energy
F

when a large drop breaks into small ones.

CWonpiesr)

The surface tension of the soap solution
is 0.03Nm'. Calculate work required
to produce a bubble of radius 0.5 m.
Solution

W=yAd
Since a soap bubble has two surfaces in
contact with air, then

AA=2x 4R’

A4=81x0.5"m* =2n m’

W=2nm’x0.03Nm™' =0.19J
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Example 6.2

Calculate energy in the change of
surface area of a soap bubble when its
radius decreases from Scm to lem.
Given that the surface tension of soap

solution is 2.0x 10* Nm ™.

Solution

Ad=A, — 4, Ad=4nR; —4nR’

Substituting the values of R,

A4=3.02x107 . ’

Energy (W) in the change of surface

area of a soap bubble is given by:

W =2

W=2x20x10"Nm™' x3.02x10" m’
=1.2x10"J

Wampieos )
A spherical drop of mercury of radius
2mm falls to the ground and breaks
into 10 small drops of equal size.
Calculate the amount of work to be
done in the process. Surface tension of
mercury, y=4.72x10" Nm™".

and R,

Solution

The volume (¥,) of the drop before falling
&
3

4 .
is gy where # is the number of small

is =mR" and volume ( V) after breaking
drops of mercury.

For the conservation of volume ¥, is
equalto V.

Thus, ifdf: imﬁ n
3 3

r=%=9.28><10"m
n

‘Work done (#) in breaking the drop is
given by: W =y A4, where A4 is the
change in surface area when the drop
breaks.

Since, Ad=4mnr’—4nR*; then by
substituting the values of n, r and R;
the value of A4 is 5.80x10”° m".

Hence,
W=4.72x10" Nm™ x5.80% 10" m?
=2.74x107J

6.1.4 Excess pressure inside air
bubble or curved liquid
surfaces

The force of surface tension is related to

the magnitude of the curvature of a liquid

surface or a bubble formed in a liquid.

Every molecule on the liquid surface

experiences a force of surface tension

that acts tangentially to the liquid surface
at rest. The resultant force normal to the
surfaces acts on curved surface of the
liquid. For convex surfaces the resultant
force is directed inwards the centre of
curvature while for concave surfaces the
resultant force is directed outwards from
the centre of curvature. For the equilibrium
of the curved liquid surface there must
be an excess pressure force that balances
the resultant force due to surface tension.

Therefore, for a curved liquid surface in

equilibrium, the pressure in its concave side

is greater than the pressure on its convex
side.

Consider one half of the bubble, A, which
is at equilibrium (Figure 6.8). The sum
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of surface tension force and the external
pressure force is equal to internal pressure
force on the bubble.

The force on buble A due to the pressure
P, is given by P;xm’:, where m” is the
area of the circular face of A and pressure
is force per unit area. Similarly, the force
on A due to the pressure P is given by
P,xmr*. Since the circumference of the
bubble is 2mr, then the surface tension
force acting on the bubble is 2mry. It
follows that,

Pmr? + 2mry = Par®
Simplifying gives, 2y =(P, - P|)”
therefore, P—P= 277/

Hence, the excess pressure, ,—F=Pis
given by

B2

r

(6.7)

Bubble A

Figure 6.8 Excess pressure in a liquid bubble

Hence, excess pressure for a curved liquid
surface is inversely proportional to the
radius of the bubble: i.e. the smaller the
bubble the greater the excess pressure.
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This explains why one needs to blow
hard to start a balloon growing. Once the
balloon has grown less energy is needed
to make it expand more.

Excess pressure inside a soap bubble
can be calculated by following the
same procedure used in a liquid bubble.
However, a soap bubble has two liquid
surfaces in contact with air, one being
inside and the other outside the bubble
(Figure 6.9). Hence, the force on one half
of the bubble due to surface tension is
2X2mry.

For the equilibrium of the bubble,
Pxmr +4nry =P,

where P, and P, are pressure outside and
inside the bubble respectively. Excess
pressure,

p-p=2 68

Bubble B

Figure 6.9 Excess pressure insideba soap bubble

This result for excess pressure is related
to the result obtained for a bubble formed
inside a liquid, equation (6.7).
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[ Nesnieos )1
Find the excess pressure inside an air
bubble of diameter 5cm in a liquid.
The surface tension of the liquid is
25107 Nm™".

Solution

2
Excess pressure, P= =y

”

-3 =
Pe 2x25x10 : Nm— _ 2 Nm™2
25x107 m
Therefore, pressure inside the bubble is

2 Nm™.

exampleos) ]

Two spherical soap bubbles of radii
30mm and 10 mm coalesce so that
they have a common interface. If they
are made from the same solution and the
radii of the bubbles remain the same after
joining together, calculate the radius of
curvature of their common surface.

Solution

Excess pressure P=F—P,, where £,
P, is the pressure inside the bubble
with radius of 10 mm and 30 mm

respectively.
3y 4
R r

_ 10 mmx30 mm_ e

Therefore, the radius of curvature of
their common surface is 15 mm.

C\eampieso)

A soap bubble has a diameter of
4mm.Calculate the pressure inside it
if the atmospheric pressure is 10°Pa,
Surface tension of soap solution is
2.8%10°Nm™.

Solution

P=F+F where P, F and F, are
pressures inside the bubble. outside
the bubble and due to surface tension

respectively.
4
P=Py-L
7
4x2.8x10° Nm™'
2x10”m

=1.00056x 10° Pa

P=10"Pa+

Therefore, the pressure inside a soap
bubble is 1.00056x 10" Pa.

6.1.5 Measuring surface tension

of a liquid using capillarity

method
‘When aliquid surface is in contact with the
surface of a solid, the shape of the liquid
surface is usually curved. This effect is
caused by the presence of cohesive and
adhesive forces. The curvature of the
liquid surface is determined by relative
strength between cohesive and adhesive
forces. If the adhesive force is larger
than the cohesive force, the liquid tends
to stick to the wall of its container and
thus the liquid has a concave meniscus
as shown in Figure 6.10(a). On the other
hand, if cohesive force is larger than
adhesive force, the liquid is pulled away
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from the wall and the meniscus is convex
as seen in Figure 6.10(b). Good examples
can be shown by water and mercury for
both cases.

0
| A ¥
2]
o L
Water Mercury
(a) (b)

Figure 6.10 Concave and convex meniscus

In Figure 6.10, the angle @ at which the
liquid meets the solid surface is called
the angle of contact. It is defined as the
angle between the solid surface and the
tangent to the liquid surface at the point
of contact, always measured through the
liquid.

The angle of contact is affected by the
following factors:

(a) The nature of the liquid and the solid
in contact;

(b) The medium that exists above the
free surface of the liquid;

(c) Impurities present in the liquid:
i.e. adding impurities in the liquid
decrease the angle of contact; and

(d) Temperature; contact angle increases
with the increase in temperature.

Angle of contact is important in
determination of surface tension of a liquid
in the phenomenon called capillarity.
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Capillarity is the rise or depression of
the liquid in a narrow tube immersed in
the liquid due to varying intermolecular
forces and pressure difference between
the upper and lower surfaces.

Suppose ¥ is the magnitude of the surface
tension of the liquid such as water, which
rises up a clean capillary tube with an angle
of contact zero (Figure 6. 11). The surface
tension acts along the boundary of the
liquid vertically downwards on the glass.
By the law ofaction and reaction, the glass
exerts an equal force in an upward direction
on the liquid.

B 27ry

Figure 6.11 Rise in capillary tube

If r is the radius of the capillary tube, the
length of liquid in contact with the glass
is 2mr. Since surface tension, ¥, is the
force per unit length acting in the surface
of the liquid, then upward force on liquid
is given by

Fr =2nrxy (6.9)

The upward force on liquid supports the
weight of a column of a height 4 above
the outside level of liquid.
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The volume ¥ of the liquid column,
V=mrh
The mass m , of the liquid column,
m= Vxp=mwhp
Thus, the weight W of the liquid is
W=m’hpg

From equation (6.9),
upward force F, = downward force mg
2y Xy =nrthpg

_rhpg
T

Suppose the angle of contact between the

liquid and the tube is € (Figure 6.12),

the magnitude of surface tension (y ) of

liquid can be determined by considering
vertical component forces.

(6.10)

Internal radius 7 of
a capilary tube

Liquid
h density p

o ~

Figure 6.12 Mecasurement of surface tension
using capillary tube

At equilibrium, vertical component force
is equal to weight of water in the tube.

Fcos@=mg, but m=pxV

FcosO=plg (6.11)

Where Vis the volume of liquid in the tube
above the free surface of the liquid given by
volume of cylinder of height, / and radius,
» plus volume of small cylinder enclosed
hemisphere of height, r and radius, r
minus volume of hemisphere of radius, 7.

V=mrh+mr— %[ %m‘S )

Vv =m'l{h+£}
3

But F=2ynr, substituting (6.12) into
(6.11) gives;

2ycosf= pg1~[h+£)

3
r[lz+£
A pg 3
r= 2cos6

(6.12)

If the tube is very narrow, % can be
neglected, hence.

_ pgrh

= 6.13
2cos6@ ©43)

The pressure difference for liquid rise in
capillary tubes can be described using
Figure 6.13. When the capillary tube is
placed in water as shown in Figure 6.13(a),
initially, water level is the same inside and
outside the tube. But the concave meniscus
indicates that pressure at M (P, ) is less
than that at N (P, ). Hence water in the
tube will rise to a height /4 as shown in
Figure 6.13(b).
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Figure 6.13 Capillary action

Excess pressure is
2y
B,=Fy= R
Since the height of the liquid is / and its
density is 2, then
B,=F,~hpg

where P, = P, which is the atmospheric
pressure. Therefore,

2
p~(P,~hpg)=L
2y
h=—= (6.14)
PER

From Figure 6.13(c), if 6 is the angle of
contact of the liquid and » is the radius
of the capillary tube, R is the radius of
curvature of the meniscus, then
- r
cos@
substituting R in (6.14) gives

e 2y cos@
pgr

(6.15)

Equation (6.15) shows that the capillary
rise / varies inversely with radius r of
the tube. Thus the narrower the tube the
higher the capillary rise. Capillary rise is
applied in many areas including supply of
water to tall buildings, absorption of ink

Properties of matter

by a blotting paper and rise of oil in the
wick of a lamp.

Capillary depression on the other hand,
occurs when the angle of contact is obtuse
(6>90°), hence a convex meniscus.
Suppose that the depression of the liquid
(e.g. mercury) inside a tube of radius »
is h (Figure 6.14). The convex meniscus
shows that the pressure at M is greater
than that at N.

N 1/1
4 4
/ |
Mercury M

Figure 6.14 Capillary depression
From the general result of excess pressure
on curved liquid surfaces,
2y cos@
=
where P, = P, +hpg and P, = P,. Hence

Py—Fy=

_ 2ycosf
rpg

ampieor)

The radius of a capillary tube is 0.25 mm
and it is inserted vertically in a liquid
whose density is 8x10% kgm™ and
surface tension is 3x107 Nm™'. Ifthe
angle of contact is 72.5°, determine the
height to which liquid will rise in the
tube.

h (6.16)
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Solution
From equation (6.15),
_ 2ycosf
©orpg
- 2x3x 107 Nm™ xc0s72.5°
8 x10° kgm ™~ x0.25%10”° m x 9.8 ms™>
=9.2x10"m

Therefore, the liquid in the tube will rise
9.2x107 m above the normal level.

eampieos) —
Water rises in a capillary tube to a
height of 2.0 em. How high will the
water rise to a tube with radius of one
third of the former tube?

h

Solution
In the capillary tube, heighth, is
inversely proportional to the radiusr,

ie. foe l, it then follows that,
7

Iyr = hyry
. 1
h =M where T ==X
o) " » 2
hy =6 cm

Therefore, water will rise up to 6 cm.

[ eampiess)

A glass tube of internal diameter 3 mm
is immersed into mercury whose
density is 13600 kgm™ and surface
tension of 0.45 Nm™'. If the angle of
contact of mercury with glass is 135°,
calculate the depression of mercury in
a glass tube.

Solution

From equation (6.16),

_ 2ycosf

T e

_ 2x045Nm " x cos135°
1.5x107 mx13600kgm™ x 9.8 ms™

=-3.18x10"m

h

Therefore, the depression of mercury
in glass tube is 3.18x 107 m.

6.1.6 Factors affecting surface
tension
Temperature and impurities affect the
surface tension of liquids. Experiments
show that the surface tension of liquids
(water in particular), decreases with
increasing temperature along a fairly
smooth curve. The decrease of surface
tension with temperature may be due
to the greater average separation of the
molecules at higher temperature. The force
of attraction between molecules is then
reduced, which results into reduction of
surface energy.

The presence of impurities on the surface
or dissolved in a substance directly
affects the surface tension of the liquid.
Adding impurities to the liquid, reduces
or increases the cohesive forces between
similar molecules or adhesive forces
between different molecules. The surface
tension of water, for example, will be
increased when highly soluble impurities
like salt are added to it, whereas sparingly
soluble substances like soap decrease the
surface tension of water.
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\ Exercise 6.1 |

L

phenomena as related to surface

tension.

(a) Some insects (bugs) are able to
walk on the surface of water.

(b) A steel needle when placed
carefully on water can be
made to float. However, when
a detergent (such as soap) is
added to water, the needle sinks.

(c) Water wets glass but mercury
does not.

(d) Water moves up a paper towel
dipped into it.

(a) Explain briefly with the aid
of a diagram, what you would
expect to happen to a nearly
spherical water droplet resting
on a clean horizontal surface if
atiny amount of detergent were
added to it. How do you account
for the change that might occur?

(b) A soap bubble in vacuum has a
radius of 6 cm and another soap
bubble has a radius of 8 cm . If
the two bubbles coalesce, find
the radius of the new bubble
formed and state the condition
at which this is valid.

If the energy required to blow a soap
bubble of radius r is E, show that
the extra energy needed to double
the radius of the bubble is given by,
E=24nyr’ where ¥ is the surface
tension of the soap solution.

. Given that, the excess pressure of

one soap bubble is four times the

Briefly explain the following

other soap bubble, find the ratio of
their volumes.

5. Two soap bubbles of radius r; and
ry such thatn <, coalesce. Show
that the radius of curvature of the

l;l'

common surface in air is

6. A capillary tube is immersed in water
of surface tension 7.2x 107 Nm™"
and rises to 6.2 cm. By what depth
will mercury be depressed if the same
capillary is immersed in it? Surface
tension of mercury is 0.54 Nm™,
angle of contact of mercury with
glass is 140°, and density of mercury
is 13600 kgm ™.

7. (a) The surface tension of a soap
solution is 0.03 Nm™'. What
amount of work is required
to produce a bubble of radius
0.5 cm?

(b) The inside diameters of the two
arms of a U-tube are 1.0 mm
and 1.5 mm respectively. Now if
it is partially filled with water of
surface tension of 0.0736 Nm ™'
and zero angle of contact, what
will be the difference in the
level of meniscus between the
two arms?

8. Air is forced through a tube of
internal diameter of 1.5 mm
immersed ata depthof 1.5 cm ina
mineral oil having specific gravity
of 0.85. Calculate the unit surface
energy of the oil if the maximum
bubble pressure is 150Nm ™.

9. The material of a wire has a density
of 1.4 gem™. If it is not wetted
by a liquid of surface tension
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44%107* Nem™, find the maximum
radius of the wire which can float on
the surface of the liquid.

10. A square frame of side L is dipped ina
liquid. On taking it out, a membrane
is formed. If the surface tension of
the liquid is ¥ find the force acting
on the frame.

6.2
Elastic property of materials is important in
daily life. You want the wings of an airplane
to be able to bend a little, but you would
not want them break off. The steel frame
of an earthquake-resistant building has to
be able to flex, but not too much. Many of
the necessities of everyday life, from rubber
bands to suspension bridges, depend on the
elastic properties of materials.

The physical reasons for elastic behaviour
can be quite different for different materials.
In metals, atomic lattice changes size and
shape when forces are applied (energy
is added to the system). When forces
are removed, the lattice goes back to the
original lower energy state. For rubbers
and other polymers, elasticity is caused by
stretching of polymer chains when forces
are applied. So, all substances experience
a change in shape or size when exposed
to high energy or forces. Elasticity is the
tendency or property ofa body to return to
its original size and shape after it has been
deformed. Deformation refers to change
of shape or size.

In this section, you will learn the
deformation of solids, the concepts of
stress and strain, modulus constants and
potential energy of deformation.

6.2.1 Elasticity in terms of molecular
theory

Unlike fluids (liquids and gases), solids
have definite shape and size. At the
molecular level, particles of solids tend to
maintain their arrangement because they
vibrate about a means position and have
strong attraction to one another.

When a deforming force is applied to a
solid, the intermolecular forces of attraction
will resist any change on the equilibrium of
the particles. As a result, the particles will
be slightly dislocated from their equilibrium
position and the solid object as a whole
appears to be deformed. If the deforming
force is removed. the intermolecular forces
restore particles into equilibrium and the
solid object regains its form (shape and
size).

(a) Stress and strain

Stress is the quantity that is used to
describe the applied deforming force F on
a body. When an external deforming force
is applied to the solid body, an internal
restoring force (due to the intermolecular
forces of attraction) is developed in the
body. This internal restoring force per unit
area A of the deformed body is called stress.
At equilibrium, the restoring force equals
the external applied force. Therefore,

deforming force
cross - sectional area

Sstress =

F
stress =— (6.17)
A

In case the forces applied are along the
length of the body (Figure 6.15(a)), the
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stress is termed as longitudinal stress o
given by,

o=—

6.18
1 (6.18)

In case the body is subjected to a uniform
pressure from all sides (Figure 6.15(b)).
the stress is termed as hydrostatic (bulk)
stress AP given by,

AP=Z
A

In fact the hydrostatic stress is the
difference between the outside and the
inside pressures of the body. In case the
forces are acting tangentially (Figure
6.15(c)), the stress is termed a shearing
stress. Hence,

(6.19)

where A is the area to which the force Fis
acting tangentilly.
The unit of stress is Nm™ or pascal (Pa),

and its dimensions are ML 'T, same as
that of pressure.

F:t{AP
(b) (c)
Figure 6.15 Longitudinal, hydrostatic and
shearing stress
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Strain occurs when the deforming forces
act on a body without causing it to move,
but bring about a change in its shape and
or size. It is defined as the change in the
dimension per original dimension of the
body. Hence,

_ change in dimension

strain - —
original dimension

The above mentioned stresses yield

three types of strains, namely; linear

(longitudinal) strain, bulk strain and shear

strain. If'a body of length / is extended by
Al, then,

T - rha_ng_ge in length

original length

linear strain= # (6.20)
Similarly, bulk strain occurs when the
deforming force produces change in
volume of the body. It is measured by the
ratio of change of volume of the body to
its original volume. Then,

bulk strain=— % (6.21)

The negative sign signifies that, as the
external pressure increases the volume
decreases.

‘When the tangential forces act on a body

they change its shape (Figure 6.16). The

angle € through which a line originally

perpendicular to the fixed plane is turned,

is called shear strain. Shear strain = tané
LA

which is aF Hence

shear strain = % (6.22)
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Figure 6.16 Shear strain

Strain being a ratio of two similar quantities
is a dimensionless quantity.

6.2.2 Brittle and ductile materials
Robert Hooke experimentally observed
that, within the elastic limit (i.e., small
strains), the stress is directly proportional
to the strain produced in a body. Thus,

Stress

= constant (6.23)

strain

This constant is a measure of elasticity
of the material and is called the modulus
of elasticity. As mentioned earlier strain
being dimensionless quantity, modulus of
elasticity has the same dimension and the
same unit as that of the stress.

To get a clear distinction between brittie
and ductile materials let us consider a
metallic wire of uniform cross-section
area subjected to an increasing load.
The stress-strain variation for the wire
is shown in Figure 6.17. The portion OA
of the curve is a sloping straight line. It
is the region in which Hooke’s law is
valid. As can be seen in this region stress
is proportional to strain. The point 4
represents the elastic limit.

Within this limit a strain is very small and
on removing the applied stress the body
regains its original state of zero strain.
In other words, it can be said that in this
region the body is perfectly elastic. At
the moment the elastic limit is exceeded,
the strain increases more rapidly than
the stress. The region 4B in Figure 6.17
corresponds to this stage. The extension
in this region is partly elastic and partly
plastic. This means that if the wire is
unloaded in this region, it will not come
back to original condition along OA.
The wire is then said to have acquired a
permanent stretch. The point B is called
the yield point.

Strain
o
Figure 6.17 Stress-strain curve foran elastic
material

Beyond B and up to C, the strain increases
rapidly and in an irregular manner, for
small increase in stress or sometimes
even without any increase in stress.

Beyond C and up to D, the extension is
plastic. In this region the strain increases
steadily with decreasing stress and
the cross section of the wire decreases
uniformly with the extension. Butafter D,
the length of the wire goes on increasing
without any addition of a load or even if
the load is reduced a little.

F
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The stress corresponding to point D is
called the ultimate strength or the tensile
strength or breaking stress. Eventually,
beyond D the wire breaks. This point is,
therefore, called breaking point.

Those materials for which the portion BD
of the curve is relatively long are called
ductile materials. These materials can
undergo large increase in length before
breaking and show large plastic range
beyond elastic limit. Examples of ductile
materials include; copper, silver and iron.
The materials, for which the portion
BD is relatively small and breaks when
subjected to a small extension are called
brittle materials. Cast iron, glass and
ceramic are examples of brittle materials.

6.2.3 Moduli of elasticity

Depending upon the type of stress applied
on the body and the corresponding strain,
the moduli of elasticity are classified
into the following three types: Young’s
modulus (¥), Bulk modulus (B) and Shear
modulus ().

(a) Young’s modulus of elasticity
Young’s modulus is the measure of
the resistance of a solid to a change
in its length when a force is applied
perpendicular to a surface. It is given
as the ratio of longitudinal stress to the
longitudinal strain which is equivalent to
the slope of the line in figure 6.17 (within
the elastic limit O4).

Consider a wire of length L and cross-
section area A fixed at one end to a rigid
support as shown in Figure 6.18.
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Figure 6.18 A stretched wire by force

If a normal force F is applied to the free
end, the length of the wire will change by
AL. Thus,

o longitudinal stress

Young's — -
longitudinal strain

(6.24)

A wire increases by 10~ of its original
length when a stress of 1x10* Nm™
is applied to it. What is the Young's
modulus of the material of the wire?

Solution
From equation (6.24),

Y=——
AAL

3 <3
SARIONIE oy s
10~
Therefore, the Young’s modulus is

110" Nm™.
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(b) The bulk modulus

This refers to the situations in which
the volume of a body is changed by the
application of an external normal stress.
Bulk moduli are possessed by solids,
liquids, and gases. The application of a
force AF (Figure 6.19) which results to
change in pressure AP, is everywhere
normal to the surface of a spherical body
that changes its volume by AJ, but the
shape of the body remains unchanged.
If the applied pressure is not too large,
the compression produced in the body is
proportional to the pressure.

Initial
(Change in s/olumc)
volume)
AV. i 4 y+ (Final
: v/ volume)
AF— —Ar
\\ 2
P
(Surface T
area) AF

Figure 6.19 Volume subjected to a
radial stress

Bulk modulus= bufksiress
bulk strain
= BEE
TG

AF AP
where —=AP, B=-V—
A ’ AV

When AP and A} become very small,
then, in the limit,

pir

= (6.25)

The unit of the bulk modulus is Nm ™~ or Pa.
The negative sign in equation (6.25)
indicates that the volume decreases with
an increase in pressure. The reciprocal of B
is called compressibility K of a substance

. 1
ivenby K=—.
gl y 2

A material is therefore easily compressed
if it has a small bulk modulus. Gases
obviously have much smaller bulk modulus
than solids and liquids.

ampieoiy)

A solid ball 300cm in diameter is
submerged in a lake of a certain depth
such that, the pressure exerted by water
is 9.8x10" Nm™. Find the change in
volume of the ball at this depth. Bulk
modulus of the materials of the ball is
10%Nm™.

Solution
Using the relation
g il g SEFOP

AV’ B

V=4m.) 47r><(150x10‘2m)3
3 3
V =14.137 m*
, —(14.137m* x9.8x10'Nm )
10" Nm™

=-1.385x10"m*
Therefore, the change in volume is

—1.385%10°m". The negative sign
indicates a decrease in volume of the
ball.
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T A
A cube is subjected to a pressure of
5%10°Nm™. Each side of the cube is
shortened by 1% . Find:

(i) The volumetric strain; and
(i) Bulk modulus of elasticity of the
cube.

w z

Solution Figure 6.20 Shear forces act on an object

Initial volume, ¥, =/, and final

5 5 If the tangential stress is Eand the
volume, ¥, =(1-0.017) =(0.997)". A

corresponding shear strain is o radians,

. . . then,
(i)  Volumetric strain, N —
3 shear modulus = ————
av P —(0.991) shear strain
——
4 ! S= £ (6.26)
AL 0.03 e
=
(i) Bk modulus,
A= 5%10° Nm™ Aluminium cube having 4 cmin each
T 003 side is subjected to a tangential force.

The top face of the cube is sheared

- 7 =5
B=1.67x10"Nm 0.012 cm with respeet to the bottom.

Find:
(b) The rigidity or shear modulus (a) The shear strain;
A shear stress is one which changes the (b) The shear stress; and
shape of a body: the strain which results (c) The shearing force.

is called a shear strain. Figure 6.20 | Given that the modulus of rigidity is
shows a solid block WXYZ whose lower | 2.08x10" Nm™.

face is fixed. A force F acts on the block Solition

tangentially to its upper face. The force () Shearstrain; _AL
provides a shear stress which distorts the L
block so that its new shape is wx'y'z. -~ 0.012 cm —0.003

4cm
Therefore, the shear strain is 0.003.

— =
= &
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_ shear stress
shear strain

Shear stress = § x shear strain
§=0.003%2.08x10""Nm™

=6.24x10"Nm™

(b) shear modulus (S )

Therefore, the shear modulus is
6.24x 10" Nm .

(c) Shearing force,
F =shear stress x area of cube face

F=6.24x10"Nm~x0.04m x0.04m
=9.98x10' N

Therefore, the shear stress is
9.98x10*N.

6.2.4 Potential energy in deforming
a solid body

Consider a wire or any material which
extends by an amount x when a force
F is applied on it. If the extension is
increased bydx, where dx is so small
that F can be considered constant; then,
the work done is dW = Fx .

The total work done (/) in increasing the
extension from 0 to X is equal to elastic
potential energy stored in the wire (the
strain energy) and is given by:

W:J.“‘FtL\'

If the wire obeys Hooke’s law, then,
F = kx, where k is a constant, so that

W:ﬂmm

3

3 X

W=t e (6.27)
2 2

Similarly, energy stored in a wire per
unit volume (U) can be obtained using
equation (6.27) as,

W
V. 24L
1 F X
U:Ex[jjx[z) (6.28)
Therefore,

1
U= Ex stress X strain

which is equal to the area under the curve
of stress versus strain, up to the elastic
limit.

| \Bxample6ld)

Calculate the increase in energy ofa brass
bar of length 0.2 m and cross-sectional
area | em® when deformed with a force
of 49 N along its length. (Young’s
modulus of brass is 1.0x 10" N/m?)

Solution
Increase in energy of the bar = Work
done in deforming the bar i.e.

W=lFx and x=ﬂ, then,
2 Y4

. F
\ 0T

~ (49N) x02m
2 (1.0x 107 m? ) x (1.0 10" Nm?)

=24x10"7J

Therefore, the increase in energy of a
brass bar is 2.4x107 J.

F

Student’s Book Form
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A 3.0 m length of a rod is suspended
horizontally from the ceiling using two
vertical wires of equal length tied to
its ends. One of the wires is made of
steel of cross-sectional area 1x 10 m>
and the other is made of brass of
cross-sectional area 4x107m’. Find
the position along the rod at which a
weight may be hung to produce

(a) equal stresses in the wires.

(b) equal strains in the wires.

Young’s modulus of steel and brass
are 2x10"Nm>, and 1x10"Nm
respectively.

Solution

Let xbe the distance from the steel
wire at which the weight W is hung.
Suppose T and T}, are the tensions in
the steel and brass wires respectively.

<« 3.0m—>|
T: 1;’

R

£

(4]
<— x—»l*}——x-.
w

(a) Forequal stresses in the wires:

O,=0,
7 ,
Is=7 %45 @

B
Since the system is in equilibrium, take
moments about C:

The sum of clockwise moments is equal
to the sum of anticlockwise moments.
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Tx=T,x(3-x) (ii)
Insert equation (i) into (ii)

T, 3=z
B A)=T. =
( ., ) =T, X( = )

Ay 33

A, X

1 3=
s (iti)
4 x

Solving equation (iii), x=24m

Therefore, the weight should be
placed at a distance of 2.4m from
the steel wire or 0.6m from brass.

(b) For equal strains (S) in the wires:

Sg=5,

Stress(o)
From §=———8———:
Young's Modulus(Y)
GS

Y, ¥,

_1x107m* x2x10'"Nm > _ 1
4x10°m* x1x10"'Nm~ 2

7. 3—=x 1
e v
7 x 2 )

Solving equation (iv): x =2m

Therefore, the weight should hang 2m
from steel wire or Lm from the brass.




—

6.2.5 Applications of elasticity of
materials

The knowledge about elasticity of
materials serves a lot of purposes to
humans. It is used by engineers in bridge
designing to know the maximum load the
bridge can withstand without bending
or breaking. Also it is used in designing
structural details of columns, beams and
supports of buildings to avoid bending or
breaking due to expansion or contraction.

Winches are used for lifting and moving
heavy loads from one place to another.
They have a thick metal rope to which
the load is attached. In order to lift a load
without deforming the rope permanently,
it is ensured that the extension should not
exceed the elastic limit.

Most parts of structures and machinery
are under some kind of stress. In their
design, it has to be ensured that applied
stress do not exceed the elastic limits of
the materials. In railway track structure,
the vertical dynamics are significant part
of the stress exerted as well as the level
of vibration and emitted noise. Thus,
elastic materials such as rail pads, under-
sleeper pads and under-ballast mats
are incorporated to reduce geometrical
degradation as well as to decrease noise
and vibrations along the track.

S

Exercise
-\ EE—

1. (a) Itis found experimentally that
the torque required to twist a
hollow cylinder is greater than
the torque required to twist a
solid cylinder of same length
and radius. Explain.

(b) In the model of a crystalline
solid, the particles are assumed
to exert both attractive and
repulsive forces on each other.
Sketch a graph of the potential
energy between two particles as
a function of the separation of
the particles. Explain how the
shape of the graph is related to
the assumed properties of the
particles.

2.(a) Elastic moduli, elastic limit,
and strengths of material are
all quoted with the same unit,
Pascal’s. Explain the differences
between these three physical
quantities.

(b) Why stresses and strains rather
than forces and extensions are
generally considered when
describing the elastic behavior
of solids?

3.(a) Would you expect a rubber band
to have a larger or a smaller
force constant than that of an
iron wire? Explain.

(b) A steel rod of length 0.6 m
and cross-sectional area
25%10°m* at 100°C is
clamped so that when it cools
it is unable to contract. Find the
tension in the rod when it has
cooled to 20 °C. Young’s
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modulus of steel is 2.0 ><10“Pa,

linear expansivity of steel is

L6x107°C™.

If a metal wire has its length

doubled and its diameter tripled,

by what factor does its Young’s
modulus change?

A wire 2m long with a

cross- sectional area 107 m?

is stretched 1 mm by a force

of 50N in the elastic region.

Calculate:

(i) The strain;

(ii) The Young modulus; and

(iii) The energy stored in the

wire.

A large tensile force is needed
to increase the length of a steel
wire by about 0.1% but a
modest tensile force doubles the
length of a rubber band. Explain
how the difference in behavior
is accounted for by the different
molecular structures of steel and
rubber.

(b) Explain why, if a steel wire is
formed into a helical spring,
the amount of elastic potential
energy it can store increases
enormously.

(¢) A force of 20N is applied to
the ends of a wire 4 m long,
and produces an extension of
0.24 mm . If the diameter of
the wire is 2 mm, calculate the
stress on the wire, its strain, and
the value of Young modulus.

4. (a)

(b)

5.(a)

6. A spring is extended by 30 mm

when a force of 1.5N is applied
to it. If the spring was un-stretched
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before applying the mass, calculate
the energy stored in the spring when
hanging vertically supporting a mass
of 0.20kg. Calculate the loss in
potential energy of the mass. Explain
why these values differ.

the volume of
1.025% 10° kg of sea water ata depth
where the pressure is 5.0x 107 Pa.
Then, calculate the density of sea
water at this depth. Bulk modulus
of sea water is 2.2x10°Pa and
density of surface sea water is
1.025% 107 kgm ™.

. Two structural beams, beam 1 and

beam 2, both have the same cross-
sectional area. The tension force
required to stretch beam 1 by 1%
is four times the force required to
stretch beam 2 by 0.5%. Beam
1 has the following properties:
L=10m,y=12x10" Pa,calculate
the Young’s modulus Y for beam 2.

. A bone that has the shape of a

=

cylinder has one end fixed to a
horizontal surface. If a 35 N force
is then applied laterally to the plane
of the upper face: determine the
lateral displacement, given that the
diameter and length of the bone are
1.2 em and 3 em respectively. Shear
modulus of bone is 80x 10 Pa.

. A mild steel wire of length 2L and
cross-sectional area 4 is stretched
well within elastic limit, horizontally
between two vertical pillars. A mass
m is suspended from the mid-point
of the wire. Determine the strain
produced in the wire.
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11. A body of mass, m is hung from
the middle point of the steel wire of
diameter 0.8 mmand length 1.2 m
clamped firmly at two points P and
Q. The distance between the two
pointsis 1.2 m in the same horizontal
plane such that the middle point
sags lem lower from the original
position. Calculate the mass of the
body given that Young’s modulus of
steel is 2% 10" Nm™.

6.3 Kinetic theory of gases

Kinetic theory of gases makes use of
many assumptions in order to explain
the reasons why gases act the way they
do. The theory explains the behaviour
of gases by considering the motion of
the molecules. In the theory, the gas
is assumed to consist of a very large
number of molecules (one mole is about
6.022 x10* molecules) that move about
randomly and collide frequently. The
pressure of a gas is a force that the gas
exerts on the walls of a container. It can
be observed that whenever a molecule
bounces off a wall it reverses (changes)
its direction. The rate of change of the
momentum produced is equal to the
average force which the gas molecules
exert on the wall.

In this section, you will learn to interpret
the assumptions of kinetic theory of
gases, obtain the expression for pressure
of a gas, deduce root mean square speed
of gas molecules and establish the
relationship existing between kinetic
energy and temperature of a gas.

6.3.1 Assumptions of the kinetic
theory of gases

The main assumption is that the range

of intermolecular forces (both attraction

and repulsive) is small compared with the

average distance between molecules. The

other assumtions are:

(a) Collisions between the molecules
and the container are perfectly
elastic.

=

The volume of the gas molecules is
negligible compared to the volume of
the container in which they occupy.

(c) The time spent in a collision is
negligible compared with the
time spent by a molecule between
collisions.

(d forces are

The intermolecular
negligible except during a collision.
collisions a molecule
moves with uniform velocity in a
straight line.

Between

(e

(f) Even in a small volume there is a
large number of molecules and that
large number of collisions occurs in
a small time.

The above assumptions define an ideal
gas.

6.3.2 Pressure exerted by gases
Consider an ideal gas enclosed in a
cubical container of sides L (Figure 6.21).
If a single molecule of a gas of mass m,
initially moving towards x-direction has
a velocity u,, then the x-component of
momentum is mu,.
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Figure 6.21 Molecules in a cubical container

The molecule will eventually reverse the
direction of its momentum by colliding
with the wall. Since the collision is elastic,
it will rebound with the same speed so
that its momentum will now be —nu,.
The change in momentum in x-direction
is mu, —(—mul) =2mu,.

Since the molecule travels a distance
2L to-and-fro, the time for such a trip is

2L :
—, and therefore, this molecule’s rate
u,
1

of change of momentum due to collision

. 7 mu!
with the wall x will be T’
By Newton’s second law of motion, the
rate of change of momentum is equal

B
mu’
L is the

to net force, and therefore,

force exerted on the molecule by the
wall. Likewise, by Newton’s third law of
motion, the molecule exerts an equal but
oppositely directed force on the wall.

mu”

Therefore, force on the wall x is

mu®
I (since area

and force per unit area is

of the wall x=I*). Therefore, pressure
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N
L omu
on the wall is —-.
L

If there are N molecules in the container
and their x-components of velocity are

Uy Us, ... 1y, then, the total pressure, P
on wall x will be given by
1o o >
P:%( *+u2“+.,.+NN‘) (6.29)

If 4 is the mean value of the squares
of all the velocity components in the x-
direction, then

2

2 2
Uy oty
N

u = . implies,

N = ul b by
Thus, from equation (6.29)

P= %(Nu_:) (6.30)

For  any molecule,¢® =1 + v +w?,
where u,v and w are components of
velocity along x, y and z respectively,
and ¢’is the resultant velocity square.
This also holds for the mean square

g S T Y
values, therefore, ¢ =u" +v +w" .

But since N is large and the molecules
move randomly, it follows that, the mean
values of u*,v" and w” are equal,

=w. Therefore,

and so P:MLf

But L' =volume ¥ of the gas. Thus,

_ Nme®

3

PV (6.31)
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Since p= N is the density of the gas,
Nm is the total mass of the gas, then,

g

pP= % pc? (6.32)

The root mean square speed, v,

s

ofagasis

the square root of ¢ . From equation (6.32),

v Bl
=y

For an ideal gas, Charles’ law and Boyle’s
law can be combined to obtain the general
relationship between pressure, volume
and temperature. Consider a fixed amount
of gas of volume ¥, kept in a cylinder at
a pressure £ and temperature 7] . If it is
desired to calculate its volume V, at an
absolute temperature7,, you have to
increase the pressure to P, while keeping
the temperature 7 constant. This is
governed by Boyle’s law.

AV, =RV,

(6.33)

(6.34)

Ifitis desired to calculate V, atan absolute
temperature 7, and P, is kept constant
you have to increase the temperature to
T,. This is governed by Charles’ law
expressed as

Lo
hoh
Combining the two laws, that is equation
(6.34) and (6.35) yields

& _E
T

(6.35)

PV
;. ——=constant
T

For a gas with » number of moles,

PV =nRT (6.36)
R is called the universal gas constant with
avalue of 8.31 I mol 'K ™.

Equation (6.36) is called the equation of
state because it expresses a relationship
between the state variable of the system.
Any gas which obeys this equation is
called an ideal gas.

6.3.3 Internal energy and kinetic
energy of gases

Gas molecules at a particular temperature
possess internal energy. This energy
depends on the translational kinetic
energy and rotational kinetic energy of
the molecules. Translational kinetic energy
(KE,,, of molecules depends on linear
movement of molecules. On the other hand,
rotational kinetic energy (KE,_, )depends on
the number of atoms in a molecule and on
the structure of the molecule.These two
finally determine the rotational degrees
of freedom, f. The degrees of freedom
are the number of independent ways the
molecules can possess kinetic energy. The
total kinetic energy ( KE; ) of molecules is
the sum of both translational and rotational
kinetic energy. For translational kinetic
energy of an ideal gas:

s Nm('_Z
3
Equation (6.37) can also be expressed as;

Pr=2n] Lme
312

PV (6.37)

(6.38)

By comparing equations (6.36) and (6.38)
and rearranging,
2 1 = 1 = 3n
=N| =mc” |=nRT, —mc* =—RT
3 [2 ) 2" TN
. N .
Since —is the number of molecules per
n

mole, i.e., N, the Avogadro number, then,
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I = 3
—me =——RT
2" TN

4

(6.39)

Both R and N, are universal constants.

" R . <
Therefore, — is also a universal

4
constant called Boltzmann’s constant,
k=138x102JK'. Therefore, the
average translational kinetic energy of a
gas molecule is
3

KE, =—kT

. 6.40)
=3 (

Let M be the molar mass of the gas, i.e.,
M=Nm , then

lN,mc_1 = iRT which results to
2 2

v = [3RT

=T

Similarly, rotational kinetic energy is such
that,

1
KE“=fx[5kT] (6.41)
From equations (6.40) and (6.41),
3 1
KE =—kT+ f| —kT 2
=Gk [ 5 ] (6.42)

The internal energy of the gas, U is
therefore given by

U=NXKE,

For monoatomic gas (with only one atom
for each molecule, for example inert
gases), f =0
o KE, =241 vox| 2ar | =247
2 2 2
and,

U:NxKErzngchr U:%HRT

Physics Form V.indd 179

Properties of matter

For diatomic gas (with two atoms for each
molecule, for example oxygen, hydrogen
and nitrogen), /=2,

KE, = %kT+2x[%kT)=%kT and,

5 5
U:NXKErzixNkT or U:EILRT

For polyatomic gas (with more than two
atoms for each molecule, for example
ozone, carbondioxide etc), f =3 which

alsoresultsto KE, = %kT and {J = 3NKT
or U =3nRT.

F esimplesio)
‘What is the root mean square speed of
a hydrogen molecule at 27°C ?

(k=138x107 K™,

Solution
kT
From the relation, v, = L
m
T = 273 +27 =300K
2x10 kg
Mass of hydrogen (m) = ———
AR 6.023%x10"

m=332x10""kg

_ [px(138x10 K 'x300K)
Py 3.32x10% kg
=1934ms™

Example6l7/

Estimate the total number of air
molecules in aroom of capacity 25.0 m’®
at a temperature of 27 °C and 1 atm
pressure, given that & =1.38x 107" JK .
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Solution

Let N be the total number of air
molecules in a room. Then according
to perfect gas equation,
PV = NkT

_ PV _1.013x10°Nm>x25m’

T kT 138x107JK %300 K

=6.1x 10" molecules

| \Ezmpleas) ]

(a) What is the average translational
kinetic energy of an ideal gas
molecule at 27 °C? (Given that
k=1.38x107JK" and
R=8314Jmol'K™")

(b) What is the total random translational
kinetic energy of the molecules in
1 mole of this gas at 27 °C?

(c) What is the root mean square
speed of oxygen molecules at this
temperature?

Solution
Using the relation

3
a) K.E==kT
(a) >

=%x138x10~nm"x3001<

=6.21x107"J
O kp- %nRT

:%x Imol x8.314Jmol 'K~ x 300K

=374131]

m

9 M
Since n =1, then, m =—, where M
4
is molar mass of a compound and m is

the mass of an oxygen molecule. Then,

_ 32.0x10 kgmol ™'

"~ 6.023%x10% mol”
=531x10"kg

Lo [3x138x107IK ™ x300K

wI T s3Ixi0Tkg
=483.6 ms™

| ercise 6.3 8
| Exercise6.3 J

1. (a) Briefly explain why the pressure
of a gas increases when the
volume of a gas is reduced at
constant temperature?

(b) The temperature of an ideal
monatomic gas is increased from
25°C to 50°C. Is the average
translational kinetic energy
of each gas atom doubled?
Explain your answer. If your
answer is no, what would be the
final temperature if the average
translational kinetic energy was
doubled?

2. Calculate the root mean square speed,

v, of the following system of gas

rans

molecules:

Number of
Molecules
Speed
(ms™)

W
~
2
™)

1o
o

6.1(7.8] 4 |25
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3. A sealed vessel has a volume of
15107 m* and contains oxygen
at a pressure of 1.0x10*Pa and
a temperature of 300K. Given
that the molar gas constant,
R=83Jmol 'K, the Avogadro’s
number, N, =6.023x10"mol”,
and the molar mass of oxygen
=32x10"kgmol ™. Determine:

(a) Thenumberof'moles of oxygen
in the vessel.

(b) The number of molecules in the
vessel.

(c) The root mean square speed of
the molecules in the vessel.

4. By what factors does the mean
square speed and the root mean
square speed of the molecules of a
gas increase when its temperature is
doubled?

5. Thetemperature of a gas is increased
in such a way that its volume
doubles and its pressure becomes
four times the original value. If
the root mean square speed of the
molecules originally was 250ms™,
what will be its value at the higher
temperature?

6. Calculate the root mean square speed
of hydrogen molecules and oxygen
molecules at the temperature of
0 °C, (Relative molecular masses
of hydrogen and oxygen are 2 and
32 respectively).

s of matter

Itis said that the shape of a liquid is
the same as the shape of'its container.
But, with no container and gravity,
what is the natural shape of a drop
of water? Why?

. A small, dry paper clip can rest on

the surface of still water. Why can’t
a heavier paper clip do the same
without sinking?

Explain the following observations
in terms of surface tension.

(a) A wet tent will let in water if
the inside is touched.

(b) A pond skater can walk on the
surface of water but a person
cannot.

. Take a kitchen sieve and immerse

it in molten candle wax. Remove
it quickly, shaking off excess wax
so that the wires of the sieve get a
thin coating of wax. Now pour some
water into it. Explain what happens.

. A U-tube has limbs of radii 0.5 cm

and 0.5 mm respectively. A liquid
of surface tension 7x10”Nm™'
is poured into the tube when it is
placed vertically. Find the difference
in levels of the two limbs. Density of
the liquid in the tube is 1000 kgm ™
and the angle of contact is zero.

. The radius of a capillary tube is
0.025mm. It is held vertically
in a liquid whose density is
0.8x10°kgm™, surface tension is
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3.0x10°Nm™ and the cosine of
angle of contact is 0.3. Determine
the height to which the liquid will
rise in the tube relative to the liquid
surface outside. Use acceleration
due to gravity, g=10ms™.

. Waterrises up in a glass capillary up

to a height of 9.0 cm while mercury
falls down by 3.4 cm in the same
capillary. Assume angles of contact
for water-glass and mercury glass as
0° and 135° respectively. Determine
the ratio of surface tensions of
mercury and water. The density of
mercury is 13.6x 10 kgm ™ and the
density of water is 10" kgm .

. Two soap bubbles in vacuum have a

radii 3 cm and 4 cm respectively.
If the bubbles are combined to form
a single large bubble. calculate the
radius of the formed large bubble.

. Initially a soap bubble in a piston

chamber of pressure B, has aradius
7 Ifthe piston is pulled out until the
radius of the soap bubble doubles:
show that,

(a) The new pressure inside the
chamber is given by
ooh %
8 2r
(b) Ifthe piston is compressed until
the radius is halved, the new

pressure inside the chamber is

- 24y

givenby; P=8P, +—— where
r

£, the original air is pressure
inside the piston chamber and
assume isothermal condition.

10. Ifolive oil is sprayed onto the surface
of a beaker of hot water, it remains
as separated droplets on the water
surface. As the water cools. the oil
forms a continuous thin film on the
surface. Suggest a reason for this
phenomenon.

11. (a) It is sometimes stated that, by
nature of its surface tension,
the surface of a liquid behaves
as if it was a stretched rubber
membrane. To what extent do you
think this analogy is justified?

(b) Explain why the pressure inside
a soap bubble is greater than
that outside.

)

- Asoap bubble has diameter of 4mm.
Calculate the pressure inside it if the
atmospheric pressure is 10° Nm ™
and surface tension of soap solution
is 2.5%107 Nm .

)

. Air is introduced through a nozzle
into a tank of water to form a
stream of bubbles. If the bubbles
are intended to have a diameter of
2 mm, calculate how much pressure
of the airat the tip of the nozzle must
exceed that of the surrounding water.
Assume that the value of surface

tension between air and water as
727107 Nm™".

14. Explain the following observation
as related to elasticity of a material.
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(a) A heavier person compresses
a spring mattress more than a
lighter person.

(b) Steel nails are rigid and
unbending while steel wool is
soft and squishy.

.In designing structures in an

earthquake-prone region, how
should the natural frequencies of
oscillation of a structure relate to
typical earthquake frequencies?
Should the structures have a large
or a small amount of damping?

Asteel wire, 4B of length 0.60 m and
a cross-sectional area 1.5x 107 m*

is attached at B to a copper wire, BC
of length 0.39 m and cross-sectional
area 3.0x 10" m’. The combination
is suspended vertically from a fixed
point at 4, and supports a weight
of 250 N at C (Figure 4.22). Find
the extension of each section of the
wire (Young’s modulus of steel is
2.0x10" Pa. Young’s modulus of
copper is 1.3x10" Pa ).

A |
— Steel wire
B
Copper wire
©

— Weight =250N

Figure 6.22 Combination of steel
and copper wires

s of matter

17. The Young’s modulus of a metal
is 8%10°Nm~ and its density is
11gem™. Calculate its density if the
metal is subjected to a pressure of
20000Nem ™.

18. A copper wire LM is fused at one
end M to an iron wire MN. The
copper wire has length of 0.9 m and
cross-section 0.90x10°m’. The
iron wire has a length of 1.4 m and
cross-section 1.30x10*m’. The
compound wire is stretched and its
total length increases by 0.01 m.
Calculate:

(a) The ratio of extensions of the
two wires;

(b) The extension of each wire; and

(c) The tension applied to the
compound wire.

Young’s modulus for copper and
iron are =13x10"Nm~, and
2.1x10" Nm™ respectively.

19. The graph (Figure 6.23) represents
stress-strain curves for two different
materials, 4 and B, where F, and I
are respective point at which each
material fractures.

Stress
2 F

Il

Material 4, g
/ — B

~Material B

Strain

Figure 6.23 Stress-strain curves
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State, giving your reasons, which

material, 4 or B,

(a) obeys Hooke’s law up to the
point of fracture.

(b) is weaker than the other.

(c) has the larger value of Young’s
modulus.

20. A thin steel wire initially 1.5 m
long with a diameter of 0.5 mm
is suspended from a rigid support.
When a mass of 3.0 kg is attached
to the lower end. calculate:

(a) The final extension; and

(b) The energy stored in the wire.
Assume that the material obeys
Hooke's law. (Young’s modulus
for steel =2.0x10"'Nm ™)

o

. A light rigid bar 4B of 0.20 mis
suspended horizontally from two
vertical wires of steel and brass each
of 2.00 m long attached on a ceiling
as shown in Figure 6.24.

Steel Brass

—
A4 B

Figure 6.24 Alight rigid bar
suspended by two wires

If the diameter of the steel wire is
0.60 mm and a mass of [0 kg is

suspended from the centre of 4B;

(a) What is the tension in each wire?

(b) Calculate the extension of the
steel wire and the energy stored
init.

(c) Calculate the diameter of the
brass wire.

(d) If the brass wire is replaced by
another brass wire of diameter
1.00 mm , where should the
mass be suspended so that
AB remains horizontal? The
young’s modulus for steel is
2.0x10" Pa and that of brass
is 1.0x10" Pa.

22.(a) Explain what is meant by an
ideal gas. What properties are
assumed for the model of an
ideal gas molecule in deriving

1 =
the expression p = 5 pc where

the symbols have their usual
meanings.

(b) How is pressure explained in
terms of the kinetic theory of
gases? Describe carefully, using
diagrams where necessary, the
steps in the argument used
to obtain an expression for

il ==
=—pc.
p 3P
23. Show that for a fixed mass of ideal
gas at constant temperature, the
. o=
expression for p=§pc‘ can be

written as pV’ =4, where 4 is a
constant.

| Physics Form V.indd 184



24.

For some real gases, the pressure
can be described in terms of the
equation p(4+B) =4 whereB is
also a constant for a fixed mass of the
gasat a particular temperature. Show
that the expressionp(4+B)=4

implies a pressure less than the value
predicted for an ideal gas. Suggesta
reason for this in molecular terms.

Using the kinetic theory of gases,
show that:

(a) The pressure of an ideal gas is
doubled when its volume is
halved at constant temperature.

(b) The pressure of an ideal gas
decreases when it expands in a
thermally insulated container.

A volume of 023 m' contains
pressure of

nitrogen at a
0.50x10°Pa and a temperature
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26.

of 300 K. Assuming that the gas is
ideal, calculate:

(a) The amount of nitrogen present
in moles; and

(b) The root mean square speed
of nitrogen molecules at a
temperature of 300 K.

(Molar mass of nitrogen
=0.028 kgmol ™', molar gas constant
=8.3JK 'mol™)

Oxygen gas (0, ) has a molar mass

of 32gmol™".

(a) What is the average translational
kinetic energy of an oxygen
molecule at a temperature of
300K ?

(b) What is the average value of the
square of its speed?

(¢) What is the root mean square
speed?

s of matter



Chapter

Heat

Seven

Introduction

Heat is a form of energy that cannot be seen, though its effects can be felt.

Humans get heat from different sources,

including the sun, electricity, fire, and

gas. On hot days people wear light clothing to improve heat transfer from their
bodies to the air, and allow better cooling by evaporation of perspiration. On
cold days, they wear heavy clothes, or stay indoors to keep themselves warm.
In this chapter, you will learn about thermometric properties of a substance,
thermodynamic scale of temperature, thermal conduction, thermal convection,
thermal radiation, and the first law of thermodynamics.

7.1 Thermometers

The concept of temperature is rooted in
the ideas of *hotness’ or “coldness’ based
on the sense of touch. An object that feels
hot has higher temperature than when
it feels cold. The quantity that indicates
how warm or cold an object is relative
to some standard is called temperature.
Many of the properties of matter that you
can measure quantitatively depend on the
temperature. The pressure of a gas in a
container increases with temperature: a
steam boiler may explode if it gets too
hot. Temperature is also related to kinetic
energies of the molecules of the materials.
In this section, you will learn about
temperature measurement, determination
of the degree of hotness and coldness,
and the scales involved in measuring
temperature.

7.1.1 Thermometric properties of
substance

Thermometry is a branch of science that
deals with measurement of temperature.
Temperature of a body is the degree or
intensity of heat present in a substance
or object, such that when two bodies are
placed in contact, heat flows from the
one at high temperature to the one at low
temperature. It is an indicator of the average
thermal energy of the molecules. In order to
measure temperature, a temperature scale
must be established.

Any object which has a physical property
that changes in a measurable way as the
object gets hotter or colder can be used as
the basis of scale of temperature. Such a

F
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property is called a thermometric property. Nearly all
solids, liquids and gases expand when heated and this
expansion is commonly used to specify thermometric
properties on which variety of thermometers are
based. Therefore, the length of solid bar, volume
of liquid or gas can all be used as thermometric
properties. Other thermometric properties include
properties such as resistity, e.m.f, and resistance
of a material. In order to define temperature scale,
three distinct conventions are adopted.
(i) A choice of suitable thermometric property.
(ii) A choice of specific functional dependence
of temperature on the thermometric property
chosen.
(iii) A choice of appropriate number of calibration
points to specify uniquely the function chosen.

A thermometer is used to measure temperature. It
makes use of a physical property (thermometric
property) of a substance which changes continuously
with temperature. Table 7.1 shows some thermometric
properties of matter used in various thermometers.

Table 7.1 Thermometric properties of matter

Thermometric Thermometer
property

Volume expansion of Gas thermometer

a gas

Volume expansion of a = Laboratory or clinical
liquid thermometer
Volume expansion of | Bi-metallic strip
solid thermometer
Pressure change in Volume-constant gas
fixed mass of gas thermometer
Change in Thermocouple
electromotive force thermometer
Change in electrical Resistance
resistance thermometer
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Thermometers have measurement
scales. Scale of temperature is
a way to measure temperature
quantitatively. There are three
temperature scales in use today,
namely Celsius, Fahrenheit and
kelvin.

7.1.2 Temperature scales

To measure temperature, a
temperature scale has to be
established as follows:

(i) A substance which is
sensitive to temperature is
selected, and its properties
must be accurate and
measurable over wide
range of temperature. Its
properties must vary in
similar way with other
physical properties.

(ii) In order to establish a
temperature scale, it is
necessary to make use of
fixed points and assign
numbers to them.

(a) The Celsius scale

On the Celsius method of
numbering, the lower fixed
point is the ice point, i.e. the
temperature at which pure ice
melts atoneatmospheric pressure
and is assigned the value of 0°C.

On the other hand, the upper fixed
point is the steam point, i.e. the
temperature at which pure water
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boils at one atmospheric pressure and is
assigned the value of 100°C.

Suppose thermometric properties X,
and X, of the temperature-measuring
property are found at the steam and ice
points respectively, then, (X, — X,)
gives the fundamental interval of the scale.
These properties are proportional to the
temperature, i.e. Xe<f, X =kf, where k
is the proportionality constant.

If X, is the value of the property of
material at some other temperature @,
then,

(7.1
(7.2)

X,~X,=k6
X, — X, =100k

100

Dividing equation(7.1) by (7.2), gives
i_ X, =X,
100 X~

)

e:[M}me"c (7.3)
X,

100 0

Note that, the equation has been defined
so that, equal increases in the value of
the property represents equal increases
of the temperature, i.e. the temperature
scale is defined so that, the property varies
uniformly or linearly with temperature
measured on its own scale.

(b) Fahrenheit scale

On Fahrenheit scale, the boiling point is
assigned to 212°F and the freezing point
of 32°F. The fundamental interval is then
212°F—32°F =180°F. If you divide by

180, you get 180 equal parts each with
1°F, called one degree Fahrenheit.

Note that, a Celsius temperature T, is

the number of Celsius degrees above
freezing, and the number of Fahrenheit

degree above freezing is % of this (but
freezing on Fahrenheit is at 32°F ).

To convert temperature from Celsius to
Fahrenheit we multiply the Celsius value

by g and then add 32°C, i.e.,

9
T,=5T.+32

(7.4)
To convert Fahrenheit to Celsius, solve
the above equation for 7. to get

S

T, ==(1,-32)

w=s 75)

(¢) Thermodynamic scale
Thermodynamic scale of temperature is
not an empirical scale of temperature.
It is a scale of temperature that is not
based on any thermometric property
or experimental results. Therefore, it
is an absolute scale of temperature (7).
Although this scale is theoretical, it is
identical with the scale based on pressure
variation of an ideal gas at constant
volume.

Kelvin suggested that, the standard scale
of temperature should be based on ideal
or perfect gas or real gases at very low
pressure or high temperature, i.e. it should
obey Boyle's law.
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The two fixed points in the thermodynamic
scale of temperature are Absolute zero
and Triple point of water.

(i) Absolute zero

Absolute zero is the temperature at which
the pressure of an ideal gas becomes
zero, and it has the value of 0 K (zero
kelvin). The temperature scale which
begins at absolute zero is called Kelvin or
absolute temperature scale. Absolute zero
is equivalent to —273.15°C. The absolute
zero is considered to be the lowest possible
temperature attained by a substance in
which the random motion of the atom and
molecules in the substance is at minimum.

(ii) Triple point

Triple point is the point at which vapour,
liquid, and solid phases (states) of a
substance co-exist in equilibrium. The
temperature at the triple point of water is
273.16 K or 0.01°C and the pressure is
4.58 mmHg or 610 Pa. At this point, it is
possible to change all of the substance to
ice, water, or vapour by making arbitrarily
small changes in temperature and pressure
(Figure 7.1).

Water
(Liguid)

273.16K
(0.01°C)

Temperature

Figure 7.1 Triple point at constant volume

Let X, be a physical property of a
material at its triple point temperature
T,. X, be the physical property of a
material at unknown temperature I (in
kelvin). Since the change in temperature
is directly proportional to the change in
thermometric properties, i.e., T,=<X,,
then

T,=k¥, (7.6
where 4 is the proportionality constant.
Similarly,

T=kX, (7.7)
Dividing equation (7.7) by (7.6),
T= =, xT 7.8
“\x ) (7.8)

For water, 7,, =273.16K . Thus equation

(7.8) can be written as;
X
T=| =L |x273.16K (7.9)
er
The fixed points and their corresponding
absolute temperature scales are summarized
in Figure 7.2.

Water

Boils 212°F 100°C 373K
Water

Freezes 32°F 0°c 273K
Absolute
Zero —459°F -273°C 0K

(
Fahrenheit Celsius kelvin

Figure 7.2 Fixed points and absolute
temperature scale
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7.1.3 Types of thermometers and
their uses

To construct a thermometer, you depend
on those materials whose properties
change uniformly with temperature. For
example, the volume of a gas or a liquid
increases uniformly with the increase
of its temperature, and the length of a
solid changes uniformly with increase
of its temperature. Similarly, the electric
resistance of a wire increases with increase
of its temperature. Thermometers are
designed to measure the temperature of
a body by assigning a numerical value
to any given temperature. It uses some
measurable properties of matter that change
continuously with temperature to measure
the unknown temperature. There are
many types of thermometers. Some of the
common thermometers are liquid-in glass
thermometers, gas thermometers, platinum
resistance thermometers, thermoelectric
thermometers and radiation thermometers
(pyrometers).

(a) Liquid-in glass thermometer
A liquid-in glass thermometer is the
simplest and most commonly employed
type of temperature measurement device. It
is one of the oldest thermometers available
in the industry. It mainly comprises of:
(1) A bulb which acts as the container
holding the liquid whose volume
changes with temperature. The
bulb also acts as a sensor or gauge
which is inserted in the body whose
temperature is to be measured
(Figure 7.3).

(ii) Astemwhichisaglasstube containing
a tiny capillary tube enlarged at the

bottom into a bulb that is partially
filled with a “working fluid”.

(iii) A temperature scale which is basically
preset or imprinted on the stem for
displaying temperature readings.

(iv) Point of reference, i.e., a calibration
point which is most commonly the
ice point.

=

A working liquid which is generally
either mercury or alcohol.

(vi) Aninert gas, mainly argon or nitrogen
which is filled inside the thermometer
above the working liquid to trim
down its volatization.

™

Boiling (steam) point

Glass tube with

inert gas

Ice point
”'—Q(Rcfmcncc point)

Alcohol or Mercury

Red color

Bulb

Figure 7.3 Liquid-in glass thermometer

The liquid in glass thermometer utilizes the
variation in length of liquid column in a
glass with temperature as the thermometric
property.

Replacing X in equation (7.3) by length
1 of liquid column, then,

9=[ﬂjx100°c (7.10)

100 = 0

F
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where, /; = length of liquid column at
ice point
1,4, = length of liquid column at
steam point

1, = length of liquid column at
unknown temperature 6

One of the most common thermometers
used in the laboratory and at home make
use of the expansion of mercury in a glass
tube. Mercury is used because of its good
conductivity, uniform expansion for equal
amounts of heat gained, opaqueness and
luminosity which makes it easier to see.
Other thermometric liquids such as alcohols
are also used. Each of these thermometric
substances have unequal expansion, and
therefore, show deviation from a uniform
pattern which is an undesirable feature.
This shortcoming is taken care of in gas
thermometer.

Inaccuracies arise in mercury thermometers
from, non-uniformity of the bore of the
capillary tube, the gradual change in the
zero owing to the bulb shrinking for a
number of years after manufacture, and
the mercury in the stem not being at the
same temperature as that in the bulb.

(b) Gas thermometers

In most accurate work, temperatures
are measured by gas thermometer. It is
referred as an ideal thermometer because
the increase in volume or pressure of a
gas with temperature is independent of
the nature of the gas. Two types of gas

thermometers include: constant-volume
gas thermometers and constant-pressure
gas thermometers.

(i) Ce /f gas ther 'S
A constant-volume gas thermometer is
constructed using a gas, such as hydrogen,
helium, nitrogen, oxygen or air at low
density as a thermometric substance. It
uses the variation of pressure of a gas (kept
at a constant volume) with temperature.
Experiments show that, there is good
agreement in their readings over a wide
range of temperatures, especially at
low temperatures. Constant-volume gas
thermometers are very sensitive, accurate
and easily reproducible.

A constant-volume gas thermometer is
composed of a bulb filled with a fixed
amount of dry air or gas and it is attached
to a mercury manometer (Figure 7.4).

Flexible tube

Figure 7.4 Constant-volume gas thermometer

During measurement  the glass bulb

is placed inside the enclosure whose
temperature is to be measured. Keeping
the volume of air in the glass bulb
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constant by raising or lowering the glass
tube (to keep the mercury in the left side
of the gas tube at the constant reference
level R), the pressure of air in glass
bulb at ice point (0°C), steam point
(IOO"C) and at the unknown temperature
(9°C) are determined by recording the
corresponding values of height difference
h. The pressure, P of the gas is calculated
from the relation P= A+ hpg, where A
is the atmospheric pressure, and P is the
density of mercury.

If B, and B, are pressures at 0°C and

100°C respectively, then, the temperature
of the enclosure can be found by replacing
X in equation (7.3) with pressure P;

P-P
9=[M]x 100°C (7.11)

10— Lo

(ii) Ce -pressure gas ther 'S
These thermometers are based on the
thermal expansions of gases at constant
pressure. As a thermometric property, it
uses the variation of volume of a gas at
constant pressure with temperature. If
denotes the volume of a gas at constant
pressure, then one can talk of the volume
at 0°C, 100°C and 6°C as ¥, ¥, and
V, respectively. Replacing X' in equation
(7.3) with volume ¥, it follows that,

V.-
B:[”—V"}XIOWC (7.12)

0~ "o

(c) Electrical thermometers

Electrical thermometers are classified
into two categories, namely, resistance
thermometers and thermocouple
thermometers.

(i) Resistance thermometers

Resistance thermometers are based on
the fact that, resistances of metals are
temperature dependent. It is based on the
uniform change of electrical resistance with
equal rise or fall of temperature, and so
resistance R can be used as thermometric
property. Resistance thermometers are
usually made of platinum because of its
high temperature coefficient of resistance
and high melting point (1773 °C)‘ These
features make platinum resistance
thermometer both sensitive and useful over
a wide range of temperature. They are
also very accurate over all thermometers
“except” gas thermometers, and are stable
at high temperature.

The principle of a resistance thermometer
Platinum wire is wound on mica (insulator)
and covered with quartz (glass material) and
this forms one of the four arms of Wheatstone
bridge as shown in Figure 7.5.(b).

Mica Dummy
spacers leads
Platinum
Mica wife

Silica tube——_~

(a)

—
ey %@
et \l\
ﬁ Dummy
Platinum leads

wire

(b)
Figure 7.5 Platinum resistance thermometer
and its circuit

F
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If R,.R.R, are known then 6 is
calculated as;

0=[;”;R"}x100 °C (7.13)
100 0

When calibrated against constant-volume
gas thermometer, the resistance R of
platinum is found to vary with Celsius
temperature according to equation,

R, =R (1+a6 +h6%) (7.149)

where R, is the resistance at 0°C, R,

is the resistance at temperature 6, @ and
b are constants.

Note that, a thermistor is a type of resistance
thermometer made from semiconducting
materials, and it works on the principle
that resistance decreases with increase in
temperature.

[ vamper )

A particular resistance thermometer has
a resistance of 30€Q at the ice point,
41.580Q at the steam pointand 34.59Q
when immersed in a boiling liquid. A
constant volume gas thermometer gives
readingsof 1.333x10°Pa, 1.821x 10°Pa
and 1.528x 10°Pa at the respective three
temperatures. Determine the temperature
at which the liquid is boiling:
(a) On the scale of the gas thermometer;
and
(b) On the scale of the resistance
thermometer

Solution
(a) The Celsius temperature, Hg
according to the gas scale,

P—PB
Gg =[MJX100 °C.
Fou=h
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_[1.528x10°Pa—1.333%10°Pa
1.821x10°Pa—1.333x10°Pa

=39.96°C

]x100°C

Therefore, temperature on the gas scale
is about 39.96°C.

(b) The Celsius temperature, 6
according to the resistance scale,

9ﬁ=[M]x100 o)
Ry =Ry

100

R

41.58Q-30Q
=39.64°C

The temperature on the gas scale is
about 39.64°C.

=[34.5m—30(z)xmoac

(ii) The thermocouple

A thermocouple is a device consisting
of two dissimilar metal wires welded
together at their ends, forming two
electrical junctions. These will set up an
electromotive force (e.m.f) at the point of
contact. A thermocouple works under the
Seebeck effect in which thermal e.m.f'is
generated at the contact of the two dissimilar
conducting wires. Since the e..f generated
varies continuously as the temperature of
the junctions changes, it is used as the
thermoelectric property.

In the construction of thermocouple, two
junctions are always made. One junction
is always maintained at a reference
temperature, usually 0°C (hence called
‘cold junction’) and the other junction
(called the hot junction) is connected
to the body whose temperature is to be
measured (Figure 7.6). The e.m.f generated
is measured by a high resistance voltmeter
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in mV. Thermocouple thermometers
have small heat capacities because the
junctions are small, therefore, they
have little effect on the temperature
of the body being measured. They can
measure rapid fluctuating (changing)
temperatures. Also they have a wide
range of temperature measurement
(=200°C to 1500°C) depending on
the type of materials used. However, in
thermocouple thermometers, variation
of e.m.f. with temperature is non-linear.
They are also difficult to be recalibrated.

Chromel Chromel

Hot junction = "\ Cold jufiction
Figure 7.6 Principle of a thermocouple

thermometer

The electromotive force (E) generated
and the temperature @ between the
junctions are related by:

E=ab+bo" (7.15)

This relation is parabolic as shown
in Figure 7.7. where the values of
a and b depend on the materials of
the wires used and the temperature
difference between the two junctions.
As the temperature increases, the
e.m.f. increases up to the temperature
called neutral temperature 8, which
is independent of the cold junction.

If E, and E,,, are e.m.f. at 0°C and
100°C respectively, the temperature

to be measured will be found by replacing X
in equation (7.3) with e.m.f. | E.

9= [ E,—E,
Ew—E,

Note that, in practical use several thermocouples
are connected in series to form a thermopile
s0 as to give larger e.m.f.

JXIOO"C (7.16)

E A

/E:lle+hsz

: >0
6, 6,
Figure 7.7 Thermocouple e.m.f. as a function of
temperature 0

From Figure 7.7: Reference temperature 6,
which is the temperature of cold junction.
Neutral temperature 8, which is the temperature
of hot junction whose e.m./. is maximum.

Inversion temperature ¢ which is the
temperature of hot junction when e.m.f. is 0V.

Applying differentiation on E=a@+ b9,
dE dE
—=a+2h0. At —
a9 6

6=80,, then,

5 a a)
= 2 g - p| -
af+bo a[ 2h)+ [ 217)

=
4b

=0,0, =_ih’ where,
N

E

max

(7.17)

max

At E,.. =26, and 6, = g";g‘~

When the inversion temperature is exceeded,
the thermoelectric e.m.f. in the thermocouple is
reversed. The use of a thermocouple thermometer

is restricted in the temperature range between
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0°C and neutral temperature
6,. This is because, beyond
the neutral temperature 6, , the
thermoelectric e.m.f. decreases
with increasing temperature.

(d) Pyrometer

A pyrometer is a non-contact
type of thermometer used for
measuring high temperature
using thermal radiation emitted
by a hot source. Examples
of sources with very high
temperatures are ovens and
molten metals. Pyrometer
consists of an optical component
to collect the radiation energy
emitted from a surface of an
object, a radiation detector that
converts radiant energy into an
electrical signal, and an indicator
to read the measurements.

Other types of thermometer
which have similar features
as pyrometers include infrared
thermometers. They are used
to measure relatively low
temperature of surfaces that emit
like a blackbody.

__\Emmpleray |

In a certain thermocouple,
the thermo e.m.f. is given by

2
E=a€+b'%, where 0 is

the temperature of the hot
junction. If the cold junction
is at 0°C, a=10pV °C”'
and h=-0.05uV °C",

calculate:
(a) The neutral temperature, 8, and the inversion
temperature, 6,; and

(b) The maximum electromotive force, E,

max*

Solution

1

12
(a) E=ab+—

2
Since the neutral temperature is obtained at

maximum e.m.f., E,

‘max 3

then, d—E =a+bo. At
de

dE _ a
w "=y
10 pv °c!

== ————— =200 °C
Y7005 pv oC?

0,=2x6,=2x200°C
=400°C

bo?
b)) E  =af, +—L

e = 0y = )

4 . (200°c)"

=104V °C™ %200 °C~0.05 pV °C =

E,, =1000 pV

— : ——

“ \ Exercise 7. '

1. A faulty thermometer has its fixed points
marked 5°C and 95°C. What is the
correct temperature in centigrade when this
thermometer reads 59 °C ?

2. Explain why

(a) at least two (2) fixed points are required
to define a temperature scale.

(b) two thermometers using different
thermometric properties and calibrated
at two fixed points, would not necessarily
show the same temperature except at the
fixed points.

3. The resistance R, of a platinum wire varies
with temperature  according to the equation,
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R, = R,(1+800000—b¢*) where bis
a constant. Calculate the temperature
on a platinum scale corresponding
to 400°C on the gas scale.

. A liquid-in glass thermometer

uses a liquid volume which varies
with temperature according to the
equation, V,= Vn(l+a0+b92)
where ¥, and V are the volumes of
the gas at 6 °Cand 0°C respectively.
and @ and b are constants. If
a=bx10°, what will be the reading
of the liquid in glass scale when the
actual temperature is 60°C?

A resistance thermometer has a
resistance of 28.11Q at the ice
point, 29.10 € at the steam point and
28.11Q at unknown temperature
4. Calculate 0 on the scale of this
temperature.

. A particular constant-volume gas

thermometer registers a pressure
of 1.937x10*Pa at the triple point
of water and 2.618x10'Pa at the
boiling point ofa liquid. What is the
boiling point of the liquid according
to this thermometer?

. The temperature measurement

described in question 6 above was
repeated using the same thermometer
but with a different quantity of the
same gas. The readings on this
occasion were 4.0668x10'Pa
at the triple point of water and
5.503x10"Pa at the boiling point
of theliquid.

(a) What is the boiling point of
the liquid according to this
measurement?

(b) Which of the two values is the
better approximation to the ideal
gas temperature, and why?

(c) Estimate the
temperature.

ideal gas

8. Athermocouple thermometer has one
of its junctions dipped into steam at
100°C while the other junction is
dipped into ice at 0 °C. An e.m.f.
of 1.2 mV is produced. When the
junction in ice is removed and
placed into an unknown liquid, the
thermocouple thermometer produces
an e.m.f. of 0.6 mV. What is the
temperature of the unknown liquid?

9. The following readings were taken
with a simple constant-volume air
thermometer. This has a fixed mass
ofair trapped by a mercury column.
What is the room temperature from
these readings?

T Level of mercury
p
points closed open [imb
: limb (mm) | (mm)
Bulb in 136 12

melting ice
Bulb in steam

2 136 390
at latm
Bulb at room 136 160
temperature

10. (a) Two thermometers are
constructed in the same way such
that, they have equal volume of
liquid used and that one has a
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spherical bulb and the
other has an elongated
cylindrical bulb. Which
one will respond quickly
to temperature changes?

(b) How do you justify that
when a body is being
heated at melting point,
the temperature remains
constant?

7.2 Heat transfer

Have you ever wondered why fire
walkers do not burn their feet as
they step quickly across red hot coal
or charcoal? Is it because their feet
are wet? What is the physics that
explains the phenomenon? You will
learn many intriguing applications
of heat and heat transfer. Heat
flows from an object at a higher
temperature to the one with a lower
temperature. These objects could
be two solids, a solid and liquid
or gas, or within a solid, liquid or
gas. There are three ways that heat
is transferred: conduction (through
direct contact), convection (through
fluid movement) and radiation
(through electromagnetic waves).

7.2.1 Thermal conduction
Conduction is the process in
which heat flows from the hotter
regions of a material to the colder
region without there being any net
movement of the material itself.

(a) Conduction of heat in terms of kinetic
theory of matter

The Kinetic theory of matter explains heat transfer
by conduction, where thermal energy seems to
move through a material, warming up cooler
areas. Thermal energy can be transferred through
conduction from one material to another when
they are in direct contact (Figure 7.8).

Sensation
of heat

Figure 7.8 Conduction of heat by suspended elastic
conducting balls in a row

Heat can also travel along a material as one
molecule transfers energy to a neighbouring
one. For example, when you put your hand in
a container of warm water, your hand will gain
heat. This is done through conduction of heat
from the water.

Two mechanisms explain how heat is transferred
by conduction: Lattice vibration and particle
collision. Conduction through solids occurs by
a combination of the two mechanisms.

In solids, atoms are bound to each other by a
series of bonds. When there is a temperature
difference in the solid, the hot side of the solid
experiences more vigorous atomic movements.
The vibrations are transmitted to the cooler side
of the solid. Eventually, they reach equilibrium,
where all the atoms are vibrating with the same
energy.
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Solids, especially metals, have free
electrons, which are not bound to any
particular atom and thus can freely move
about the solid. The electrons on the hot
side of the solid move faster than those
on the cooler side. As the electrons
undergo  a series of collisions, the faster
electrons give off some of their energy to
the slower electrons. Eventually, through
a series of random collisions, equilibrium
is reached where the electrons are moving
at the same average velocity. Conduction
through electron collision is more effective
than through vibration. This is why metals
generally are better heat conductors than
ceramic materials which do not have
many free electrons. On the other hand.
heat is conducted through stationary fluids
primarily by molecular collisions, similar
to the propagation of sound.

(b) Thermal conductivity

Thermal conductivity of a solid is a
measure of the ability of the solid to
conduct heat through it. The greater
the thermal conductivity of a solid, the
greater its ability to conduct heat through
it. Consider a slab of materials of cross-
section area 4 and thickness dv subjected
to a high temperature 6, on one side and
lower temperature €, on the other side
(Figure 7.9).

With the aid of Figure 7.9, we can determine
the amount of thermal energy dQO
conducted through a solid. It is found
experimentally that the thermal energy
dQ conducted through the slab is;

(i) directly proportional to the area 4 of
the slab; the larger the area, the more
thermal energy is transmitted.

(ii) directly proportional to the time a7 ;
the longer the period of time, the more
thermal energy is transmitted.

(iii) directly proportional to the

temperature difference (9, -92)
between the faces of the slab; if there
is a large temperature difference, a
large amount of thermal energy flows.

(iv) inversely proportional to the thickness
oftheslab, dx; thethickerthe slabthe
greater the distance that thermal energy
must pass through. Thus, a thick slab
implies a small amount of energy
transfer whereas a thin slab implies
a larger amount of energy transfer.

The above observations can be expressed
as

deA(o,-ez)

dx
To make equality out of this proportion
in equation (7.18), you must introduce a
constant of proportionality k. The constant

di (7.18)

depends on the material that the slab is made
Df";c““" T o of, since it is a known fact that different
0! cat £ 3

‘k:1r> 6, = x | materials transfer different quantities of

thermal energy. Hence,

—

' —k4(6,-6,)

dQ=——"—"—"dt (7.19)
Figure 7.9 A slab dx .
J - — —
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hot end to the cold end. It is the existence

Suppose 6, —6, =d0, then, ; .
° of the temperature gradient which causes

dO ., 40 the heat to flow.
di de 20
Table 7.2 Thermal conductivities of some
where, 40 s the rate of flow of heat from materials
the hone‘:rface to the colder face and is at Material Thermal
right angles to the faces (its unitis J/s or cundr:cli‘ﬁty
a0 (Wm™'K™)

Watts, W), o is called the temperature Silver 420
gradient across the section concerned Copper . 380
(its unit is Km™), & is the coefficient of Aluminium - 240
thermal conductivity of the material (its Brass 109
unit is Js'm K™ or Wm'K™). The Nickel 87
coefficient of thermal conductivity of Tron 80
material is the rate of flow of heat per Lead 35
unit area per unit temperature gradient Mercury ]
when the heat flow is at right angles to Glass (Pyrex) 1.1
the faces of a thin parallel sided slab of Brick 0.6—-1.0
material under steady state conditions. It Ribber 02
is a measure of the ability of the material B 0.03

to conduct heat, i.e. the larger the value of
k, the faster the heat transfer. The thermal
conductivity of some materials is given in —
Table 7.2. Find the amount of thermal energy that
flows per day through a solid oak wall
When heat is flowing in the positive 10.0 cm thick, 3.00 m long,and 2.44 m
direction of x (Figure 7.9), the temperature | high, if the temperature of the inside
gradient is negative, and therefore the wallis 21.1°C while the temperature of
presence of negative sign in equation the outside wall is —6.67°C. Thermal
(7.20) makes a positive constant. This | conductivity of oak is 0.147 Jm™"°C"".
is because under steady state condition,

the temperature at points within the slab Solution .
decreases uniformly with distance from From the relation,
kA(6,-6,)t
2= X
0.147Jm™'°C™ x3.00mx 2.44m X (21.1°C— (= 6.67°C) ) x 24X 60 X 605 -
0= =2.58x10")

0.Im

Therefore, thermal energy that flow per day through a solid oak is 2.58x10"J.
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(i) Heat flow through lagged and
unlagged conductors

When a metal bar is heated from one end,
heat flow depends on whether the metal
bar is lagged or unlagged. If the metal
bar is well lagged with a poor conductor
of heat such as asbestos and wool, the
temperature falls uniformly from the hot
end to the cold end of the bar. Suppose
a long uniform rod, 4B, of length L is
thermally insulated so that energy cannot
escape by heat from its surface except at
the end as shown in Figure 7.10(a), then
all heat energy entering one end of the bar
eventually leaves the other end.

Insulating material

~S————
—
L

_ Heatout

-

—

I

A B
(a)

Temperature, o

Distance

(b)

Figure 7.10 Conduction of energy through a
uniform, insulated rod of length L

The drop in temperature is linear as shown
in Figure 7.10(b). When a steady state
has been reached. the temperature at each
point along the rod is constant in time. A
graph of temperature against length of the
bar is shown in Figure 7.10(b).

Since the metal bar is well lagged no heat
is lost to the surrounding and a graph of
fall of temperature against length of the
bar is a straight line.

To a very good approximation, thermal
conductivityisindependentoftemperature.
The temperature gradient is the same
everywhere along the rod and is

do _ 91 - 92

&L
Since there is no heat that can escape
from the sides of the metal bar, the rate of
energy transfer by conduction through the
rod is equal, i.e.,

().

QZM(Q“’:) (7.21)
dt L
Equation (7.21) can be written as;
do = (9[—93)
oot (7.22)
*

On the other hand, for unlagged material,

heat flows from the hot end to the cold
end of the bar but some amount of heat
will flow out of the sides of the metal
bar to the surrounding by convection and
radiation before reaching end point B
(Figure 7.11(a)).

When the conditions are steady, the
temperature # measured at points along
the length of the bar varies (Figure 7.11(b)).
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Heatin ==y oo

A B

(a)

Temperature.g

(b) Distance

Figure 7.11 Conduction of energy through a
uniform, unlagged metal bar of
length L

In this case,

ﬁ > 40 , therefore,
dr ), \dt ),

(d@] do
Bl sle2
dx ) Ldv ),

It follows that, the temperature gradient
decreases with distance from the hot
end of unlagged uniform bar. The graph
(Figure 7.11(b)) shows the steady state
temperature distribution of unlagged
uniform bar of length L. There is a loss of
heat to the surroundings because the metal
bar is unlagged and the graph of fall of
temperature against length of the bar is
not a straight line.
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One face of a copper cube of edge
10 cm is maintained at 100 °C and
the opposite face at 0°C. All other
surfaces are covered with an insulating
material. Find the amount of heat
flowing per second through the cube.
Thermal conductivity of copper is
385Wm™'°C™.

Solution
The heat flows from the hotter face
towards the colder face. The amount of
heat flowing per second is,

do _k4(6,-6,)

dr x

6,-6,=100°C —0°C=100°C
0 385Wm™'°C! X(O.Im): %x100°C
dr 0.1m

=3850W

The rate of heat flow through the cube
is 3850 W.

(ii) Composite conductors

A composite conductor is one made by
joining two ormore conductors of different
materials joined end to end or side to
side. There are two types of composite
conductors; conductors in series and
conductors in parallel.

Consider a composite conductor made
of two different materials each of cross-
section area A4 and, coefficient of thermal
conductivities k and k, joined end to
end as shown in Figure 7.12.
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3 In general, for any number of conductors,

| the total rate of heat flow is given as,
6, —
. & = 8, 0. A(el_el)
‘ i &L (7.29)
foe—— L ——e—L — Z,T

i l
Figure 7.12 Lagged conductors in series

% i ) where i = 1,2,3,..,n
At steady state condition, the heat flowing

into one end of the conductor is equal to Suppose: L=y~ equation {(7.28)

that flowing out of the other end, given becomes
. Ak ke, (6, -6,
6,566, 0 _ Akk,(6,-6,) il
t Lk +k,)
Qo BI -6, -
o2 (7.23) ) . .
t L Comparing and rearranging equations
(7.23) and (7.30), effective conductivity
For conductor 1, k becomes
ik
0 6-6 > h=—12 7.31)
[7) :Ak{'L_) (7.24) ¥ (
' (]
For conductor 2, ?n ge[?eral, for any number of conductors
in series,
0 6-6, A
[;) =A"z[ = 729 | v 1 1 1 11 -l
t), L —= bt — Or —= > —
ko ko ok, ok k, k Tk,
But,ng—zg % %
t) )t ‘When dissimilar conductors are joined side

to side (in parallel), the left ends of both
From (7.24) )
conductors are kept at the same temperature

L i o "

0,-0= oL (7.26) 6, and the right ends of the conductors

th A are kept at the same temperature 6,. The
temperature difference is maintained

From (7.25) between the end of each conductor and

9-0. = oL, (7.27) there is no temperature difference at the
* o th,A junctions.
Adding equations (7.26) and (7.27), and Y
simpli%yi:?g' ¢ 5 The rate of flow of heat (T through
0 A(G‘ Aez) each conductor is different but the rate
P L L (7.28) | of flow of heat through the composite
I?+ I\‘ conductor is the sum of the rate of heat

1 2

flow through each conductor.

—
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Consider two dissimilar conductors
joined in parallel as shown in Figure 7.13.

Figure 7.13 Lagged conductors in parallel

an'angemem
i€
t
the composite conductor, then,

oG

=k 4, [—9' ;92 ]+ kA, [—9';02 ]

9:[%+%}(9, -8,) (7.3

t

is the rate of flow of heat through

~ e

Suppose, 4 =4,=4 and L =L,=L,
then,

%: A(k, +kz)[ J ;61)

Comparing equations (7.23) and (7.33),
where /is the effective thermal conductivity
of conductors in parallel, for any number
of parallel conductors,

(7.33)

k=k+k+k+..+k,

(7.34)

=3k
=l

[ eaampiers )

Two perfectly lagged bars x and y are
arranged in series and parallel. When
the bars are in series the hot end of x is
maintained at 90°C and the cold end
of y is maintained at 30°C. When the
barsare in parallel the hotend of each is
maintainedat 90°C and the cold end of
each is maintained at 30°C. Calculate
the ratio of the total rate of flow of heat
in parallel arrangement to that in series
arrangement. The length of each bar is
L and cross section area A. (Thermal
conduetivity of x is 400Wm 'K ™" and
that of y is 200Wm 'K™).

& 30°C

90°C F
Qt—» «x v =01

(b)
Figure 7.14 Bars in series and parallel
arrangement
Solution
(a) Heat flow through bar x,

[g) = ok X(9o°c—e)
t * I,

X 1

[%) =400Wm"K"xAx7(90wC_9) (i)

¥
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For bar y,
0 i (6-30°C)
[7) =200Wm™'K ‘xAme-)

Since the bars are lagged, heat flow is

constant. Thus, Q = Q
dt ), ),

Equating equations (i) and (ii), and
solving 6=70°C.

Therefore, the rate of heat flow in series
is given by:

[QJ =400Wm™ 'K~ xix(90°C—70°c)
1 T

[%) =8000 Win™" x% (iii)

For parallel: (%) =(%J +[%J

[2] =400 W™K x 2x (90°C-30°C)+
‘ L

P

200Wm'K~' x %x(’?O"C— 30°C)

[Q] = 24000 Win™ x 2+ 12000 Wan 2
7y, 1_ L

[ - A 3
=1 =36000Wi = Y,
(rj 36000 Wm xL (iv)

»
The ratio of rate of heat flow in the
lagged parallel to that amranged in
series is 9:2.

[ \Example76)/

Two slabs of lengths L, and L, and
thermal conductivities &, and &,
respectively, are in thermal contact
with each other. The temperature of
their outer surfaces are 6, and 6,, and
6, >0,. Determine:

(a) The temperature at the interface; and

(b) The rate of energy transfer by
conduction through an area 4 of the
slabs in the steady state condition.

Solution
(a) Suppose the interface temperature is
4, for which 91 <f< 93- The rate at
which energy is transferred through
area 4 of slab 1 is:
0-6,
DO _pa =2 7
dt i
The rate at which energy is transferred
through the same area 4 of slab 2 is:
6,-6
d_Q =k, A[ 2_] (i)
dt - 5
Since the two slabs are in a steady state
condition, their rates of energy transfer
are the same. i.e.

kA =4 =k,A 8,-6
7 =l

Therefore,
4 =[ kLB +kLE, ]

(iii)
Ly + kL

(b) Substituting (iii) into either (i) or (ii):

@Q_ kik,A =0
dt =\ Lk, + Lk,
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Assuming & is a constant, show that the
radial rate of flow of heat in a material
between two concentric spheres
(Figure 7.15) is given by

_ 4l (T T,)

n=n

H where 7 and

r, are the radii of the inner and outer
spheres respectively. and 7} and T, are
their corresponding temperatures and
E =T

Figure 7.15 Concentric spheres

Solution

dT
The rate of heat flow H =—kA—, but
5 dr
A=4mr.

ir

HE = _akndr ()
)

J":l,d’.:—-'iﬂkjf;dr

h H 1

(i)

Simplifying (ii),
|, _ario (11

(=
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Thermal resistance (R-Value of
insulation)

Thermal resistance of a material is the
opposition of the material to the flow of
heat through it. The thermal resistance R of
a slab of a material with area 4 is defined
such that the heat current through the slab is:

&_ A(el‘ez)
dt R

Thermal resistance R is closely related
to the thermal transmittance (U-value) of
material as:

(7.35)

R=—
U
Comparing equation (7.35) with (7.21),
r=%
k
2 v P k
Since R is measured in m*’KW™, U=—

L
is then measured in Wm~K ™.

Therefore, U value is the rate of transfer
of heat through a structure (single or
composite) per unit temperature difference
per unit cross sectional area. The lower
the thermal conductivity of the material
of which a slab is made, the higher the
R-value of the slab.

M Nemawpiers) |
A room has a 4mx4mx10cm
concrete roof (k=126Wm™'°C™"). At
some instant, the temperature outside is
46°C and inside is 32°C.

(a) Neglecting convection, calculate the
amount of heat flowing per second
into the room through the roof.




—
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(b) If bricks (k=0.65Wm™°C") of
thickness 7.5 cm are laid down on
the roof, calculate the new rate of
heat flow under the same temperature
conditions.

Solution
(a) Thermal resistance of the roof is
given by:
A
kl
0.10m
&= 26 wWm o

=7.94%10" m’KW ™

Rate of heat flow through the roof.

Q = A(el _ 91)
t R,

0 _16m*(46°C~32°C)

=— 12w
t 7.94x107m KW

(b) Thermal resistance of the bricks is
given by:

0.075m
0.65Wm™'°C"'
=115x10" m*KW!

R, =

The equivalent thermal resistance of
the roof now is

R=R +R,
R=(794+115)x10” m’ KW'

=194.4x10" m'KW™'

Therefore, the rate of flow of heat
through the roof is;

0 _4(6,-6,)
t R

0 16m’x(d6-32)°C

= _[I152W
t 194.4x107 m°KW™'

The thermal resistance R acts to impede
the flow of thermal energy through the
material. The larger the value of R, the
smaller the quantity of thermal energy
conducted through the roof. For the
compound roof wall, the total thermal
resistance to thermal energy flow is

R=R+R+R+..+R,

Determination of thermal conductivity
by Searle’s apparatus

The Searle’s apparatus is used for
determining thermal conductivity of
good conductors of heat (Figure 7.16).
The holes at X and ¥ contain oil to
ensure good thermal contact between the
thermometers and the bar.

The heater is switched on and water is
passedthrough the copper coil ataconstant
rate. If the bar is assumed to be perfectly
lagged, then it is at steady state (i.e. all
four thermometers give steady readings).
The rate of flow of heat between X and ¥
is given by

(7.36)

sz(gl‘eﬁ)
dt x
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Steam chamber
Steam inlet

Water
outlet

|—Cold water in
—Insulator

Conducting
material

Steam outlet

Figure 7.16 Searle’s apparatus

Since the bar is assumed to be perfectly
lagged and none of the heat is being used
to increase temperature (steady state), all
the heat which flows along the bar is being
used to increase the temperature of the
water. If m is the mass of water flowing
per unit time and ¢ is the specific heat
capacity of water, then the heat required
to raise the temperature of the water is
given as,
Y

e mc(Gj —04)

Equating equation (7.36) and (7.37).

wzmc(ej—w

(7.37)

kA (7.38)

The value of k can be determined from
equation (7.38).

When the latent heat of water is given, &
also can be obtained i.e..

(91‘91)

X

kA =mL,

where L is the latent heat of vaporization
of water.
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Determination of thermal conductivity
by Lee’s disc
Lee’s disc is used for determining thermal
conductivity of poor conductors of heat
(Figure 7.17).

a

b

Figure 7.17 (a) Lee’s disc, (b) cooling disk, and
(c) cooling curves
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The sample (e.g. cardboard) is in the form
of a thin disc and is sandwiched between
the thin base X of a steam chest and a thin
brass slab ¥. Steam is passed through the
chest and apparatus is left to reach steady
state. The sample is thin and therefore to
good approximation, no heat is lost from
its sides. It follows that, at steady state

_,6-0)
dt x

where x is the thickness of the poor
conductor, 4 is cross sectional area and
k is thermal conductivity of the sample.

Plotting the graph of temperature 6 against
time 7, the rate of temperature change along
the disc Y is equal to the gradient of the
graph (Figure 7.17c).

The conditions under which Y is losing
heat are the same as those at steady state,
and therefore,
ot (9, -6, ) de a
X

=me—=mc—
dt

b

Thus k can be determined from equation
(7.39).

[ \Example79 ) ]
One end of a copper rod 2m long and
having lem radius is maintained at
250 °C. When a steady state is reached,
the rate of heat flow across any cross-
sectionis 2.1Js™". What is the temperature
of the other end? (Thermal conductivity
of copper=380Js 'm ' °C™).

(7.39)

Solution
A=mr’,
A=3.14x(0.01m)’ =3.14x10~ m’

Q kA(el_ez) ) =[QJX~_‘
» U2 )

~

6,-6,= =) E-IJS»\sz T
S 380Js m°CT x3.14x107m"
=35.20°C

Since 6, =250°C, then it follows that,
250°C-0, =35.20°C, 6,=214.8°C

Therefore, the temperature of the other
end is 214.8°C.

[ \Bxample7.10/ |
Abrassboilerhasabase areaof 0.15 m* and
thickness of 1cm. It boils water at the rate
of 6kilogram per minute when placed
on a gas stove. What is the temperature
of the part of the flame in contact with
the boiler? (k. =109Js'm™'°C™,
heat of vapourization of water is
2256 x10° Jkg™').

Solution
The heat gained by the boiler is utilized
in vapourizing water,

G @
also,
6,-6,
%:kA—( ]x ‘) (ii)

Equating equations (i) and (ii) and
rearranging the terms,

g,
* A
6, =100 °C(temperature of steam)

?

Student’s Book Form
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3 = -2
9= 6kgx 2256 ><7l10:{kg »lxlxlo m 100°C
60sx109Js 'm™°C™' x0.15m"

=237.98°C

Therefore, the temperature of the part of the
flame in contact with the boiler is 237.98°C.

(c) Applications of thermal conduction

Heat transfer is involved in numerous domestic
and industrial technologies. The technology is used
to solve many problems in thermal mechanics.
Different materials have different coefficients of
thermal conductivity. This fact has many practical
applications in domestic and industrial activities.

Thermal conductivity of air is very low. Clothes
effectively shield your body against the loss of
heat. Trapped air under clothing acts as excellent
insulator and so helps to check the transfer of heat.
A few layers of cloth containing air spaces would
be a better insulator than one with heavy layer.

All metals particularly copper and silver have
large thermal conductivity. Cooking utensils are
made of metals as they conduct heat easily. As
copper has large thermal conductivity than steel,
some steel utensils have their bottom made of
copper. Filaments of electric appliances are also
made of good conductors of heat.

Insulators have smaller thermal conductivity,
for example; air, wood, leather, felt or cotton
wool, feather, paper cardboard, asbestos, cork and
plastic. In fact, an insulator blocks the transfer of
heat. They can be used for insulating refrigerators
and houses. The insulator in a refrigerator keeps
the heat out of the refrigerator. Different materials
(bricks, glass, mud) are used for insulation in
the walls and roof of a house. This insulation
keeps rooms warm during winter, and cool during
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summer. Cooking utensils have
their handles made of insulators
(bakelite, wood). Feathers keep
birds warm by not allowing heat
energy to flow out of their bodies.

Exercise 7.2.1 J

1. Calculate the rate of loss of
heat through a window of
thickness 8mm and area
of 2m” if the temperature
difference between the two
sides is 20°C. Take thermal
conductivity of glass to be
TWm'K™".

2. A 10 cm long brass bar is
joined to a copper bar of
equal length and diameter so
as to form a compound bar
with a cross-sectional area
of 6.0cm’. The junction
has negligible thermal
resistance and the bar is well
lagged. The free end of the
brass bar is maintained at
100°C, and the far end of
the compound bar is kept
at 20°C. Calculate the heat
flow per second along the
bar and also the temperature
at the junction. (Assume k
for copper = 400 Wm ™ 'K
and brass =10’ Wm 'K ™),

3. Heat is flowing along a
uniform, lagged metal bar
and the temperature is 80°C
at 8cm from the hot end
and 50°C at 20 cm from
this end. At what distance
from the hot end is the

temperature 60°C?




—l

ddvanced L

ondary Schools

4. One end of a well lagged copper
rod is placed in a steam chest and
a 0.6 kg mass of copper is attached
to the other end of the rod with an
area of 2cm’. When steam at 100°C
is passed into the chest and a steady
state is reached, the temperature of
the mass of copper rises by 4°C
per minute. If the temperature of
the surrounding is 15°C, calculate
the length of the rod. (Specific heat
capacity of copper =400 Jkg 'K,
thermal conductivity of copper
=360Wm'K™).

5. Ice is forming on the surface of a
pond. When it is 4.6cm thick, the
temperature of the surface of the ice
in contact with the air is 260K while
the surface in contact with the water
is at temperature 273K.

(a) Calculate the rate of loss of heat
per unit area from the water.

(b) Determine the rate at which the
thickness of the ice is increasing.
(Thermal conductivity of ice
is23Wm K™, density of
water is 1000 kgm ™, specific
latent heat of fusion of ice is
3.25%10°Jkg ™).

6. Briefly explain why
(a) animals in the forest find shelter

from cold in holes in the snow.
(b) warm air rises up but the
atmosphere is cooler with

increasing altitude.

7. (a) Show that the radial heat flow
across the coaxial cylinder is
given by:

H=2nkL—(TZ T'),

In| =

]

where £ is thermal conductivity,
L is length of the cylinder,
1, and r, are radii of inner and
outer parts of the cylinder
respectively.

(b) If a copper hot-water cylinder
of length 1.0m and radius
0.20m of material has thermal
conductivity 0.40 Wm 'K,
estimate temperature of the outer
surface of the lagging, assuming
heat loss is through the sides
only, if heat has to be supplied
atarate of 0.25 kW to maintain
the water at a steady temperature
of 60°C.

7.2.2 Thermal convection

In the process of thermal conduction, atoms
transfer their energy by colliding with their
neighbours. In thermal convection, heat is
transferred by actual bulk motion of the
medium. The movement of the materials in
thermal convection is due to the difference
in densities of the hotter and colder parts.
You can see currents of water moving
about in a flask by placing potassium
permanganate crystals at the bottom of
the flask containing liquid (Figure 7.18).

| Physics Form V.indd 210




©— Potassium
permanganate
crystal
Convectional
currents
Potassium
permanganate
crystal

Flame

(a) (b)

Figure 7.18 Convectional currents of water

As the flask is heated, the liquid expands and
its density decreases. The heated molecules
thus, move up to the surface of the liquid while
the cooler ones move to the bottom to take the
place left by warmer molecules. The established
circulating current is called convectional current
while the process of movement of the molecules
is called thermal convection.

If the fluid is circulated by a blower or pump
the process is called forced convection, while,
if the flow causes differences in density due to
thermal expansion itis called natural convection
e.g. land breeze and sea breeze.

(a) Factors affecting thermal convection
Thermal convection is affected by a number of
factors including excess temperature, medium in
which convection takes place, surface area of the
body and the volume of cooling body.

Excess temperature occurs when the difference
inabody temperature and the temperature of the
surrounding create the necessary gradient for
convective currents to flow.

Medium in which thermal convection takes
place is another factor which affects the rate
of thermal convection. For example, the time
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required to raise temperature of
grease by 10°C is not the same
as time required to raise the same
amount of distilled water through
10°C. The medium determines
how fast thermal convection will
take place.

Exposed surface area of a body
also affects thermal convection.
The larger the exposed area of a
cooling body the higher the rate
of cooling. Similarly, the volume
of cooling body affects thermal
convection.

(b) Laws of thermal convection
There are two laws: Dulong-
Petit (five-fourth power) law and
Newton’s law of cooling.

(i) Dulong Petit or five-fourth
power law

“Under the condition of natural
convection, the rate of heat lost by
a body is directly proportional to
the five-fourth power of the excess
temperature over the surrounding
provided that the excess temperature
is not less than 50°C. "

(7.40)

where @ and €, are the tlemperatures
of the body and surrounding
respectively.

(ii) Newton’s Law of Cooling
“Under the condition of forced
convection, the rate of heat lost
by a body is directly proportional
to the excess temperature over
the surrounding”.




or Advance

2 <(6-8)
LDy
= =k(0-6,) (7.41)

The Newton's law of cooling is applicable
under the following conditions:
(i) Forced convection (for all excess
temperatures)
(ii) The excess temperature less than
30°C under natural convection

When the body loses heat Q. its temperature
6 falls; if m isits mass, and ¢ is its specific

heat capacity, the rate of heat loss is given

by d_Qz_mCﬁ: then its rate of fall of
dt dt

temperature is given by
do 3
L 3 N 2
dt me ( * ) (742

For a given object: k, m and ¢ are constants:
hence,
L (7.43)
me
where A is a constant which represents
the nature of the surface and the heat
capacity contents.

Substitute equation (7.43) into (7.42) to
obtain
do
—=-(6-6 i
Glo-0) e

Equation (7.44) is an alternative statement
of the Newton’s law of cooling, which
can now be stated as, “The rate of fall
of temperature (cooling) of an object is
proportional to the excess temperature
over the surrounding .

Verification of Newton’s law of cooling
can be done by plotting the cooling curve
of temperature 6 versus time ¢ obtained
from cooling hot water (Figure 7.19).

3

. T

Figure 7.19 Cooling curve

If 6, is the surrounding (room) temperature,
then excess temperature of water is (9 -6, )
Several points (about six) are chosen on
the cooling curve and tangents are drawn
at these points. The gradient of tangent
represents the rate of cooling of the liquid
at a particular temperature €. Then plotting
these rates (gradient of tangent) against the
excess temperature ( 6-6, ) gives astraight
line through the origin (Figure 7. 20).

of temperature

]
g
(-4

Excess temperature

Figure 7.20 Rate of cooling versus excess
temperature

F
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A straight line passing through the origin
of the graph of rate of temperature fall
versus the excess temperature verifies
that the given liquid obeys Newton's
law of cooling. The instantaneous value
of temperature of a cooling object is
obtained by integrating equation (7.44),
and becomes;

In(6-6,)=—At+c (7.45)
At t=0, and 8=6,,
In(6,-6,)=c (7.46)

Substituting equation (7.46) in (7.45),
In(6—6,)=—Ar+1In(6,-6,)

Then,

Ln[ -6 ]:w, 0=0,+(6-8)¢" (7.47)

6-8,

From equation (7.47), it is clearly seen
that, when time =0, 9:9{, and when
time #—>eo, §=0 . Therefore, when an
object is cooling, its temperature will never
fall below the surrounding temperature.

(c) Applications of thermal convection
In cold countries a fireplace is set at the
corner of a room. The air near the fire gets
heated, becomes less dense and rises up
spreading into the room. Thus the room is
kept warm. The colder air moves towards
the fire and gets heated in turn.

The mechanism of heating a liquid by a
heateris entirely based on convection. The

liquid molecules in immediate contact
with the heater are heated up and acquire

sufficient energy to rise upward. The cool
liquid molecules at the top being denser
move down to take their place. This
cool liquid is in turn heated and moves
upward. In this way, convection currents
are set up in theliquid which transfer heat
to different parts of the container.

Due to currents flowing in the winding of
the transformer, enormous heat is produced.
Thus a transformer is always kept in a
tank containing oil. The warm oil comes
in contact with the cooler tank, gives heat
to it and descends to the bottom and the
process is repeated.

Aventilator or exhaust fan ina room helps
to remove warm air due to respiration
from a room. The fresh air from outside
blows into the room, this is all due to
convection current set up in the room.

Kitchen rooms are provided with a chimney
through which hot air in the room goes
out and fresh air containing oxygen enters
through the windows and doors into the
kitchen to support the burning of the fuel.

CNsampiezi)
A body cools in 7 minutes from
60°C to 40°C. What will be its
temperature after the next 7 minutes?
The temperature of the surrounding
is 10°C. Assume Newton's law of
cooling holds throughout the process.

Solution

Using the relation, I 6-6, ==
L ORTY N

when a body cools for the first 7

minutes,
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40°C-10 .
e A S/
[60°C—10°C Cj R
3 . ;
In = =—7minxX A (i)
When a body cools for the next 7
minutes,
m[&}qu 9,
40°C-10°C
6-10°C . =
[WJ=—7mmxl (i)

Solving equation (i) and (i), 8=28°C

Therefore, the temperature of the body
after the next 7 minutes is 28°C.

CNewampieriz) ]
A body at 80°C cools to 64°C in
5 minutes and to 52°C in the next 5
minutes. What will be its temperature
after another 5 minutes?

Solution
7 6-06
Using; I = l—c Ay
g n[el _e-\‘ J
When a body cools for the first 5
minutes,
64°C—0.
——* |==5minx 4 (i)
80°C—6,
When a body cools for the next 5
minutes,
2CO | SminxA (@)
64°C-6,

- -

Solving from equations (i) and (ii),

6 =16°C
When a body cools for the other 5
minutes,
6-16°C 5
ln[mjz—&mnxi (iii)

From equation (i) and (iii), 8 =43°C.

Therefore, the temperature of the body
after another 5 minutes is 43°C.

[ \Buample73/
Abody cools from 80°C to 50°C in 5
minutes. Calculate the time it takes to cool
from 60°C to 30°C. The temperature of
the surrounding is 20°C.

Solution

When a body cools for the first §
minutes,

[50°C—20°c

80°C—20°CJ:_5mm>d

lu[%]:—Sminx A, A=0.1386min"'

When a body cools for the next time ¢,
aC—20°
ALL=I0TE, =-0.1386min"'x,
60°C—-20°C
t=10 min
Therefore, time taken by the body to
cool from 60°C to 30°C is 10 minutes.
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(a) show that the temperature of a
cooling body at any time ¢ obeys
the mathematical expression,

0=6, (l —~g* ) + 9’.8_;" where,

) = surrounding temperature,

;= initial temperature and
= constant.

(b) Using the expression in (a),
obtain an expression for the time
taken for the body’s temperature
to become half its value.

A liquid takes 5 minutes to cool from

80°C to 50°C. How much time will

the liquid take to cool from 60°C to

30°C? The surrounding temperature

is 20°C.

A body initially at 80°C cools to

64°C in 5 minutes and to 52°C in

10 minutes. Determine:

(a) The surrounding temperature;
and

(b) The temperature after 15 minutes.

. A body in a room of constant

temperature of 18°C cools from

70°C to 57°C in 5 minutes.

Assuming Newton’s law of cooling

to hold all the time, find:

(a) The temperature of the body
after a further time of 5 minutes.

(b) The time required for the
temperature to fall from 57°C
to 34°C.

Wind blows over a hot liquid placed
in a beaker in the laboratory whose
average room temperature is 27 °C.
The liquid is cooling at the rate of

Using Newton’s law of cooling,

15°Cmin™' when it is ata temperature
of 87°C. Calculate the cooling rate
when it is at a temperature of 57°C.

6. Global warming is causing
temperatures to rise above expected
levels. Traditional building practices
and materials are failing to cope
up with these changes: as a result,
houses are very warm during the hot
seasons and moderately cold during
cold season. Consider local building
practices and building materials and
propose modifications in design and
construction of houses to cope with
climate change.

7. Ifyou have two spoons of the same
size, one silver and one stainless
steel, there is a quick test to tell
which is which. Hold the end of a
spoon in each hand, then lower them
both into a cup of very hot water.
One spoon will feel hot first. Is that
the silver spoon or the stainless steel
spoon? Explain.

7.2.3 Thermal radiation

All objects above 0 Kemit thermal radiation
from their surfaces. A portion of this radiant
energy may be seen if the surface is at
high enough temperature. Also at much
lower temperatures, a surface still emits
energy although it is little to be detected.
Thermal radiation is the radiant energy

emitted by a body solely on account of

its temperature. This section deals with

the process of heat transfer, spectra of

thermal radiation emitted by blackbody,
laws of blackbody radiation, applications
of blackbody radiation in daily life and
Prevost’s theory of heat exchange.
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(a) Heat transfer by radiation

The sun gives us warmth by means of
radiant energy which reaches on the earth
after passing through the empty space and
atmosphere. Heat transfer is not possible by
conduction or convection through empty
space and atmosphere. Therefore, the way
heat is transferred in the empty space is
called radiation. It is a process in which
heat transfer takes place by electromagnetic
waves. These waves travel with the speed of
light, 3x 10°ms™ and requires no medium
for passage. For example, one can feel
radiation coming from a warm stove or
any burner  (Figure 7.21). The heat
energy received from a glowing electric
lamp or fire is also due to radiation.

The process of thermal radiations can
be understood only if one is familiar
with the production of electromagnetic
waves. According to electromagnetic
theory, whenever charged particles are
accelerated or decelerated, they create
a disturbance in space and carry energy.
This disturbance which carries energy is
known as an electromagnetic wave. The
transfer of energy in these waves is due
to the oscillating electric and magnetic
fields which change with time.

X-rays Ultraviolet

10~ 10-4 10-+ 0' ll) 1
|

Infrared -
4—»

\VAVAVAVAVAY:g

AVAVAVAVAVAYg

AVAVAVAVAVAV g
Radiation

Figure 7.21 Thermal radiation

Electromagnetic spectrum classifies
radiation according to wavelengths of
the radiation. Main types of radiation
are (from short to long wavelengths):
gamma rays, X-rays, ultraviolet (UV),
visible light, infrared (IR), microwaves,
and radio waves. Radiation with shorter
wavelengths is more energetic and contains
more heat. X-rays, having wavelengths
~10"m, are very energetic and can be
harmful to humans, while visible light with
wavelengths ~10'm contain less energy
and therefore have little effect on life. The
visiblepart of theradiation spectrum ranges
from violet to red radiation.

Thermal radiation

1()‘ 102 1o 104
|

Wavelength, pm

| I I T .
100 100 mw [(]l IDH Q.: e jgu Frequency, Hz
e

G—ﬂmmﬂ rays Visible

Mlcmv\

Figure 7.22 Electromagnetic waves spectrum
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(b) Blackbody radiation

Every object emits radiation of all
wavelengths, though the intensity
of different wavelengths may
vary considerably. We are familiar
with the glowing of an iron block,
e.g. a heated rod. When electric
current is made to pass through
it, it first becomes dull red, then
reddish yellow and finally white
hot. It means iron emits light as it
becomes hot when enough radiation
is emitted as visible light for your
eyes to respond and at the same
time giving off other radiation of
different wavelengths. It is important
to note that radiation emitted from
a body have the following features
associated with it:

(i) Dark surfaces are the best
emitters of radiant energy.

(i) The rate of emissions of
radiation of a body increases
rapidly as its surface
temperature  increases. In
fact, it is proportional to
T*, where T is the surface
absolute temperature.

(iii) The predominant wavelength

inradiation emission becomes

shorter as the temperature of
the body increases. A body
that glows red is not as hot
as the one which glows
bluishwhite. Also, this is the

reason why the colour of a

body changes from light red

to dull red, yellow and finally
white as it becomes hotter.

The intensity of electromagnetic radiation emitted
by a body varies with wavelength at different
temperatures (Figure 7.23).

& rw\ T T T
- N TE4s00K

\
T=4000K
\

T=3000 K

Spectral emissive power (kW/m nm)

i L I
0 500 1000 1500 2500

Radiation wavelength 2 (nm)

Figure 7.23 Variations of intensity of electromagnetic
radiations with wavelength at different
temperature

The total emitted radiation is proportional to
the area under each curve, and increases with
increasing temperature while the corresponding
peak wavelength decreases. In fact, all bodies emit
heat radiation irrespective of their temperatures. A
body at a higher temperature loses these radiation
while a body at a lower temperature gains this
radiation. But bodies at equal temperatures gain
or lose radiation equally.

This is explained by Stefan-Boltzmann law
which states that, “The amount of electromagnetic
radiation emitted per unit time from a unit area of
a body at absolute temperature in kelvin is directly
proportional to the fourth power of absolute
temperature of the emitting surface”. i.e. for the
body which is a perfect radiator, £=0T", where
E is the energy radiated per unit area per unit time.

That is;
P=AE and P=cAT"
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where P isthe energy radiated by the body
perunittime and ¢ isthe Stefan’s constant
whose value is 5.67x 10 Wm 2K ™.

Suppose that a body’s surface at absolute
temperature 7 is at higher temperature than
the surroundings at the temperature T, The
amount of radiation emitted by the body
per unit time is
R=0dT!
Therefore, the net loss of energy by the
body per unit time is given as;
P, =P-PorP, =cAT'~0cAT'

net net

et

— 4 _ ol
P, =0A(T'-T;) (7.48)
For a body with surface emissivity &,
equation (7.48) can be written as

PM=6‘0'A(T"—]:") (7.49)
Surface emissivity £ has the value between
0 and 1, and depends on the composition/
nature of surface of the body. A perfect
blackbody has high emissivity which is 1
and radiates the maximum. On the other
hand, (reflecting) shiny surfaces have very
low emissivity which is close to 0 and
radiates poorly. An object that radiates
energy well also absorbs well and an
object that radiates poorly also absorbs
poorly. Thus, if the object is hotter than the
surroundings, it will lose thermal radiation,
and if the body is at a lower temperature
than the surroundings, it will gain thermal
radiation from the surroundings.

Another law that governs the blackbody
radiation is the Wien's displacement
law. The wavelength A at which the

ax

maximum amount of energy is radiated

decreases with increase in temperature
such that

AT = constant (7.50)

where Tistheabsolute surface temperature
oftheblackbody inkelvin. Equation (7.50)
is known as Wien’s displacement law. The
value of the constant is experimentally
found to be 2.9x107 in SI units. Thus
Wien’s displacement law may be stated
as, “The product of the wavelength, 4
at which maximum amount of energy is
radiated and the absolute temperature
(T) of the emitting surface is always
constant”’.

This law can well illustrate the well-known
observation that when iron is heated, it
first becomes light-red, then dark-red,
then yellow and finally it becomes white.
The temperature in equation (7.50)
must be in kelvin so that a temperature
of absolute zero corresponds to mno
radiation emission. Note also that every
object whose temperature is above 0K
including you, emits thermal radiation
but the radiation is in the infrared portion
of the spectrum, which your eyes are not
capable of detecting.

" \Bxampierid) ]
The temperature of a furnace is 2324°C
and the intensity in its radiation
spectrumis maximum nearlyat 1200 A .
Calculate the surface temperature of the
star that emits radiation of wavelength of
nearly 4800 A.

Solution
According to Wien’s displacement law,
% T'=constant.

dent’s Book Fors

F
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AT =AT,

171 973

=

1200A
4300A
Therefore, surface temperature of the

star that emits radiation of wavelength of
nearly 4800 A is 649.25 K.

]x 2597 K =649.25K

[ \Banmple7.is/ ]

A piece of metal loses 255 of heat per
second by radiation when its temperature
is 1200K and the temperature of the
surroundings is 300K . What will be the
rate of loss of heat when the temperature
of the metal is 600K ?

Solution
The net loss of energy per second by
the metal at T|,(1200K),

a

Pl=£aA(TI4-T‘) i)
The net loss of energy per second by
the metal at 7,, (600 K),

PZ=£0A(T;—TU‘) (ii)
Dividing equation (i) by (ii) and
rearranging terms gives
p_BE-T)

=y

1 0

255057 x(600" =300 )K*

=15Js""

(1200°~300°)K*
Therefore, the rate of loss of heat when
the temperature of the metal is 600K
is 1515,
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What is the total rate of radiation of
energy from a human body with surface
area 1.20m’° and surface temperature
30°C? If the surroundings are at a
temperature of 20°C, what is the net
rate of radiative heat loss from the
body? The emissivity of the human
body is very close to unity, irrespective

of skin pigmentation.
Solution
Taking £=1,6=5.67x10" Wm K
the body radiates at rate;
P=gcAT*
=1.2m? x5.67x 10" Win K~ x(303K )'
=574W

Thetotal rate of radiation ofenergy from
ahuman body is 574 W.

This loss of heat is partly offset by
absorption of radiation which depends
on the temperature of the surroundings.
The net radiative energy transferred is

P, =ecA(1*~1})

=12m" x5.67x 10" W *K * x(303* 293! )K*
=m2W

(¢) Solar constant

Solar constant ¢, is the energy from the
sun arriving perpendicularly at the top
surface of the earth’s atmosphere per unit
area per unit time. In order to determine
@ it is assumed that no part of the
energy from the sun is absorbed by layers
between the earth and the sun.

L
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where P = Powerradiated by the sunasablackbody,

A=areaonwhich theradiant energy passes

AT 47R°T :
¢:°'H=”.‘w.\ ¢:i b il
T4 ap "7\ D)

where D is the mean distance from the earth to the
sun, R, is the radius of the sun and 7, is the surface
temperature of the sun.

Note that, from knowledge of the solar constant, the
surface temperature of the earth 7, can be obtained
whenitisinradiativeequilibrium. i.e., power received
by the earth (P,) is equal to the power radiated by the
earth as a blackbody ( 2,). Then,

4,
P=—xP
4
where 4, = Area of the earth receiving the radiant energy

Rl
p="
“ 4nD

X4nRoT!

R,
P= %s—x R¥eT" also,

P =4nR’0T’
Since Pand P are equal at radiative equilibrium:

then,

anRor = x R2oT!
A
T4 = R Y T
=551 5

Therefore,

T=[%) 7

Substituting the values of R ,Dand T, the effective
temperature of the earth’s surface can be calculated.

T

(d) Prevost’s theory of heat
exchange

The Prevost’s theory of heat
exchange tells you that, when
the temperature of a body is
constant, the body loses heat
by radiation and gains it by
absorption at equal rates.
Hence, there is no net radiation
and the body and surroundings
are in equilibrium.

It was put forward by Prevost,

that;

(i) A body radiates heat at
a rate depending on its
temperature and nature
of the surface.

(ii) A body absorbs heat at
arate which depends on
its temperature, surface
area and surrounding
temperature.

(e) Applications of thermal
radiation

The loss of radiant energy
can be minimized by making
a surface of low emissivity.
For example, in a thermos
flask, a double walled glass
bottle with a silver coating
on the inner walls reduces
heat transfer by radiation
because the coating has a low
emissivity.
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Thus, the three processes of heat transfer
are minimum in a thermos flask. So, a flask
keeps hot things hot and cold things cold
for a fairly long time.

Radiation and convection are the major
mechanisms  of heat transfer in the
atmosphere, the sun and the solar system.
The climatic changes are also affected by
these processes of heat transfer. Our planet
constantly absorbs radiation coming from
the sun. In thermal equilibrium, the rate at
which our planet absorbs solar radiation
must be equal to the rate at which it
emits radiation into space. Similarly a
premature baby in an incubator can be
cooled dangerously by radiation if the walls
of the incubator happened to be cold, even
when the air in the incubator is warm.

el

1. (a) Show that for radiati'o'ﬂ:'as for
conduction and convection, the
heat transfer depends on the
temperature difference between
two bodies.

(b) Why do floor tiles feel colder
than wooden floor even
though both are at the same in
temperature?

(c) Why is a blanket able to protect
ice from melting?

2. (a) Why does a good absorber of

radiant energy appear black?

(b) The car’s radiator is made of steel

and is filled with water. You are
asked to fill the radiator to the
very top with cold water, then
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the driver drives off without
remembering to replace the
radiator cap. As the water and
the steel radiator heat up. will
the level of water drop or rise
and overflow? Explain.

Two spheres made of the same material

haveradii 2.0cm and 3.0 cm and their

temperatures are 627 °C and 527°C

respectively. If they are blackbodies,

find the ratio of

(a) therateatwhich they are losing
heat,

(b) the rate at which their
temperatures are falling,

when they are placed in room

temperature of 290K.

. The tungsten filament of an electric

lamp has a length of 0.5m and a
diameter of 6x107”m. The power
rating of the lamp is 60 W. Assuming
the radiation from the filament is
equivalent to 80% that of a perfect
blackbody radiator at the same
temperature, estimate the steady
temperature of the filament given
that Stefan-Boltzmann constant
=567x10°"Wm K™

. The total external surface area of a

dog’s body is 0.8 m* and the body
temperature is 37°C. At what rate
is it losing heat by radiation when
it is in a room whose temperature
is 17°C ? Assume that the dog’s
body behaves as a blackbody given
that Stefan-Boltzmann constant is
5.67x10° Wm~K ™.
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6. The energy arriving per unit area on
the Earth’s surface per second from
the sun is 1.34x10° Wm™.

The average distance from the Earth

to the Sun is 215 times the length of
the sun’s radius. Given that, both the
Earth and the sun are blackbodies,
estimate the temperature of the
sun. Stefan Boltzmann constant is
5.67x10" Wm?K ™.

7.3 First law of thermodynamics

Thermodynamics is the name given to the
processes in which energy is transferred
as heat and work. In previous chapters
you learnt that work is done when energy
is transferred from one object to another
by mechanical means. Also, in section
7.2 you saw that heat is a transfer of
energy from one object to another at a
lower temperature. Thus, heat is much
like work. To distinguish them, heat is
defined as a transfer of energy due 1o a
difference in temperature, whereas work
is a transfer of energy that is not due to
a temperature difference. In discussing
thermodynamics, we often refer to
particular systems. A system is any
object or set of objects that we wish to
consider. Everything else in the universe
is referred to as its “environment” or the
“surroundings.” In this section, you will
examine the first law of thermodynamics.

The law states that, “Energy can be
converted from one form to another

with the interactions of heat, work and

internal energy, but it cannot be created
no destroyed under any circumstances .
Mathematically, this is represented as
dQ=dU+dW, where dQ is the heat
exchange between a system and its
surroundings, dU is the change in internal
energy of the system, and d/¥ is the work
done by or on the system.

7.3.1 Thermodynamics processes
Before discussing thermodynamic process,
let us define thermodynamic state of a
system. A system has certain properties
such as temperature, pressure and volume
whose instanteneous values define the state
of the system. For example, in a thermos
flask there are 250ml of water at 50°C
and this is the state of the system. If the
values of the properties are changed (e.g.
adding 50 ml of water at 25°C), the state of
the system also changes. Thermodynamic
process is a process in which there are
changes in the state of a thermodynamic
system. An example of thermodynamic
process is the car engine where heat is
generated by the chemical reaction of
oxygen and vaporized gasoline in the
engine cylinder. The heated gas pushes
on the pistons within the cylinder, doing
mechanical work that is used to propel
the car.

Ina givensample of a gas, thermodynamic
process is shown on a P-F diagram as a
line or curve going from the initial state
to the final state of the gas as shown in
Figure 7.24. Generally, volume ¥ of the
gas is taken along x-axis and pressure P
along the y-axis.

F
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Figure 7.24 P-V diagram of an ideal gas

Point A(POVU) is the initial state of the
gas and point B(l",K) is the final state of
the gas. The curve from point 4 to point
B represents the thermodynamic process
by which the state of the gas changes. 4
(initial state) and B (final state) can be
connected by many possible paths or
processes. Each one would represent a
different thermodynamic process.

7.3.2 Specific heat capacity

In thermodynamics process we are
interested on how much a given amount
of heat transfer change the temperature
of a system. This change depends on the
nature of the system. A physical quantity
that describes the ability of a body to
absorb heat and increase its temperature
is called specific heat. Suppose a body
of mass m is at temperature T and the
temperature of the body changes from T
to T+ AT, due to an amount of heat AQ
absorbed by the body. The amount of heat
AQ is given by the relation,

AQ = meAT (7.51)
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where ¢ is the specific heat capacity of
the material. Equation (7.51) can also be
written as,
_ 40
T mAT
Therefore, the specific heat capacity of a
body is the amount of heat gained by a
body of a unit mass when raised through
a unit temperature difference, its unit is
Jkg 'K

(7.52)

It is found that the specific heat capacity
of a substance depends on the nature of
material of the substance as well as the
external conditions under which heat
is supplied. The two commonly used
specific heats capacities are ¢ and ¢, the
specific heat capacity at constant pressure
and specific heat capacity at constant
volume respectively. The ¢, comes in
when the substance is heated at constant
pressure and ¢, when the substance is
heated at constant volume. It is found that
¢, and ¢ are quite different for gases.

The first law of thermodynamics which
relates the heat supplied ¢Q, the change in
internal energy U and the external work
done dW states that, “In a closed system
the heat supplied is equal to the change
in internal energy plus the external work
done”. ie., dQ = dU +dW

Let the pressure and volume be consant.
The heat supplied at constant pressure
is given by mc,dT, the change in the

internal energy is mc,dT and the external

work done is PdV, it follows that;
me,dT = me,dT + PdV
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From ideal gas equation, (b) Specific heat capacity of gases

PV =nRT ]l.is ff)und that.. lAhe specific hezit capacity
of'an ideal gas is independent of the nature
PdV = nRdT of the gas chosen and it does not depend
on its temperature. But, it depends on the
physical conditions under which heat is
supplied to the gas; e.g. constant volume
or constant pressure.

Pdv =" RdT
M

where, m is mass of the gas, M is its
molar mass, R is universal gas constant
Consider an ideal gas in a cylinder with
a frictionless piston (Figure 7.25a) at
an internal equilibrium temperature 7,
volume " and pressure P.

and % =7 (gas constant per molar mass).

Hence,
me dT =medT +mrdT; ¢, =c +r

where,c, , ¢, and rare measured in Constant volume
Jkg 'K

m R Heat
Also, PV =nRT , then P=7ﬁT: supplied

at

P=prT. 1t follows that, the gas constant
pr at, th SASI000S One mole [ | constant | | One mole

. P ;
per molar mass can also be given by r=— Voliing
pT T — T+
(a) Molar specific heat capacity T Heat !mcmal B
The amount of heat required to raise the (@ RS
temperature of one mole of the material by
1°C s called molar specific heat capacity. Coiistist
ST
Let n be number of moles of a substance Constant pressure pressure
that absorb an amount of heat O to raise its
temperature from 7'to 7+AT, the molar Heat
specific heat capacity C is given by: supplied — X
at il X
1A Y
C==x 20 (7.33) constant
n AT One mole 2 One mole
- pressure
7 2
where n=—/m being the mass of the T T+1
M
material and M its molecular weight (the X |
” siral eaetp
number of grams in one mole). T Heat oA "energy
increase work done
Therefore, equation (7.53) becomes: (b)
c M AO (7.54) Figure 7.25 Ideal gas in a cylinder at
=—Xx— .54

m AT equilibrium temperature

—
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Let an amount of heat AQ be supplied to
heat the gas at constant volume. This heat
will increase its temperature by AT . This
is o as heat energy AQ will increase the
motion of molecules of the gas, thereby.
increasing the internal energy U of the
gas by an amount, say, AU, and hence its
temperature, by AT.

Now, the kinetic energy or energy per
mole of an ideal monoatomic gas is given
by the equation

U=£RT
2

(7.55)

Therefore, if the temperature increases
by AT due to increase of internal energy
AE, then, the internal energy at the
temperature 7 +AT is

E+AE= %R(T+AT) (7.56)
From equations (7.55) and (7.56), the
increase of energy AU is

AU:ER(T+AT)—1RT
2 2

AU= ERAT
2
This increase in the energy (AU ) of one
mole of the gas is equal to the amount of
heat, AQ supplied to the gas at constant
volume, therefore,

AQ

AQ:%RAT or—:;R (7.57)

But, as defined before, molar specific

heat capacity at constant volume, C, is.
1A

C =—x —Q

" n AT

for n moles of the gas, or C, = A9 for
1 mole of the gas AT

Physics Form V.indd 225

c=3z (7.58)
v 2

Suppose an amount of heat AQ is supplied
to the gas to increase its temperature
from T'to T +AT at constant pressure P,
i.e. the external force F, on the piston of
the cylinder containing the gas does not
change during its expansion. Since the
gas is at constant pressure, therefore, its
volume will increase from ¥ to V' +AV.
In this process, AQ will be used to
increase the internal energy of the gas by
an amount AU and do some work against
the atmospheric pressure P. Let the piston
move through the distance Av against the
atmospheric pressure P, (Figure 7.25b),

F . .
then, P= ; where A is the cross-section

of the piston, or F = PA,

Therefore, work done . by the gas
in moving the piston through Ay is,
FAx= PAAx, where AAx= AV (change
in volume). This work done is equal to the
extra amount of energy supplied to the gas
to make the expansion possible.

Thus, the total energy AQ given to the
gas to increase its temperature by AT at
constant pressure is given by:
AQ=PAV +AU or
AQ =RAT + AU

(ideal gas equation, PAV = RAT )

(7.59)

But, AQ is equal to heat required to raise
the temperature of one mole of the gas by
AT at constant pressure.
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Therefore, by the definition of the molar
specific heat capacity at constant pressure,
»
AQ = number of moles xC,
X rise intemperature
or AQ=C AT also,

AU=CAT (7.60)
Therefore, from equations (7.59) and
(7.60), it follows that,

C, AT =RAT+CAT

C,-C =R (7.61)
Equation (7.61) is called Mayer’s equation.
Where C, is always greater than C,
because at constant pressure thermal
energy has to be supplied not only to
increase the internal energy of the gas.
but also the gas does extra work against
the atmospheric pressure (Figure 7.25b).
The units for C,and C, are Jmol 'K
As it was shown in equation (7.58), for
g, =l

2

v

monoatomic gas,

Substituting this into equation (7.61), it
follows that,
C, = - R+R; C = el R
P 2 P 2
It can easily be shown that, for a diatomic
gas, C, = %R and C, = %R and for

polyatomic gas C, =3Rand C, =4R.

The dimensionless ratio of heat capacities
C

is givenby ¥ = C—".Because C, isalways

greater than C, for gases, ¥ is always
greater than unit. For monoatomic gas y
=1.67 and for diatomic gas, y =1.4.

[ \eampier.7)

The density of a gas is 1.775 kgm™
at 27°C and 10°Nm™ pressure and
its specific heat capacity at constant
pressure is 0.846 kJkg 'K ™' Find the
ratio of its specific heat capacity at
constant pressure to that at constant
volume.

The gas constant per kg of gas is given

P
by r=—
V=

Since
p=1.775 kgm”, T =(273+27)K =300K

and P=10°Nm™; then

. 10°Nm™
1.775 kgm ™ x 300 K
=0.188 kJkg 'K

Now ¢, —¢,=r,¢,=c,~r

¢, =0.846 klkg 'K '~ 0.188 klkg 'K

=0.658 klkg 'K’
y=Co 0846 klkg 'K
¢, 0.658 kikg 'K
y=129

Therefore, the ratio of specific heat
capacity at constant pressure to that at
constant volume is 1.29.

[ Cxamplerin)
What amount of heat must be supplied
to 2x107kg of nitrogen at room
temperature to raise its temperature by
45°C at constant pressure? Molecular
mass of nitrogen, N, =28g and
R=8.3Jmol 'K .
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Solution
Heat added, AQ=nX RxAT
where # is the number of moles given by:

mass of nitrogen (m)

n=
molecular weght of nitrogen (M)

20 = 2210 K8 g 5 fmol K x4s°C
28x10~ kg
=266.87T

Therefore, the amount of heat that must be
supplied is 266.8 J.

[ \oampier.io)

A typical bedroom contains about 2500 moles
of air. Find the change in internal energy of the
room when air is cooled from 35°C to 26°C
at a constant pressure of latm. Treat the air as
an ideal gas with y=1.4.

Solution
C C +R R
==L y=—) =14—
¥ c ¥ c Y )
But C.=i
(o
o=t
o ST Mf;’“’i K 2079 Jmor K

From the relation, dU =nc dT; AU =nCvAT
AU =2500 mol x20.79 Jmol'K~' x (26— 35) K

AU =-4.68x10°T

flow process, there is only work
and heat transfer but there is no
mass transfer into or out of the
system. During the energy flow,
some of the changes take place
in pressure, volume, temperature,
internal energy, heat, work etc.

(a) Isochoric process
(constant volume)

When a gas is heated at a constant
volume (i.e. fixed space), the
temperature and pressure will
increase (Figure 7.26). All the
heating entering the system becomes
internal energy. No work is done by
the system, the temperature rises
from T} to 7, and the pressure
from A, to P,. Thus, d =0 and

dQ=dU=C,(T,-T,).

Figure 7.26 P-V diagram

(b) Isobaric process
(constant pressure)

An Isobaric process is a

7.3.3 Work done during thermodynamic
processes

The process occurring in closed systems which

do not permit the transfer of mass across their

boundaries is known as non-flow process. In non-

thermodynamic process in which
the pressure of an ideal gas when
heated remains constant, while
both its volume and temperature
increase (Figure 7.27).

Physics Form V.indd 227



or Advance

Figure 7.27 P-V diagram

The gas expands in the cylinder by
heating; thus, the work is done by the gas.
Also, the heat transferred changes the
internal energy of the system. The relation
between pressure (P), volume (¥), and
temperature (7) can be found from the
characteristic gas equation:
RV, _BV:
T

since B, = P, then, 5=L
- T, T,

Work done during isobaric process

Referring to the first law of
thermodynamics:

dQ =dU +dW
The work done,
W=P(V,-V,) or
W =nR(I,~T,) (7.62)

So, equation (7.62) is the equation for
work done in the isobaric process due to
heat flow. Change in internal energy is
dU=nC dT. The heat transfer is given
by ndeT:nCL_dT+ PdV

It then follows that
nC, (= T)=nC,(T,~1,)+ P(V,~7)

(¢) Isothermal process

Isothermal process is that process in which
the temperature of the working substance
remains constant. In such process, heat
is supplied or removed from the system
at just the right rate to maintain constant
temperature.

Conditions for isothermal process

(i) The gas must be held in a thin walled,
highly conducting vessel, surrounded
by a constant temperature bath.

(ii) The expansion or compression of
the gas must take place slowly. so
that the heat can pass in or out to
maintain the temperature of the gas
at every instant during expansion or
compression.

When the temperature is constant, the
pressure of a gas varies with volume and
a graph which shows this variation is the
isothermal curve (Figure 7.28).

PV=constant (isotherm)

%
Figure 7.28 P-V curve for isothermal process

It is well known that, the pressure P and
volume ¥ of a mole of an ideal gas are
related by the equation;

PV =RT

F
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where 7T is the absolute temperature
of the gas and R is the universal gas
constant. Since in an isothermal process,
temperature 7 is constant, then;

(7.63)

Equation (7.63) is called the equation of
the isothermal process for an ideal gas.
The path of an isothermal process (called
an isotherm) on the PV diagram is shown
inFigure 7.28. The higher the temperature,
the further the isotherm lies from the
coordinate axes. When the gas expands
or is compressed at constant temperature
its pressure and volume change in such a
way that product PV is always constant.
So, if the gas expands isothermally from
the initial state A(Z.7;) to the final state
B(P,V,), then;

BV =£V,

PV = constant

(7.64)

Work done during isothermal process
Assume anideal gas undergoes isothermal
expansion from state A(7.);) to state
B(P,.V,) as shown in Figure 7.29.

5
B |--\ABT)

Pl 8(n.,)

of v n v

Figure 7.29 P-V diagram

The amount of work done can be determined
by adding up all the small works done in
small steps state 4 to state B.

Physics Form V.indd 220

In case of an ideal gas, an isothermal
process work is done at the same rate as
heat is supplied, so there is no increase
of internal energy (for any ideal gas), i.e.
dU=0 and dQ=dW.

U
[aw =" Par
i
For n moles of an ideal gas, P= nRT 5
v
thus,
W=J":nRTdV
L g

Since the gas expands isothermally, 7 is
constant; then,

W= nRTlu(iJ
v,

1

(7.65)

or W=2,303nRTlog[;/73]
!
Equation (7.65) can also be expressed in

terms of pressure as follows:
PV =PV, and 02

2 1

P,
W= nRTln[—'] or
P

4

w =2.303nRTlog[§]

[ \Example 7.20

One mole of an ideal gas which is kept
at temperature of 320K is compressed
isothermally from its initial volume of
8litres to a final volume of 4litres.
Calculate the total work done in the
whole process.

Solution v
Work done, W= nRTIn[—ZJ
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W =1x8.31 Jkg 'K ™' x320 Kx ln[;—ij

=—1843 ]

Therefore, the total work done in the
whole process is —1843 I.

(d) Adiabatic process

For an adiabatic expansion or
compression, no heat enters or leaves
the system and so dQ=0. Therefore,

0=dU +dW or dW =—dU.

All the work is done at the expense of
the internal energy of the gas: the gas
therefore cools. Conversely, in an adiabatic
compression, the work done on the gas by
an external agent increases the internal
energy and the temperature of the gas rises.

Consider two isotherm in Figure 7.30 for
a fixed mass of an ideal gas.

Isotherms

bl 4

Figure 7.21 Thermal radiation
If the gas has initially a temperature 7
and volume Vs its state, i.e. B,V,T, is
represented by point 4 on the 7, isotherm.
If it then expands adiabatically to volume

V,, so that its temperature falls to 7, its
state is now represented by point B i.e.
P,V,,T, on isotherm T,. The curve 4B
relates the pressure and volume of the mass
of the gas for this adiabatic change and
is called an adiabat. It is steeper than the
isotherm. Its equation can be shown to be;

PV =constant

Where 7 is the ratio of the two specific
heat capacities of the gas. It works to
a reversible adiabatic change for an
ideal gas having a constant value of ¥ .
Expressions for the temperature change
during the reversible adiabatic process
for one mole of an ideal gas can also be
obtained as follows:

Ryr=EBy; (7.66)

R _B

also, (7.67)

1 2

Dividing equation (7.66) by (7.67),
Tyt =yt
TV = constant

This gives a relation between 7 and V.

From equation (7.67),

A A

L)\t
Dividing (7.68) by (7.66), it then follows
that,

(7.68)

pI’H pﬂ‘/*‘
Tlr = ivv
prt

(7.69)

——= constant
TV

This gives a relation between P and 7.
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‘Work done during adiabatic process
Suppose there is one mole of perfect gas
contained in a cylinder having insulating
walls. If the gas expands adiabatically
from the initial state A(1’|,V| ), to the final
state B(PE.VZ), the work done W by the
gas during the adiabatic expansion is;

v,
[aw =] Par
u
For adiabatic processes PV7 = k; where

k is constant. Then

kvt av

W= L(kV,“? — k) (7.70)
I=y* ~

Since RV =PV =k, substituting £ in

equation (7.70),

1
W=—l_y[f’zV_»~PxV.] (7.71)
If 7 is the temperature of the initial state
and 7, is the temperature of the final
state; then,

PV, =nRT, and BV, =nRT, (7.72)

Substituting equation (7.72) to (7.71),

w="2(r,-1) (7.73)

1=y

[ \Baampler2y) ]

An ideal monatomic gas of 0.15mole
is enclosed in a cylinder at a pressure
of 250kPa and a temperature of
320 K. The gas is allowed to expand
adiabatically and reversibly until its
pressure is 100 kPa. Calculate the final
temperature and the amount of work
done by the gas. (For monoatomic gas,
y=1.67).
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Solution

gl
P\

From equation (7.69), 7, =T, [?J
1

1
al
100KPa ) 4 o1 6k
250 kPa

Therefore, the final temperature of the
gas is 221.6 K.

TZ=320K><[

R
work done W:ln—y[Tz -7]]
_ 0.15molx8.31 Jmol 'K
B 1-1.67
=183.10J

Therefore, the amount of work done by
the gas is 183.10 J.

W [221.6K-320K]

(e) Applications of first law of
thermodynamics

First law of thermodynamics is basically a

law of energy conservation. The following

are few examples of its application in real

life.

Energy flow in combustion engine: When
an engine burns fuel it converts the energy
stored in the fuel’s chemical bonds into
useful mechanical work and into heat. The
conservation of energy principle defined
by the first law of thermodynamics states
that, “The total chemical energy stored
in the fuel is converted to mechanical
energy and thermal energy”. The total
mechanical energy and heat energy out
(in cooling water, in oil, in exhaust,
radiated to surroundings) must equal the
energy available in the fuel.

Electric production system: Water energy
can be harnessed by building a dam to hold




—

back the water of a river. If you slowly
release water through a small opening in
the dam, you can use the driving pressure
of the water to do work of tuming a
turbine. The work of the turbine can be
used to generate electricity with the help
of a generator. Some of the water energy
is lost as thermal. Electricity was not
created out of nothing; it is the result of
transforming water energy from the river
into another energy form.

Cooling systems: These systems also
conserve energy. Cooling machines, such as
refrigerators and air conditioners, actually
use heat, simply reversing the usual
process by which particles are heated. The
refrigerator pulls heat (through mechanical
work) from its inner compartment-the area
where food and other perishables are stored
and transfers it to the region outside. This
is why the back of a refrigerator is warm.

TERSE T )

1. Acylindercontains | mole of oxygenat
atemperatureof 27 °C. The cylinder
is provided with a frictionless piston
which maintains a constant pressure
of | atm onthe gas. The gasis heated
until its temperature rises to 127 °C.
(a) How much work is done by the
piston in the process?

(b) What is the increase in internal
energy of the gas?

(¢) How much heat was supplied
to the gas?

(C,=17.03 calmol™°C™';

R=1.99 calmol™'°C"™";
lcal =4.1847)

2. Two moles of an ideal gas are
compressed in a cylinder at a
constant temperature of 65.0°C
until the original pressure is tripled.
(a) Sketch a P-J diagram for this

process.
(b) Calculate the amount of work
done.

3. A cylinder contains 0.250mol
of carbon dioxide (CO, ) gas at a
temperature of 17.0°C. The cylinder
is provided with a frictionless piston
which maintains a constant pressure
of 1.00 atm on the gas. The gas is
heated until its temperature increases
to 127°C. Assume that CO, may be
treated as an ideal gas.

(a) Draw a P-J diagram for this
process.

(b) How much work is done by the
gas in this process?

(c) On what is this work done?

(d) What is the change in internal
energy of the gas?

(e) How much heat was supplied
to the gas?

(f) How much work would have
been done if the pressure had
been 0.50 atm?

4. An ideal gas at 17°C has a pressure
of 760mmHg and is compressed
(a) isothermally,
(b) adiabatically,
until its volume is halved. Calculate
in each case the final pressure and
temperature of the gas (y =1.4).

5. Amotorcartyre has apressure of four
atmospheres at a room temperature
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of 27°C. Ifthe tyre suddenly bursts,
calculate the temperature of escaping
air. Value of y for air is 1.4.

. (a) When agas expands adiabatically,

it does work on its surroundings.
But if there is no heat input to
the gas, where does the energy
come from to do the work?

(b) Show that for an adiabatic process
in an ideal gas, the relationship
between the volume (¥) of the
gas and temperature (7) is given
by ar dv

— (r- 1)7_ 0

. Find the minimum attainable

pressure of ideal gas in the process
T=T +al* where 7, and o
are positive constants and V' is the
volume of one mole of the gas.

. The amount of heat required to raise

the temperature of 3.00mol of a

polyatomic gas at constant pressure

from 320K to 370K is 4.99KkJ.

Calculate:

(a) ¢, and c,;

(b) The value of ¥; and

(c) The heat required to raise the
temperature of 4.00mol from
300K to 400K at constant
volume.

. Agasatan initial pressure of 76 mm

mercury is expanded adiabatically
until its volume is doubled. Calculate
the final pressure of the gas if the
ratio of the principle specific heat
capacities is 1.40.
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Explain why electrons in insulators
do not contribute to its conductivity.

. The tile floor feels colder than the

wooden floor even though both
floor materials are at the same
temperature. Why?

How does cross-section area of a rod
affect thermal conduction of a given
material?

. Calculate the quantity of heat

conducted through 2 m* of brick
wall of 12 em thickness in 1 hour
if the temperature on one side is
80°C, and the other side is 28°C.
Thermal conductivity of brick is
0.13Wm 'K

. A composite bar is made of a bar

of copper 10 cm long, a bar of iron
8 cm long and a bar of Aluminum
12 cm long, all having the same
cross-sectional area. If the extreme
ends of the bars are maintained at
100°C and 10°C respectively. find
the temperature at the two junctions,
given that thermal conductivity of
copper, iron, and aluminium is
400 Wm 'K ', 40Wm 'K "' and
20Wm 'K ™" respectively.
Calculate the heat flow rate througha
layer of cork of 2 mm thickness and
24 cm”® area when the temperature
difference between its surfaces is
60 K . (kof cork =0.05 Wm 'K ™)

Two cylinders of equal physical
dimensions are placed one on top




of the other as illustrated by the
following diagram:

The lower surface of the silver
cylinder is kept at 0°C and the
upper surface of the iron cylinder
is kept at 100°C. Given that. the
thermal conductivity of silver is
eleven times that of iron, calculate
the temperature of the surface 4B.

. An electric heater is used in a

room of total wall area of 137 m*
to maintain a temperature of
20°C. inside it when the outside
temperature is 0°C. The walls have
three layers of different materials.
The inner most layer is of wood of
thickness 2.5 em , the middle layer
is of cement of thickness 1.0 cm and
the outermost layer is of brick of the
thickness 25cm. Find the power
of the electric heater. Assume that
there is no heat loss through the floor
and ceiling. Thermal conductivity
of wood. cement, and brick are
1.25Wm 'K, 1.5Wm 'K ™" and
1.OWm K™ respectively.

. Athin walled copper sphere of radius

Scm and mass 100 g containing
100 g of wateris cooled to —176°C
by immersing it in liquid air. It is then

1

)

placed inside a filling hollow sphere
of expanded polythene of outer radius
10cm in a room at 20°C. What is
the value of thermal conductivity of ice
if the ice just melts after 24 hours?
(Specific heat capacities of ice
and copper are 2.1 kJkg'K™" and
0.4 klkg 'K respectively and the
specific latent heat of fusion of ice is
336 klkg™).

. A liquid cools from 70°C to 50°C

in 4 minutes. How much time will it
take to cool from 50°C to 40°C? The
surroundings temperature is 20°C.

. A patient waiting to be seen by his

physician is asked to remove all his
clothes in an examination room that
isat 16 “C. Calculate therate of heat
loss by radiation from the patient,
given that his skin temperature
is 34 °C and his surface area is
1.6 m” . Assume emissivity = 0.80
and Stefan-Boltzmann constant
=5.67x10"Wm K™

. A 0.32 g of oxygen is kept in arigid

container and is heated. Find the
amount of heat needed to raise the
temperature from 25°C to 35°C.
The molar heat capacity of oxygen
at constant volume is 20 JK 'mol™".

. A tank of volume 0.2m" contains

helium gas at atemperature of 300 K
and pressure of 1.0 x10° Nm . Find
the amount of heat required to raise
the temperature to 400 K. The molar
heat capacity at constant volume is
3.0cal K. Neglectany expansion in
the volume of a tank. 1 cal=4.184J

. A gas has a volume of 0.02m’

at a pressure of 2x10°Pa and
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temperature of 27 °C. It is heated

at constant pressure until its volume

increases to 0.03 m®. If its molar

heat capacity at constant volume is

0.8 Jmol 'K ™', and its molar mass

is 32 g, calculate:

(a) The external work done;

(b) Thenew temperature of the gas;
and

(c) The increase in internal energy
of the gas.

. (a) What is meant by an adiabatic

change and isothermal change
of a state of a gas?

(b) A gas is contained in a thin-
walled metal cylinder and
compressed by a piston
moving with constant velocity.
Explain whether the change is
approximately an adiabatic or
isothermal as the piston moves
with a high or low velocity.

. The resistance R, of a particular

resistance thermometer at a Celsius
temperature ¢ as measured by constant
volume gas thermometer is given by
R, =50.00+0.17000+3.00x10767.
Calculate the temperature as
measured on the scale of the
resistance thermometer which
corresponds to a temperature of
60 °C on the gas thermometer.
The volume V, of a fixed mass
of mercury at temperature 6 °C
measured on the perfect gas scale
is given by
V,=V,(1+1818x1076+0.8x10"6%),
where F is the volume at 0°C onthe
gas scale. Calculate the temperature
expected on a mercury thermometer

when the gas thermometer scale
temperature is 40°C.

18. A copper-constantan thermocouple
with its cold junction at 0°C had
an e.m.f. of 428 mV when its
other hot junction was at 100°C.
The e.m.f. became 9.2 mV when
the temperature of hot junction was
200°C. If the e.m.f. is related to the
temperature difference 6 between
the hot and cold junction by the
equation, E= A6+ B6". Calculate:
(a) The value of 4 and B; and
(b) Thetemperature for which £may

be assumed to be proportional
to @ without incurring an error
of more than 1% .

=)

. Estimate the rate at which ice melts
inawoodenbox 2 em thick of inside
measurements (60><60><60) em’.
Assume that the outside of the box
is maintained at a temperature of
27°C and that the coefficient of
thermal conductivity of wood is
0.1674 Js'm™'°C"". Latent heat of
fusion of ice is 336x10° Jkg™".

20.The volume of a gas at atmospheric

pressure is compressed adiabatically
to halfits original volume. Calculate
the resulting pressure (y =14 ).

2

. A thermos flask uses some principles
learned in this chapter to maintain
temperature of its content constant
for at most six hours. Propose
modifications to be made in the
design and construction of thermos
flask to extend the time it can
maintain the temperature of its
content constant by two hours.
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Chapter

Vibrations and waves

Introduction

Vibration refers to the mechanical oscillation of an object about an equilibrium
point. Oscillations may be regular, such as the motion of a pendulum, or
random, such as the movement of a tyre on a gravel road. Similarly, waves
occur when a system is disturbed from equilibrium, and the disturbance travels,
or propagates from one region of the system to another. As the wave propagates,
it carries energy. Ripples on a pond, musical sounds, seismic tremours triggered
by an earthquake are good examples of the wave phenomena. The concepts of
vibration and wave play an important role in understanding the sound waves,
light waves, microwaves, and microscopic properties of an atom, electrons,
and nucleus. In this chapter. you will learn about mechanical vibrations, wave
motion, sounds, electromagnetic waves, physical optics, and Doppler’s effects.

between underdamped, critically damped
and overdamped vibrations. You will
also derive the velocity of vibrations of
mechanical vibrations.

8.1  Mechanical vibrations

Mechanical vibrations are oscillations in
dynamic systems that repeat within a time
period and can carry energy. The design
of string instruments such as guitars, is
based on strings vibrating at a certain
frequency. Kinetic energy is converted
to potential energy when the string is
plucked, and potential energy is converted

8.1.1 Free and forced vibrations

Mechanical vibrations of a system can be
considered as free or forced oscillation
depending on the environment in which

to kinetic energy when the string is
released. An example of mechanical
vibrations is the sound vibrations from
human voice that transfer energy form one
person’s vocal cord to another person’s
ear drum by repeated vibrations of air
molecules. In this section, you will learn
the distinction between free and forced
vibrations, as well as the distinction

the system is subjected to.

(a) Free oscillations

Asystem is said to undergo free oscillations
when the only external force acting on it
is the restoring force. That is, there is no
force to dissipate energy and therefore, the
oscillation maintains its amplitude (Figure
8.1), thus total energy remains constant.

F
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Therefore, in free oscillation, the system oscillates
at its own natural frequency. Such case can be
observed in vacuum where there is an absence of
external forces except gravity. Free oscillations are
sometimes referred to as un-damped oscillations.
Free oscillations are ideal; in practice, the energy of
a vibrating system is dissipated to the surroundings
over time and the amplitude decays to zero.

A

Amplitude

» Time

Figure 8.1 Free (un-damped) oscillations

(b) Forced oscillations

A system is said to undergo forced oscillation
when it is maintained in a state of oscillation by
an external periodic force of frequency other than
the natural frequency of the system. Therefore, the
system oscillates on a particular definite frequency
and period. When the frequency of an external
agent is nearly or equal to the natural frequency
of the oscillating system, there is a sharp rise in
the amplitude of oscillation called resonance.
Resonance is useful in radio or television tuning,
although it can cause annoying oscillating rattle in a
car and an annoying boom or buzz ofa loudspeaker.

8.1.2 Damped oscillations

The oscillation whose amplitude of vibration
becomes progressively smaller is said to be damped.
Damped oscillations can be underdamped, critical-
damped and over-damped oscillations depending
on the level of decay of its amplitude of oscillation.
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(a) Under-damped oscillations
This occurs when the oscillating
system overshoots (passes)
the equilibrium position and
oscillates with decreasing
amplitude about the equilibrium
position (Figure 8.2). A system
is said to be under-damped if
its coefficient of damping (&)
is less than 1, ie., §<1. A
vibrating string of a guitar or
oscillation of a swing are good
examples of underdamping.

(b) Critically-damped
oscillations

This occurs when the oscillating
system is brought to equilibrium
quickly without oscillating. It
provides the quickest approach
to zero amplitude for a damped
oscillator (Figure 8.2). Asystem
is considered critically damped
when its coefficient of damping
isequal to 1,i.e., 8 =1. Coils of
electric meters, for example, are
critically-damped in such a way
that, their oscillations return to
equilibrium position quickly to
make readings of current in a
shortest possible time. Similarly,
cars have dampers (shock
absorber) connected parallel to
or through the springs so that
the suspension provides critical-
damping and therefore come to
rest in the shortest time possible.
This provides comfortable ride,
otherwise, the car would move
up and down for sometime after
hitting a bump on a road.
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(¢) Over-damped oscillations

This occurs when the oscillating system is brought
to equilibrium slowly without oscillating (Figure
8.2). A system is over-damped if its coefficient of
damping is greater than 1, i.e., § > 1. Swinging doors
are fitted with overdamped system to control them not
to overshoot the closing position and hurt someone
approaching the door.

Overdamped

\ L Under damped

Figure 8.2 Damped oscillations

» Time

Displacement

8.1.3 Velocity of vibrations of a string

A key property of a vibration is velocity. The
expression for the velocity of mechanical vibration
(e.g. vibrating string) can be derived using the
method of dimensional analysis. Experiments show
that, the physical quantities that determine the
velocity of vibrations on a string are the tension 7' in
the string and its linear mass density u (also called
mass per unit length). Therefore, the velocity v can
be obtained by method of dimensions as follows:

veTu’
v=kT"u" (8.1)
(where k is a dimensionless constant)

The dimensions of v, T and y can be written as ;
LT, MLT™ and ML respectively.

Thus, by the method of dimension analysis, equation
(8.1) can be written as;

MOLT = Metptr2 (8.2)

Solving for ¢ and b you obtain,
L d 1 tivel

5 20d =7 respectively,
Substituting values of aand b
into equation (8.1), you obtain,

‘,zk‘ﬁ
m

The equation (8.3) shows that,
the velocity of vibrations is
independent of frequency of
the vibrations. The velocity of
the vibrations is determined by
the mechanical properties of the
medium. Experimentallyk =1,
then (8.3) can be written as;

(8.3)

v= L (8.4)
u
Therefore, the wvelocity of

mechanical vibrations is equal
to the square root of the tension
per linear mass density.

8.1.4 Applications of

mechanical vibrations
Mechanical vibrations have
several applications in various
fields of engineering including:
design of machines, structures,
foundations, engines, turbines,
control systems and musical
instruments.

In musical instruments such
as piano or guitar, the forced
vibrations of the struck string
cause the sound board of a
guitar to vibrate at the string

F
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frequency, thus increasing the volume
of sound of the guitar. In addition,
forced vibrations in reed instruments e.g.
saxophone causes air columns to vibrate
inside the instrument and amplify the
sound. Electricsignals force speaker cones
in loudspeakers to vibrate, thus setting up
air motion (longitudinal waves) which
are heard as sound. Forced vibrations
can have repercussion on a machine as
they can cause it to vibrate in unwanted
frequencies causing overheating, undue
wear and misalignment. Usually, rubber
mounts are used to damp the vibrations.

When the natural and forced vibrations
match in frequency; resonance occurs,
and the amplitude of vibration greatly
increases. Resonance is used extensively
in electronic circuits for tuning and
phase matching. However, resonance
can lead to destructions if not managed
well. In engines for example, resonance
is minimized using harmonic balancers,
precision flywheels and cylinder firing
order.

[ \evampient) ]

A string has mass per unit length of
0.05 kgm™', calculate the tension in
the string along which vibrations have
a speed of 8 cms™.

Solution

T'=uv* =0.05 kgm™' x(0.08 ms™)
Therefore,

T=32x10" kgms™

or32x10° N
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1. Using examples, explain the terms:
damped and forced oscillations, and
resonance.

2. Describe an experiment to illustrate
the behavior of a simple pendulum
performing forced oscillations.
Indicate the results you would expect
to observe.

3. Whatarethe factors which determine:
(a) the period of free oscillations of

a mechanical system?
(b) the amplitude of a system
performing forced oscillations?

4. The speed of a vibration is found to
depend on tension 7'in the string, and
mass per unit length ¢ (linear mass
density). Using dimension analysis,
derive the relationship between v, T’
and A

5. The still wire of 0.4m long and
mass 3.0 g, is stretched with tension
of 800 N. What is the velocity of
vibration produced by this vibration?

8.2 Wave motion

Wave motion is a propagation of
disturbances as a continous train in a
regular and organized way. The surface
waves on water, sound and light travel
as wavelike disturbances. The simplest
types of wave motion are produced by
vibrations of elastic media, such as air,
crystalline solids, or stretched strings.
Awave transfers energy through matter or
space. Mechanical waves (e.g. sound
waves) require a medium for propagation,
but electromagnetic waves (e.g. light) do
not. Waves can take several forms, but




—
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there are two fundamental types of waves:
“longitudinal™ and “transverse”. In a
longitudinal wave, the wave propagates
parallel to the direction in which the
particles are disturbed. In a transverse
wave, the wave propagates perpendicular
to the direction in which the particles are
disturbed.

Note that, a wave travelling through a
medium causes disturbance (vibration) to
particles of the medium. In this section,
you will learn the difference between
progressive and stationary waves, how to
derive the expression for progressive and
stationary wave motion and deduce the
principle of superposition of waves.

8.2.1 Progressive and stationary waves

The motion of a wave in a medium can
be bound between two fixed points
or unbounded to progress around the
surrounding environment. For example,
when you pluck at the middle of a string
fixed at both ends, the motion of the
vibrations (wave) appear to be bound
between the fixed ends. In contrast, when
you drop a stone on a pond of water, the
produced waves progress from the source
outwardly toward the edge of the pond.
In this case, waves can be categorized as
progressive or stationary waves.

(a) Progressive waves

A wave is progressive (travelling wave)
when a disturbance moves from a source
to surrounding region resulting to energy
transfer from one point to another,
without transporting the particles of
the medium in which the waves travel
through. In progressive waves, one
oscillating molecule transfers some of its

energy to the next molecule, which then
starts oscillating as well. This molecule
now transfers energy to the next molecule
and so on. Thus, the energy is transferred
along the wave. Waves in a ripple tank,
light waves and sound waves in an
unbounded medium are all examples of
progressive waves. Likewise, the light
coming from the sun is an example of a
progressive wave.

As the transverse wave propagates through
the medium, the particles of the medium
undergo displacements. Each particle
executes the same type of vibration as
the preceding one, though not at the same
time. The amplitude of each particle
displacement is the same, whereas the phase
changes continuously. At this point, no
particle is permanently at rest, but different
particles attain the state of momentary rest
at different instants, and the particles attain
the same maximum velocity when they pass
through their mean positions.

A progressive wave can propagate either
in transverse or longitudinal mode. A
progressive wave is transverse if the
displacements of particles in a medium
are perpendicular to the direction of wave
propagation (Figure 8.3a). Examples of
transverse progressive waves include a
wave in a ripple tank and light waves.
On the other hand, a progressive wave
is longitudinal if the displacements of
particles in a medium are along the same
direction as that the wave propagates
(Figure 8.1c).  An example of a
longitudinal progressive waves is a sound
wave. The displacement of the particles
in both progressive transverse and
longitudinal waves can be represented in
a displacement-distance graph as shown
in Figure 8.3(b).
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Figure 8.3 P and longitudinal waves
(b) Principle of superposition of waves | 1. is:

Consider two waves 4 and B travelling in
amedium in opposite directions. Suppose
the crest of 4 coincides with that of B
and the trough of A4 withthatof B (Figure
8.4a). The resultant wave C will be sum
of the amplitudes of the two waves, 4 and
B . The resultant displacement is larger
than the displacement caused by individual
waves 4 and B.

Now, suppose the crest of 4 coincides
with the trough of B and the trough of
A falls on crest of B (Figure 8.4b), then
the resultant wave D is the sum of the
amplitude of the two waves, 4 and B,
and it is smaller than the displacement
caused by individual waves, 4 and B.
The observed change of displacement
when two or more waves meet is based
on the principle of superposition of waves
which states that, “When two or more
waves pass through the same medium at
the same time, the net displacement at

any point is equal to the vector sum of

the individual displacement at the point”'.

Y=y x0)+ 3 (x4t () (8.5)
The principle depends on linearity of the
wave equation. Therefore, for a medium
that does not obey Hooke’s law, the wave
equation is not linear and this principle
does not hold.

A
R
(b)

Figure 8.4 Principle of superposition

of waves
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An important application of the superposition
principle of waves involves beats. Beats are
amplitude variations in sound due to superposition
of two waves of equal amplitude, but slightly
different frequencies. This leads to loudness
variation called beat frequency, f, (Figure 8.5).

Displacement

C  Variation of
amplitude

Resultant displacement

T Beat

frequenc;

;l/
y=1/

Figure 8.5 Production of beat frequency

Suppose that the two superposing waves have
frequencies f; and f, such that, f is slightly
larger than f,, then, the corresponding periods
are Tand T, with 7, > T. If the two waves start
out in phase at time ¢ =0, then, the frequencies
are in phase again when the first wave has gone
through exactly one more cycle than the second
wave and the observer will hear a loud sound at
points 4 and C, whereas little sound or nothing is
heard at point B (Figure 8.5). The loud sound at A
and C happens at the value of ¢ equals to periods
of beat 7. If » is the number of cycles of the first
wave, then the respective periodic time 7, for the
first and second waves is;

T,=nT,=(n—1T, (8.6)

Eliminating » fromequation (&.6)and rearranging;

(8.7)

F

From (8.7), the beat frequency,

1 .
t= ?, can be written as,
b

szf]—fl (8.8)

Two forks, 4 andB, when
sounded together produce
4 beats/second. The fork 4is
in unison with 30 cm length
of a sonometer wire and
B is in unison with 25cm
length of the same wire at the
same tension. Calculate the
frequencies of the forks.

Solution |
For a sonometer, fxz,

therefore,
/ =fBLB=25cmxfB=§f
L 0em 67"

From equation (8.8), beat
frequency, f is

=drt f_", =4 beats/s+ %/;]
D
solving for f, and f,

Thus, f,=20Hz and
Jy=24Hz

Therefore, the frequencies of
the forks 4 and Bare 20 Hz
and 24 Hz respectively.

(c) Stationary waves

When two progressive waves,
with the same speed and
frequency, and nearly equal
amplitudes, travelling in opposite
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directions, are superposed on each other, they form
a stationary (standing) wave. In stationary waves,
energy is stored in one place that means, the waves
do not transfer energy from one place to another.

If you fix one end of a long, narrow. stretched
spring (slinky spring) and move the other end
continuously up and down, a wave is formed. The
wave is reflected at the fixed end toward the source,
and the process repeats. If the frequency of shaking
is increased, one or more loops of large amplitudes
called stationary waves are formed. The waveform
seems to stay stationary along the spring in either
direction. The points along the line of propagation
with amplitudes equal to zero are called nodes (N)
while points with largest amplitudes are called
antinodes (A4) (Figure 8.6).

N N

E S

In antiphase

e

Figure 8.6 Stationary waves

In stationary waves, each particle has its own
vibrational ~ characteristic. The  displacement
amplitudes of the different particles are different,
ranging from zero at the nodes to maximum at the
antinodes. All particles in a given segment vibrate in
phase but in opposite phase relative to the particles
in the adjacent segment. The particles at the nodes
are permanently at rest but other particles attain
their position of momentary rest simultaneously.

Stationary waves can propagate either in transverse or
longitudinal mode as in the case of progressive waves.

Vibrati d wa

An example of transverse
stationary waves is the
stationary waves produced on a
vibrating string of'a sonometer.
On the other hand, an example
of a longitudinal stationary
waves are the stationary waves
produced in organ pipes.

8.2.2 Expression for
progressive and
stationary
wave motion

Particles” motion under
progressive and stationary
waves can be considered to
perform a simple harmonic
motion. In this regard, their
displacements and velocities
can be derived based on simple
harmonic motion.

(a) Displacement and velocity

of progressive wave motion
Suppose a particle P is at the
origin O, and oscillating with
simple harmonic motion of
frequency /', amplitude 4 and
angular frequency @. Then, the
displacement y of the particle
P at O withtime ¢ is given as:

y= Asinor (8.9

where @ =2nf

If a wave travels from left
to right, the particle P at a
distance x from O will lag
behind by a phase angle ¢
(Figure 8.7).
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Figure 8.7 Displacement for progressive wave

Therefore, the displacement y of particle P at
a distance x is given as:

Y(x,0) = Asin(wr — @) (8.10)
A point M from O (one wavelength) has a
phase difference of 27, thus particle P from O
has a phase difference of

={Z ><27:—2—7(x
oE\Z )T

Therefore, equation (8.10) can be written as;
V(x,0) = Asin(wt — kx) (8.11)

2
In equation (8.11), I»':TTE is known as wave
number.

If the wave moves from right to left, the
particle P will lead that at O by phase angle ¢
. The displacement yat P is given as;

y(x,1) = Asin(@r + kx) (8.12)

Therefore, the displacement y of the particle
moving from left to right and vice versa can be
written as;

V(1) = Asin(wr + k) (8.13)

Since y represents the displacement of a particle
as the wave travels, then the particle velocity v
at any instant is given by:
dy
v =——= Awcos(wt * kx)

(8.14)
rodt

In addition, since the displacement
v remains constant as the particle
moves each point, say, P, B,...., then
the wave or phase velocity which
is the rate at which the disturbance
(wave) moves across the oscillator
is given by:

(8.15)

Note that, equation (8.13), (8.14)
and (8.15) apply for both transverse
and longitudinal progressive waves.

[ \Example83 / |
A wave travelling along a string
is described by
»(x,t)=3.3sin(2.7t—72.1x) in
which y is in millimeters, x is in
meters and ¢ in seconds. What is
the (i) amplitude, (ii) wavelength,
(iii) period, (iv) frequency and (v)
velocity of this wave?

Solution

Compare equation (8.11)
with the given wave equation
y(x,t)=33sin(2.7t - 72.1x)
(i) Amplitude 4=3.3 mm

(ii) Since, the wave number
k=72.1, then wavelength,
B2 g087m
k721
(iii) Since from the given
equation, 2.7t=@t, then
_2n_ 2mrad

=R 533
® 27rads™ s
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(iv) Frequency /=
5 w
(v) Velocity of the wave v= ?

-1
LT - =3.74cm 5!

Thus, y=———
72.1radm”

(b) Displacement and velocity of
stationary wave motion

Suppose that two progressive waves of

equal amplitude 4 and frequency f'

are traveling in opposite directions, the

displacements y of a wave traveling to

the right and left respectively are given as;

¥, (x.1)= Asin(ot— kx) (8.16)

v, (x,1) = Asin(t + kx) (8.17)

By the principle of superposition, the
resultant displacement y for equations
(8.16) and (8.17) is given by

YEyty,

= Asin(@t— kx)+ Asin(wt+ kx) (8.18)

Applying the trigonometric transformation
for converting the sum of two sines to a
product in equation (8.18), i.e.

sino +sin = 2sin M cos M |
. 2 2
you get;

y(x,t)=(2A4coskx)sinwr (8.19)

Equation (8.19) which has function of
x and ¢ applies for both transverse and
longitudinal stationary waves. The factor
sinwt shows that the wave shape stays
in the same position oscillating up and
down. The factor 2A4coskx shows that
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at each instant the shape of the string
is a cosine curve. Therefore, the factor
2Acoskx gives the changing amplitude
of a standing wave. Equation (8.19) can
be written as;

y(x.t)= Bsinwr (8.20)

I

where B:ZAcoskv:zAcos[Tm)
is the amplitude of oscillations of the
various particles. It is found that, when
x=0, %, A, %, etc., B is maximum and
equal to 24 which are the antinodes. In
addition, when ,\’:i‘ ﬂ_i, etc., B is

444
minimum and equal to zero which are
the nodes. Hence, equation (8.20) can be
used to find the position of the nodes and
antinodes of a stationary wave.

\ampiena ) — ]

Consider two identical plane progressive
waves travelling in a string in opposite
directions. If the resulting wave is given
by the equation y= 8cus(2x)sin(31),

determine the particle displacement of
the two identical progressive waves.

Solution

Comparing equation (8.19) with the
givenequation, 4 =4, k =2and ®=3,
then, the two identical progressive waves
can be written as;

y(x,0)= Asin(@t —kx); v, = 4sin(3r —2x)
and

¥y (x,0) = Asin(@r + kx); v, = 4sin(3+2x)
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[ \Exampless ) )
The wave function for a standing wave
in a string is given by
y= 0,35in(0,25.r)c05(l20m). where x
is in meters and ¢ is in seconds.
Determine the wavelength, frequency
and amplitude of the superposing waves.

Solution
Comparing equation (8.19) with the
given equation:

Wavenumber £ =0.25= Zl—ﬂ: gives.

A=25.13m

Angular frequency @ =120 = 2nf;
gives, f=60Hz

Amplitude 24 =0.3; gives, 4=0.15m

Therefore, the wavelength, frequency
and amplitude of the superposed waves
are25.13m, 60Hz and 0.15m
respectively.

Stationary waves on string fixed at
both ends

Astationary wave generally has no velocity.
since, there is no energy transmission
between nodes. But, a number of waves
of different frequencies, wavelengths
and velocities may superpose to form a
group. Motion of such a group is called a
group velocity which can be considered in
stationary waves produced by a vibrating
strings.

Consider a string of length L stretched
between two fixed supports, then plucked
at the middle point. The wave will travel
in both directions and will be reflected
at each end as shown in Figure 8.8. As

A

adjacent nodes of a standing wave are =

apart, then, wavelength of the first, second
and third harmonics of the string is
A 34,

L-?, Elz, Eh
Therefore, if 4, is the wavelength of the
n" harmonic, then,

(8.21)

n

y :Z—L_ where n=1,23...
n

The frequency f, of the #” harmonic is
given by:

P (8.22)

where, v is the velocity of either of the
progressive waves that the wave produced.

From equation (8.21) and (8.22),
. nv
)
From equation (8.23), when n=1, f is
the frequency of the fundamental and is
called the first harmonic.

(8.23)

Therefore, equation (8.23) can be written as;

1=,
From equation (8.24), when n=2,
f,=2f,, which is the frequency of the

first overtone or second harmonic, and so
on.

(8.24)

From equation (8.4) and (8.24), the
frequency of the #" harmonic for a vibrating
string with tension 7 can be written as:

T
"-2L u

(8.25)

| Physics Form V.indd 246




Vibrations and waves

.
r=Lan
(875 5) x(333%10% m) (16510 "kg)
B (75%107m)
T=187N

Therefore, the screw must be adjusted
to 18.7 N in order the transverse wave
of wavelength 3.33 cm making 875
vibrations per second.

[ \amples | ]
A piano tuner stretches a steel piano wire
with a tension of 800 N. The steel wire

(b) is 0.40 mlong and has amass of 3.0 g,

(a) What is the frequency of its

fundamental mode of vibration?

(b) What is the number of the highest

harmonic that could be heard by a

l— g I person who is capable of hearing
b frequencies up to 10207 Hz ?

— 2 —»

3rd harmonic (2nd overtone)

(c) Solution

Figure 8.8 Vibration modes of a stretched (a) From equation (8.23) the

string fundamental mode of vibration

P 800Nx04m
BT | ¢ o e

B =408.25 Hz
A thin wire of length 75.0cm has a A8
mass of 16.5 g. One end is tied to a nail Therefore, the fundamental mode
and the other end is attached to a screw of vibrations is 408.25 Hz.

that can be adjusted to vary the tension
in the wire. To what tension must the
screw be adjusted so that a transverse

wave of wavelength 3.33 cm makes 2Lf, u
875 vibrations per second? = = =2Lf, T

(b) From equation (8.23), number of
harmonics is given as;

=)
Solution =2x0.4 mx10207 Hax 71 Ll ng
From equation (8.4); v= 0.4 mx 800
and v=fA =25
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[ \hampiess) ]

Therefore, there are 25 harmonics that
could be heard by a person who is
capable of hearing frequencies up to
10207 Hz.

A string of length 2m and mass
6.0x107" kg, fixed at both ends, is
under a tension of 20 N.It is plucked
at a point 20 cm from one end. What
would be the frequency of vibration of
the string?
Solution
The plucked string will make an
antinode 4 at the plucking point and
each end of the string will be a node
N. The AN (distance between 4 and
N') is given as:

A, 2L 2L,

=—t—"" where } =—
4 4n "oon
L _ 2m

24N 2x02m

Therefore, the string will vibrate in the

third harmonic.

Thus, n=

From equation (8.25), the frequency of
vibrations is

f—i 1_ 5 20N %2 m
T2\ 2x2m\6.0x10 kg

=322.7Hz

A string under a tension of 129.6 N
produces 10 beats/second when it
vibrates with a tuning fork. When the
tension of the string is increased to
160 N, it vibrates in unison with the
same tuning fork. Calculate the frequency
of the tuning fork.

Solution

From equation (8.25), the frequency of
vibration can be written as f e «/F,
thus, frequency of the tuning fork f,
relates to the frequency of vibration of
the string f] as,

: ,ﬂ . /129.61\1
= |txf= =09
W= A= Teow *H=054

Using equation (8.8) and a given
frequency of beat f, =10beat/s, the
frequency of the tuning fork is,
fo=fy+ fi=10Hz+09f,,
f» =100 Hz
Therefore, the frequency of vibration
of the tuning fork is 100 Hz .

1. Describe the distinguishing features
between travelling (progressive)
waves and stationary (standing)
waves.

2. Two waves travel on the same
string. Is it possible for them to have
different wavelength? Explain your
answer.

3. Energy can be transferred along a
string by wave motion. However,
in a standing wave on a string, no
energy can ever be transferred past
anode. Why?

4. One of the harmonic frequencies for
a particular string under tension is
325 Hz. The next higher harmonic
frequency is 390 Hz. What is next
higher harmonic frequency after the
harmonic frequency 195 Hz?
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A nylon guitar string has a linear
mass density of 7.20 gm™ and is
under tension of 150 N. The fixed
supports are at a distance of 90.0 cm
apart. The string is oscillating in
third harmonic mode. Calculate:

(a) The speed;

(b) The wavelength; and

(c) The frequency

of the travelling waves whose

superposition gives this standing

wave.

What is the fastest transverse wave

that can be sent along a steel wire? For

safety reasons, the maximum tensile
stress for steel is 7.00x 10" Nm™.

The density of steel is 7800 kgm ™.

A block of mass 5kg is hanging

vertically froma free end of the rope

of length 10 m . A transverse pulse
of wavelength 0.05 m is produced
at the lower end of the rope. What is
the wavelength of the pulse when it
is 2m below the vertical support?

Aprogressive and a stationary simple

harmonic wave each has the same

frequency of 250 Hz and the same
velocity of 30 ms™'. Calculate:

(a) The phase difference between
the two vibrating points on the
progressive wave which are
10 em apart;

(b) The equation of motion of
the progressive wave if its
amplitude is 0.03 m;

(c) The distance between nodes in
the stationary wave; and
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(d) The equation of motion of the
stationary wave ifits amplitude
is 0.01 m.

9. The displacement equation of a
transverse wave on a string is
=20 mm xsin((20 m™)x— (600 5)).
The tension in the string is 15 N.
(a) What is the wave speed?

(b) Find the linear mass density of
this string,

. Astring fixed at both ends is 8.40 m
long and has a mass of 0.120 kg. It
is subjected to a tension of 96.0 N
and allowed to oscillate.

(a) What is the speed of the waves
of the string?

(b) What is the longest possible
wavelength for a standing
wave?

(c) Find the frequency of this wave.

=]

=

. Asstring that is stretched between two
fixed supports separated by 75.0 ecm
has resonant frequencies of 420 Hz
and 315 Hz, with no intermediate
resonant frequencies.

(a) What is the lowest resonant
frequency?
(b) What is the wave speed?

12. A piano string having a diameter

of 0.90 mmis replaced by another

string of the same material but with
diameter 0.93 mm . If the tension of
the wire is the same as before,

(a) what is the percentage change

in the frequency of the
fundamental note?

(b) what percentage change in the
tension would be necessary to
restore the original frequency?
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8.3 Sound waves

The most important waves in your everyday life
are sound waves. The reason is that, the human
ear is tremendously sensitive and can detect sound
waves even of very low intensity. Sound waves are
longitudinal waves in a medium and can be described
in terms of pressure fluctuation. Sound waves travel
through gases and liquids in the form of compression
and rarefactions (Figure 8.9a). Sound can travel in
solids as both longitudinal waves and transverse
waves. They usually travel out in all directions from
the source of sound, with an amplitude, frequency
and wavelength that depends on the direction and
distance from the source. The displacement and
pressure on the particles in a medium is as shown in
Figure 8.9 (b) and (¢) respectively. At the nodes V,
the particles are at the minimum displacement with
maximum pressure, whereas, at the antinode A4,
the particles possess maximum displacement with
minimum pressure. Examples of sources of sound
waves include sounding brass, pipes and tuning
forks. In this section, you will learn how to derive
velocity of sound in materials, determine velocity
of sound in air and describe the applications of
mechanical vibrations and waves.

Compressions.

Sound Rarefactions

Source /\‘
(a) Sound

propagation

=

NS

g i

g 4 4 A A

2 Distance
(b) —; A istance

&y

o P
) 2 < Distance
© ST v

2

&

Figure 8.9 Sound wave in a material

8.3.1 Velocity of sound in
materials

The speed of sound depends
on both an inertia property u of
the medium (to restore kinetic
energy) and an elastic property 7'
of the medium (to store potential
energy). Thus the speed of sound
v can be generalized as;

(8.26)

(a) Velocity of sound in solids
‘When sound waves travel in a
solid medium, the particles in
the medium are subjected to
varying stresses, with resulting
strains. Thus, the speed of sound
wave is governed by the Young’s
modulus of elasticity ¥ and the
inertia property which depends
on the density p “massiveness™
of a bulk of a medium. Hence,
equation (8.26) can be written as;

¥

(8.27)

P

Equation (8.27) can be verified
by the method of dimensional
analysis.

(b) Velocity of sound in liquid
The velocity of sound in liquid
is also govern by equation
(8.26), where elastic property
is the bulk modulus K of the
liquid and the inertia property
is the density P of the liquid.
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Hence, equation (8.26) for speed of sound in liquid
can be written as;

(8.28)

(c) Velocity of sound in gas

The velocity of sound ina gas can be determined using
equation (8.26), where the elastic property is the bulk
modulus of the gas with pressure P, and the inertia
property is the density P, of the gas. Experiments
show that when a sound wave propagates through a
gas, the temperature of the gas changes and therefore
the propagation of a sound wave in a gas is an adiabatic
process. Under the conditions in which a sound wave
travels in a gas, the bulk modulus K is given by,
K=yP , where y is the ratio of its specific heat
capacities. That is;

where ¢, and c, are the specific heat capacities of a gas
at constant pressure and constant volume respectively.

Hence, for speed of sound in liquid shown by equation
(8.26) can be written as;

rP (8.29)
P

Thus, the velocity of sound at ST.P in a
gaseous medium of density p, =129 kgm™,
P=760mmHgand y=14 is:

2

[yP _ [14x0.76 mx 13600 kgm x9.8 ms™
p \ 1.29 kgm™

=332ms™

Therefore, the velocity of sound in a gaseous medium
at ST.Pis 332 ms™.
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Now, consider one mole of an
ideal gas having volume V'

and pressure P at temperature
T . The ideal gas equation of
state, PV = RT, where Ris
a constant, if M is the molar
mass of the gas, then, density

M

MP .
=—=——Fromequation
V. RT

(8.29), the speed of sound in a

gas can be written as;

(8.30)

Since ¥, R and M are
constants for a given gas, it
follows that the velocity of
sound in a gas is independent
of pressure, if the temperature
remains constant. Then

voerT

Therefore, the velocity of
sound in a gas is proportional
to the square root of its
absolute temperature.

(8.31)

Note that, sound travels faster
in liquids than in gases and
even faster in solids than in
liquids because molecules are
much closer in solids than in
liquids and closer in liquids
than in gases.
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[ \esampieni) ]

The velocity of sound in a material
depends on the Young’s modulus ¥ and
density P of the material.

(a) Use the method of dimension
analysis to obtain the relationship
between v and Y.

(b) Use the relation from (a) above to
find the velocity of sound in
(i) asteel ofdensity 7800 kgm “and

elasticity of 2.0x10" Nm™,
(ii) water ofdensity 1000 kgmand
bulkmodulus 2.04x 10 * Nm ™.

Solution i
(a) Using method of dimension, v = J:
P

2x10" Nm ™

. Y
&) (@) = \/%_ 7800 kgm ™

=5064 ms™'

= K [2.04x10° Nm™
() v=,l—=,[——————
P 1000 kgm
=14283ms™

Therefore, the velocities of sound in
a steel and water are 5064 ms™' and
14283 ms™ respectively.

[ \sampiesin) ]
Calculate the velocity of sound in air at
100°C if the density of air at S.T. P. is
1.29 kgm™, the density P, of mercury
at 0°C is 13600 kgm™ and the ratio
of heat capacities of air, ¥ is 1.41.
Solution
From equation (8.29), the velocity of
sound in air v, at 0°C;

e fﬁz /mng
0
CH

_ Il 41x0.76 mx 13600 kgm™ x9.8 ms™
1.29 kgm™

=3327 ms"

From equation (8.31), the velocity of
sound in air at 100°C is;

T {
Vo = _ITW_' XV, = ;;; i %3327 ms™
0

=389 ms”

Therefore, the velocity of sound in air
at 100°C is 389 ms™'.

[\ mpleniz) —— 2
The wavelength of the note emitted by
a tuning fork with frequency of 512 Hz
in air at 17°C is 66.5cm. If the
density of airat S.T.P. is 1.293 kgm >,
calculate the ratio of the two specific
heat capacities of air. Density of
mercury at S.T.P is 13600 kgm™.

Solution

From equation (8.31), (8.29) and
v= fA, the ratio of two specific heat
capacities of air ¥ is

_ P, (AT,
P el

_ 1.293 kgm ™ X (512 Hzx0.665 m)° x 273 K
0.76 mx 13600 kgm ~x 290 K x9.8 ms ™

=1.39
Therefore, the ratio of two specific heat
capacities of air is 1.39.
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8.3.2 Determination of the velocity of
sound in air

When a tuning fork is struck and placed
immediately over the opening of a tube
of suitable length opened at one end, and
whose position in the water can be raised
or lowered (Figure 8.10(a)). a point is
reached where the column of air in the
tube vibrates with the fork and a loudest
note is heard. At this point, the frequency
of vibration of air column is equal to the
frequency of the fork (resonance). The
motion of air in the tube is a succession
of plane wave pulses sent from the
fork and reflected at the water surface.
The condition for resonance is that the
reflected wave must be out of phase
with the emitted wave by m-radians. The
resonance will be most powerful, if the
time the pulse takes to travel to the water
surface and back to the fork is exactly
half the periodic time of the vibration of
the fork.

=—C— <+ Tuning fork
A

—Antinode

#— Moving tube

¥

L ——Hollow tube
L ~+—tAir column
Node
+—Water

(a) (b)

Figure 8.10 Measuring speed of sound
using resonance tube

The pulse travels along the tube with
constant velocity of sound in air. The
condition for resonance in this case, is
that, length of the air column is equal
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to the quarter wavelength of the sound
waves (Figure 8.10b). That is,
Lt
4
Equation (8.32) may not be obviously
accurate since the air at the open end
of the pipe is free to move, causing the
vibrations at the end of sounding pipe
to extend a little to air outside the pipe
(Figure 8.10(b)).

(8.32)

A correction should be done for the
open end of the pipe. This correction
has been calculated theoretically, and
has been shown to be nearly equivalent
to increasing the observed length of the
resonance column by an amount equal to
one half of its diameter. Introducing this
correction, equation (8.32) becomes

LyeLlt (8.33)

4
where C is the end correction.

Similarly, the first overtone (second
harmonic) of the same tuning fork can be
written as,

31

LAC=22 (8.34)
3 4

Subtracting equation (8.33) from equation
(8.34) you get;

A

L-1=% (8.35)

Thus, the velocity of sound in air column
(v=fA) is written as,

v=2f(L,~ L) (8.36)
Therefore, knowing the length L, for
fundamental and L, for first overtone
(second harmonic) of the air columns,
and the frequency of the tuning fork,
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the velocity of sound in air can be casily
determined.

Note that, the end correction C is the
length that must be added on to the length
of the pipe to take account of antinodes
extending beyond the open end of the
pipe. Thus, for the closed pipe the length
of the pipe together with its end correction
isgivenby L. = L+C.

Experiments show that C =0.6r where
ris the radius of a pipe. Thus, the above
equation can be writtenas L. = L +0.6r.

For an open pipe the length of a pipe will
be L= L+2C=L+12r.

[ \hgiivaa )
To determine velocity of sound in

air using tuning fork of different
frequencies.

Materials: Tuning forks of different
known frequencies, large
glass jar, glass tube, water.

Procedure

(a) Fill three quarter of the large glass
jar with water

(b) Immerse the glass tube in the glass
jar with water such that air column L
can be created within the glass tube

(c) Strike and hold the tuning fork over
the open end of the glass tube.

(d) Lower or raise the tube until a loud
note is heard.

(e) Measure and record the length at which
the note is loudest (Figure 8.10b).

(f) Repeat procedure (a) - (¢) with the
forks of different frequency to obtain
six different measurements.

(g) Tabulate your results as shown in
Table 8.2.

Table 8.1 Frequency of tuning fork and

length
Frequency of | Lengthof | |
tuning forks | air column 7(5 )
f(Hz) Lem)
Questions

(a) Use your results to plot a graph of
the length L of the air column against
4
I

(b) Find the slope of the graph.

(¢) The velocity of sound in air column
for forks of different frequencies is

governed by equation, L = L
4
Find the velocity of sound of air.

(d) Find the value of L -intercept and
suggest its physical significance.

The resonant tube treated in the preceding
discussion can be considered as a closed
pipe resonator. A closed pipe or organ
consists of a metal pipe closed at one end
O.Whenablast ofairisblownintoitat the
openend P (Figure 8.11a), a sound wave
travels up the pipe to O, and is reflected
at this end down the pipe. So, a stationary
wave is formed by superposition between
the two waves.
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Figure 8.11 (a) Closed organ pipe, and
(b) fundamental mode of closed pipe

The end O of the closed pipe must be a
node N since the layer in contact with O
must be permanently at rest. The open end
P, where the air is free to vibrate, must be
an antinode 4 (Figure 8.11b). The distance
between node and antinode (Figure 8.11b)
can be written as;

=4

8.37)
2 (8.37)

From equation (8.37), the frequency,

4 .
= 7 of the note can be written as;

v

=— 8.38)
4L @9

=1
Equation (8.37) is the frequency of the
lowest note of a closed pipe termed as
fundamental frequency f; or first harmonic.
Thus, the velocity of sound in a closed pipe
for the frequency f, is:

v=4Lf, (8.39)

If a stronger blast of air is blown into a
closed pipe. notes of higher frequency
called overtones simple
multiples of the fundamental frequency,
f, can be obtained. Consider an overtone
formed when air is blown into a closed

which are
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pipe at high frequency. The length L can
be written as;
-k
T4

From equations (8.39) and (8.40), the
frequency f; can be written as:

o
s
Equations (8.38) and (8.41) frequency f;
can be written as;

Si=34,

Equation (8.42) is called first overtone
or third harmonic of a closed pipe and is
represented by Figure 8.12.

L (8.40)

(8.41)

(8.42)

Figure 8.12 First overtone of a closed pipe

Similarly, the frequencies of the second,
third, fourth (and so on) overtones of a
closed pipe can be shown to be 3 £,,5 /.
7 f, and so on, which are odd multiples of
the fundamental frequency. Generally, for
a closed pipe, the overtone of the higher
frequencies f, is given as:

1=+l f, (8.43)

where 1 is the number of overtones, that
is n=1,23.and 2p—1 are the n"
harmonics.
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Then, it follows that, the velocity v of
sound of overtones of wavelength 24, in
a closed pipe in general is given as:

v=2n+1) /A, (8.44)

| \Example3.13/ ]

(a) Draw a sketch diagram showing the
position of nodes and antinodes for
the vibration of an air column in a
pipe closed at one end when giving
the second overtone. Calculate the
frequency of this second overtone
if the effective length of the pipe is
72 em. Use velocity of sound in air
as 340 ms™.

(b) A small loudspeaker is placed near
the open end of a pipe of length
400 mm closed at its other end. The
minimum frequency at which the
pipe resonate is 215 Hz.

(i) Estimate the speed of sound in the
pipe.

(ii) Calculate the next highest frequency
for resonance.

Solution

(a) For second overtone, n=2, and
substituting equation (8.38) into
(8.43), the frequency f, is

._5_v_5><340ms‘l
2T4L 4x072m
=590.28 Hz

(b) (i) Using equation (8.39),
v=4x04mx215s"
=344 ms™

(ii)The next highest frequency occurs
at the first overtone (n=1). Using

equation (8.41): frequency of the
first overtone is,

. 3v
f'_4_1.
3%x344 ms™!

= _G45Hz
4x400%107 m

When air is blown into an open pipe (pipe
open at both ends), a wave M travels to
the open end O, the wave is reflected in
the direction N on encountering the free
air (Figure 8.13a). A stationary wave
is therefore set up in the air within the
pipe. The two ends of the pipe are both
antinodes and the nodes midway of the
pipe (Figure 8.13b).

Figure 8.13 (a) Open organ pipe and,
(b) fundamental mode of open
pipe

The length L of the pipe which is the
distance between consecutive antinodes
(Figure 8.13b) can be written as:

L=

8.45
5 (8.45)

Then, frequency, f=% of the note can
be written as:

v
S=t= 3L (8.46)

F

Student’s Book Form

| Physics Form V.indd 256



Equation (8.46) gives the frequency of
the lowest note of an open pipe termed
as fundamental frequency f or first
harmonic. Thus, the velocity of sound in
an open pipe for the frequency f; is

v=2Lf, (8.47)

If a stronger blast of air is blown into an
open pipe, notes of higher frequencies
called overtones can be obtained which
are simple multiples of the fundamental
frequency f;. Consider an overtone formed
when air is blown into an open pipe at a
high frequency. The length, L is given by:

L=, (8.48)

From equation (8.46), the frequency f
can be written as;

v
K=

From equations (8.46) and (8.49) frequency
f, can be written as;

Si=2f,

Equation (8.50) is called first overtone or
second harmonic of an open pipe and is
represented by Figure 8.14.

(8.49)

(8.50)

Figure 8.14 First overtone of an open pipe

Similarly, the frequencies of the first,
second and third (and so on) overtones
of an open pipe are; 2, 3f,. 4f,and
so on. Generally, for an open pipe, the
overtone of the higher frequencies f, is
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given as;
Sy =+ f;
where n is the number of overtones,

that is n=1,2,3... and n are the n"
harmonics.

(8.51)

Then, it follows that, the velocity, v of
sound for overtones of wavelength 2, in
an open pipe is given as:

v, =(n+)fA, (8.52)
In summary, for a given length of a pipe,
the open pipe frequency is twice that of
the closed pipe frequency and an open
pipe gives more harmonics (odd and
even) than a closed pipe (odd only).

[ \Euamplesis) ]
An open pipe 30cm long and a
closed pipe 23 cm long both of the
same diameter, each sounding its first
overtone and are in unison. What is the
end correction of the pipes?

Solution
Since the two pipes are in unison, then
the frequency of first overtone f, ofan
open pipe is equal to the first overtone
[y ofaclosed pipe. Then from equations
(8.50) and (8.42) thatis f, = f;, then,
LA )

L +2C 4L .+C)
Thus. the end correction C is
_ AL -3L,
-3

(4x23 cm)—(3%30 em)
B 2
Therefore, the end correction is lem,
where L_is the length of the closed pipe
and L, is the length of the open pipe.

C

=lcm
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Two open ended organ pipes are sounded
together in their first harmonics and
are heard. If the first pipe is of length
0.80 m, what is the length of the other
pipe? Ignore any end corrections and
take speed of sound in airas 320 ms™'.

Solution
From equations (8.49) and (8.50), the
frequency f, of the first pipe of length
L is

v 1x320ms™

i

=B =200 Hz
oL 2x08m %

and for the second pipe f; with length
L is
1 _mv 320
=X —=
&9 2k
From equation (8.8), and given beat
frequency f, =8beatsls, [ —f =1,
equivalent to
-1
2005 3220 g _083m
2L
Then, the length of the second pipe is
0.83m.

8.3.3 Applications of sound waves
Sound waves have wide applications in
daily life. For example, forced vibrations
are used to tune musical instruments such
as piano, guitar, using beats between
string frequencies.

Also, the architect when designing a
building has to consider its acoustical
demands. For example, when planning

construction of a hotel or a radio station, it
has to be kept in mind that the penetration
of sound from one room to the other has
to be negligible.

Similarly, in case of an auditorium, it has
to be ensured that the sound is properly
diffused and there is no echo. It is a
common experience that, a sound produced
in a building is reflected repeatedly by
its walls and takes some time to die out.
This persistence of audible sound after the
source has ceased to emit it, is called the
reverberation. The time taken by asound to
die out after the source has ceased to emit
it is called the reverberation time. A long
reverberation time can make a building
sound loudy and noisy. Thus, conference
halls, mosques, churches and lecture halls
should have short reverberation time. The
value of this time is large in an unfurnished
room compared to a furnished one. The
reverberation time can be reduced by
applying sound absorbing surfaces on the
walls and the ceiling.

In a musical concert, it can easily be
experienced that a slight reverberation
provides richness to music. Reverberation
in a room can be controlled by having the
walls covered with absorbent materials, a
few open windows, a good audience and
a good amount of furniture in the room.

Other important conditions for good
acoustical designs of rooms is the shapes
of the walls and the ceilings. Curved walls
should be avoided because they cause
focusing of sound, thereby, concentrating
it at one point.

F
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. Explain the conditions necessary for

the formation of stationary waves in
air.

Under what conditions are beats
heard? Derive an expression for their
frequency.

. Calculate the frequency of the sound

emitted by an open ended organ
pipe 2m long when sounding its
first overtone. Speed of sound in air
v=340ms™".

. Calculate the shortest length of a

closed organ pipe which resonate
with a 440Hz tuning fork,
neglecting any end correction. Speed

of sound in air is 350 ms™.

. An organ pipe has two successive

harmonics with frequencies 1372 Hz

and 1764 Hz .

(a) Is thisan open or a closed pipe?
Explain.

(b) What is the length of the pipe?

. Two organ pipes (both ends open)

give 5 beats/s at 10°C. How many
beats will be heard per second at
15°€2

. Auniform 165 N bar is supported

horizontally by two identical wires,
A and B. A small 185N cube of
lead is placed three quarters of
the way from 4 to B. The wires
are each 75.0 cm long and have
a mass of 5.50 g. If both of them
are simultaneously plucked at the
center, what is the frequency of the
beats that they will produce when
vibrating in their fundamental?
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(a) If the velocity of sound in air
at 15°C is 342 ms™', calculate
the velocity at p°Cand 47°C .

(b) What is the velocity if the
pressure of the air changes from
75 emto 95 em of mercury, the
temperature remaining constant
at 15°C?

. An observer looking due north sees

the flash of a gun 4seconds before
he records the arrival of the sound.
If the temperature is 20 °C and
the wind is blowing from east to
west with a velocity of 48 km/hr,
calculate the distance between the
observer and the gun. Speed of sound
in airat 0 °C is 330 ms™

. A tuning fork vibrating with a

sonometer wire 20 cm long produces
5 beats per second . Given that the
beat frequency does not change if
the length of the wire is changed to
2lem, calculate the frequency of
the tuning fork.

Electromagnetic waves

What is light? This question has been
asked by humans for centuries, but there
was no answer until when electricity

and

magnetism were unified into

electromagnetism, by Maxwell. Through
the Maxwell’s equations it became clear
that a time-varying magnetic field acts as
a source of electric field and that a time-
varying electric field acts as a source of

magnetic field. These fields sustain each
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other, forming an electromagnetic (EM)
wave that propagates through space.
Examples of electromagnetic waves
include: visible light from different sources,
waves produced by TV and radio stations,
X-rays. and y-rays.

Unlike waves on a string or sound waves
in a fluid, electromagnetic waves do not
require a material medium. Nonetheless,
electromagnetic waves and mechanical
waves have much in common and are
described in much the same language. In
this section, you will learn the nature of
EM-wavesand describe their propagation.

8.4.1 Nature of electromagnetic
waves
Consider a plane EM-wave propagating
in the positive x-direction in which there
are no charges or conduction currents.
Suppose a tube has sides parallel to the
coordinate planes (Figure 8.15). then,
according to Gauss’s law, the total electric
or magnetic flux through this tube is zero
expressed as:

$E-d =0 (8.53)
v
>
c
E E
|, —5
L.
; G
i D

Figure 8.15 Nature of electromagnetic waves

Since it is a plane wave in x direction,
the electric field £ depends on x and ¢
therefore, the net electric flux originates
from this face only i.e., OABC agd DEFG.
The electric flux due to field £, is given

as EI xarea OABC and flux due to 1;‘2 is
E, xarea DEFG.

Thus, total flux from equation (8.53) is
Ax (E| —I::Z) =0, where 4 is the area of
OABC = DEFG.Since A#0, E,—E,=0.
There are two possible solutions here, that is
E =E,#00rE = 'E: = 0. The possibility
l';" = l‘;': means, the £ associated with EM-
wave is constant. However, constant field
cannot produce wave, therefore, we ignore
this possibility. The possibility, E| = E, =0
means, thereisno £ -field in the direction
of propagation, If EM-wave propagates
and there is no £ -field along the direction
of propagation, this means, the £ -field
propagates perpendicular to the direction
of wave propagation. Similar conclusion
can be drawn for magnetic B field. Since
Eand B are perpendicular to the direction
of propagation. electromagnetic waves are
transverse in nature.

8.4.2  Propagation of
electromagnetic waves

Based on Ampere’s law and Faraday’s law
olf electromagnetic induction, a varying
E -field produces B, field varying with
time and a varying B field produces £
~field varying with time. This implies that,
whenever there is a change in £ -field with
time, thena B field changing with time are
produced in space. Similarly, the produced
B field will produce varying £ -field and
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s0 on. The result of alternating Eand B
-fields will result in an electric-magnetic
disturbance that propagates through space.
Using Maxwell’s equations, £ and B
-fields in EM-waves occur in mutually
perpendicular directions (Figure 8.16).

That is éand l'?»ﬁelds are vibrating
perpendicular to each other and both
perpendicular to the direction of wave
propagation.

The speed of EM-waves in free space
1

(vacuum) is given as: ¢= s
HE,
where g, =4nx 10”7 Hm™' and
£,=8.854x107" Fm™ are the respective
permeability and permittivity of free space.
Thus,
1

c=

Jamx107Hm ' x8.85%10"% Fm™'

=3.0x10" ms™

Therefore, the speed of electromagnetic
wave in space is 3.0x10° ms™. The

<—— Shorter wavelengths

Violet  Indigo

Vibrations and waves

calculated speed of EM-waves match
precisely with the measured speed of
light in free space (vacuum). In this case,
light is an electromagnetic wave.

Direction of propagation—»

Figure 8.16 Propagation of electromagnetic

waves

8.4.3 Electromagnetic spectrum

As already seen earlier, EM-waves exist in
wide range of frequencies or wavelengths
constituting a series known as the
electromagnetic spectrum as shown in
Figure 7.22. The spectrum includes gamma
rays, X-rays, ultraviolet waves, visible
spectrum (light), infrared, microwaves
and radio waves. A spectrum of interest
is the visible spectrum which consists
of seven spectral lines, namely: violet,
indigo, blue, green, yellow, orange and
red, (Figure 8.17).

Longer wavelengths ———>

Yellow Orange Red

Figure 8.17 Visible light spectrum
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8.4.4 Applications of electromagnetic
waves

Radio waves are electromagnetic
waves which vary in wavelength from
a few millimeters to several kilometers.
These waves are very useful in global
communication. Microwaves are also
used in communication for example in
mobile phones, and in radar, electron
spin resonance studies and in heating.
Ultraviolet radiations cause fluorescence
and ionization, promoting chemical
reactions, affect photographic films and
produce photoelectric emissions. Visible
light is due to electron transition in atoms.
It affects a photographic film, stimulates the
retina in the eye and used in photosynthesis.
Infrared radiation is due to small energy
changes of an electron in an atom or
molecular vibrations; it is used for heating,
both in homes and in hospitals, and used in
devices that emit infrared beams such as
camera. X-rays are used in dentistry and
medicine, for example checking damaged
or fractured body parts: and gamma rays
are used to destroy cancer cells.

1. Differentiate between mechanical
and electromagnetic waves.
Explain the nature of electromagnetic
waves.

3. Describe how electromagnetic waves
propagate.

4. Explain the applications of
electromagnetic waves.

5. Find the speed of EM-in a medium
if the relative permeability and
permittivity are 1.0 and 2.25
respectively. If the speed of

&)

EM-wave in medium is given as

1
c= . where ¢ is the speed
?jumgm

of EM waves in vacuum, and g
and ¢, the relative permeability and
permittivity of medium respectively.

8.5 Physical optics

Optics is a branch of physics which
involves the behaviour and properties of
light including its interaction with matter.
The branch of optics which considers
light in terms of rays only is optics; the
branch dealing specifically with wave
behaviour is called wave optics. Physical
optics deal with the physical properties and
behaviour of electromagnetic waves and
their interactions with matter. In physical
optics or wave optics we study interference,
diffraction, and polarization of light. In
this section, you will learn interference,
diffraction and polarization. You will learn
how to treat light as waves rather than as
rays leading to a satisfying description of
such phenomena.

8.5.1 Interference of light

The colour seen in thin films of oil in
soap bubbles and roads are due to light
undergoing interference. Thus, interference
refers to any situation in which two or
more waves overlap in space. This section
explains the necessary conditions for
interference of light and the determination
of the wavelength of monochromatic
light. It also investigates production of
interference by thin films.
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Finally. it identifies the applications
of interference of light.

(a) Necessary conditions for
interference of light

Interference of light occurs when
the waves are monochromatic
(single wavelength) and the
sources are coherent. This means
that, they must maintain constant
phase with respect to each other,
therefore, they must have the
same frequency of nearly or equal
amplitude. The interference of
light can either be constructive
or destructive.

(i) Constructive interference
of light

Consider two coherent sources
of light, S, and S, in space and
that, a point p is at a distance 7,
from §, anda distance 7, from S,
(Figure 8.18). If waves that leave
S, and S, are in phase, they arrive
at P in phase. When the waves
reinforce each other, the amplitude
of the resultant wave is the sum
of the amplitudes of individual
waves. This is called constructive
interference. It requires that the
crest of S, overlaps with the crest
of §,. Similarly, the trough of §,
overlaps with the trough of S,. For
this to happen, the path difference
1, =1 for the two sources must
be an integral multiple of the
wavelength 4, that is;

r=n =nA (8.54)

where n=0,1,2,3,...

Figure 8.18 Coherent wave interfering at a point in space

(ii) Destructive interference of light

If the waves from S, and S, (Figure 8.18) arrive
at point P out of phase, say, exactly a half-
cycle out of phase, the crest of one wave arrives
at the same time as the trough of the other. The
resultant amplitude is the difference between
the two individual amplitudes. If the individual
amplitudes are equal, the resultant amplitude is
zero. This cancellation or partial cancellation
of the individual waves is called destructive
interference of light. The condition for destructive
interference is thus,

n=n=(n+Ha (8.55)
where n=0,1,2,3,...

(b) Determination of wavelength of
monochromatic light

The wavelength of monochromatic light can be
obtained using Young’s double slit or Newton’s
rings method. Light from a single source can be
split so that parts of it emerge from two (or more)
regions of space forming two (or more) coherent
secondary sources.
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(i) Young’s double slits experiment

One of the first demonstrations of the
interference of light was done by Thomas
Young in his experiment called double slit
experiment in 1801. Young placed a source §
of a monochromatic light in front of narrow
slits S, and S, close to each other. Patterns
of bright and dark regions called fringes were
observed on the screen (Figure 8.19). The
structure of these fringes is known as double

slit interference pattern.
[
form

Fringes

o
Monochroniatic
source
Single slit
Double slit

Sereen
Figure 8.19 Interference by double slit

The interference pattern at any point from the
double slit may be observed with a micrometer
eyepiece or by placing a screen in the path of the
waves. To obtain good pattern, the separation
across double slits should be less than Imm and
cach slit should have a width of about 0.3 mm.
The distance between the double slits and the
screen should lie between 50 cm and 100 em .
The source and the double slits must be parallel
to produce the optimum interference pattern.
The formula relating the dimensions of the
apparatus and the wavelength of light may be
proved as shown in Figure 8.20.

Figure 8.20 Double slit experiment

—E -

Consider the triangle S,PR and
S,PT , using Pythagoras theorem it
follows that,

(5,PF = Dz+[_v"+ % ) (8.56)

(slp)1=ol+[y,,—ﬂ (8.57)

Subtracting equation (8.56) from
(8.57),

(S:l’llf(S‘Pll:(_rN+%] 7(v

Simplifying equation (8.58) gives,

(8.58)

(8,P+5,P)S,P~S,P)=2dy, (8.59)

Note that, 1f the screen is at a very
far distance D from the slits as
compared to the slit separation , then,
the triangle S,S,P is very thin and

therefore, S:P+ S P=2D.
Thus, equation (8.59) becomes

dy,

S,P—S§P== (8.60)
2 D

The quantity S,P—S,P gives the
path difference for the two sources
S, and S,.

Using equation (8.54) and (8.60),
you get

dy
r=r=8,P-SP= %: nA; then,
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For bright fringes,

(8.61)

y SR (=0 B}
=g
Similarly, using equation (8.55) and
(8.60), you get,

Ay
B=F =S2P—S|P=%={n+ljl;

then for dark fringes,

{n+%)/’tD
p=-x"7 (8.62)
Y. 7

where 7=0,1,2,... of which the first dark
fringe is obtained and so on.

The fringe width (fringe spacing) which is
the distance between any two consecutive
bright fringes or two consecutive dark
fringes can be obtained from Figure 8.18
as follows. If P is the position of the "
bright fringes, then §,P—S P=nd. In
practice, S,S, is very small compared to
PQ, it then follows that, angle POO =
angle S,S,N=6.
S,N _nd

From triangle S,S,N ; sinf= ]
gleS:5, Ss, d

and from triangle PQO ;

Since € is very small, tan€=sin6 — 6
Therefore,
~_niD
=y
If Ris the neighboring (n—1)" bright
fringe, then,
Lo (n—1)DA
Yo = d

(8.63)

(8.64)
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The separation y=y,—¥,, between
successive fringes is obtained by subtracting
equation (8.64) from (8.63), that is:

_AD (8.65)

Therefore, the wavelength of the
monochromatic waves used in the Young’s
experiment is;

_xd
)

Young’s experiment is performed with
a light of wavelength 502 nm. Fringes
are measured carefully on a screen
1.20 maway from the double slits, and
the center of the 20” bright fringe is
found to be 10.6 mm from the centre
of the central bright fringe. What is the
separation of the two slits?

A (8.66)

Solution
The separation of the two slit can be
obtain from equation (8.61) as:

P
.vn
_20%502x10” mx1.20 m
a 10.6x10° m
=1.14x10" m

Therefore, the separation of the two slit
is 1.14x107 m.
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| \Example8.17) R

Coherent light with a wavelength Using equation (8.64), the distance
of 600nm passes through two very between the coherent sources for 7
narrow slits and an interference pattern fringes is;
is observed on a screen. The first order g nDA
bright fringe is marked as Pon the Ty
screen. What wavelength of light will 12x1.5 mx5100x 10" m
the first order dark fringe be observed = 18%102m
t point P?
s =5.10%10% m
Solution Therefore, the distance between the
Since the bright and the dark fringe is coherent sources for 12 fringes is
observed at the same point P, equation 5.10x107" m.
(8.59) is equal to equation (8.60); then,
1 Fringe shift
"/luD (IH—EJX'ZD Consider a thin transparent plate of
4 d - thickness 7 and refractive index ubeing

introduced in the path of one of the interfering
waves (Figure 8.21).
s Transparet

The wavelength 4, of light of the first
order fringe at point P is ;

_nd 1x600x10”m
SN 1
+o 0+—
R =

=12x10"m

Where n =1 for first order bright fringe
and n=0for fist order dark fringes.

Therefore, the wavelength of light Figure 8.21 Fringe shift experiment
in which the first order dark fringe
observed at point P is 1.2x107 m. The effective path in air is increased by

H—=1)t due to the introduction of the
plate. Therefore,
| \Example3.18/ ]
Coarsen light A=51000A in a Young’s
fiouble slit experiment gives 12 f:'ri.uges SEP~S,P—([.I _ l)/: ﬁ‘(y‘ l)l
in 1.8 cmon a screen at 1.5 m. Find
out the distance between the coherent | Formaxima, path difference = nA, where
sources. n=0,1,2......position of n" maxima is now;

path difference = S, P— [SIP+(p—I)f},

.L
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x,d

#~(,uf l)t: n, x, =%|:n/1+(;.l~l)l:|

D.
= —/1 In the

-X
el n d

Fringe width, 8=

absence of the plate (i.e. ¢ = (). the position

s x nDA
of the n" maxima is: x, = .

d

Displacement of fringes is now given by:

eBlans(umi)- 2],

Ax=—(u-1)t
Tlu=1)
Therefore, with an introduction of the
transparent plate in the path of one of the
slits, the entire fringe pattern is displaced

a distance, g(““‘)’ or g(p-l)z

towards the side on which the plate is
placed providing a shift in the interference
pattern given as;

D
Ax:;(,u-l)t

(ii) Newton's rings experiment
Newton’s rings are interference patterns
first studied by Isaac Newton. On the basis
of wave theory of light, the rings were first
correctly accounted for by Thomas Young.
A convex lens is placed on a plane glass
plate, and a thin film of air is enclosed
between the lower surface of the lens and
the upper surface of the plate. The thickness
of the air film is very small at the point of
contact and gradually increases outwardly
(Figure 8.22).
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Figure 8.22 Set up for Newton’s rings

A horizontal beam of light falls on glass
plate B inclined at 45°. The glass plate
Breflects part of the incident light
towards the air film enclosed by the
lens Land the plane glass plate G. The
reflected beam from the air film is viewed
with a microscope M . The interference
between the light reflected from the lower
surface of the lens DPE and the upper
surface of the glass plate G results into
interference pattern observed as circular
fringes. Therefore, the two rays of light
have net path difference of 2f where
t = PA. The phase change adds an extra
path of half a wavelength (that is, a crest
is reflected as a trough) because there is
a phase change of 180° when the wave-
train is reflected at the top surface of
the glass slide G. Therefore, the path
difference between the two wave trains at

Pis 2I+§ where A is the wavelength of
the light. A bright fringe is formed at P
when 2t=(2n— l)% and the dark fringe

is formed if; 2¢=nA.
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Therefore, the central spot (for which
t=0) appears dark instead of bright as
the geometrical path difference is zero.
The dark spot occurs because one of the
interfering rays has undergone a phase shift

m equivalent to i The theory of radius of

Newton’s rings can be used to determine
the wavelength 4 of light source if the
radius of curvature @ ofthe lower surface
of the lens is known (Figure 8.23).

Figure 8.23 Radius of Newton's rings.

From the theorem of intersecting chords
(TO)x (OD) =(QO) x(OP) which gives,

(8.67)

2at -1

But ¢ is very small compared to 2at as a

u=_ (8.68)
a

or 2t = E (8.69)
4q

where r is the radius of the ring and D
is its corresponding diameter. Combining

2

equation 2t=nA and 2r= the dark

a
fringes can be obtained when,
ap=li (8.70)
a

where n=1,2,3....

Combining equation 2t:(2n— l)% and
2= i, bright fringes can be obtained
a

when,

(217—l)i=— (8.71)
2 a

where n=1,2,3...

In this measurement, the diameters of
the rings are used rather than their radii
because it is difficult to locate the exact
center of the central spot. In addition, on
counting the order of the dark rings, the
central ring (spot) is not counted. Using
equation (8.68), (8.69) and (8.70),
D=daln (8.72)
If D,? forseveral rings are plotted against
n , then the wavelength A4 of light can
be determined from the slope of the plot
(Figure 8.24). The value of « can be
measured with a spherometer and this value
is used with that of slope, to calculate A.

D,
e
gl
/ Slope =4al
P S >
(¢}

Figure 8.24 A plot to determine 2 from

measurements on Newton's rings
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(¢) Production of interference by thin
films

Easily observed interference effect
is produced by reflections from thin
transparent film like soap bubbles and oil
films. The observed bright colours are due
to interference. The interference of reflected
light from the front and back surfaces of
soap films in a loop is shown in Figure 8.25.

Figure 8.25 Thin film of a soap bubble

The films are very thin at the top where
it appears dark and increases in thickness
towards the bottom where the interference
fringes are obtained. The loop is kept
vertical so that, the film is slightly wedge-
shaped due to its own weight. A source of
monochromatic light is placed behind the
camera during taking the photograph in
Figure 8.25. The incident light is placed
nearly at right angle to the film surface.

The light from the soap film arrives at the
camera after reflection from the film’s front
and back surface. Two features may be
observed: one, there is no reflected light
from the top area of the film which appears
black, secondly, horizontal interference
fringes occur below the dark region.
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Consider reflections which occur at the
two surfaces of the film. Figure 8.26(a)
indicates a light beam at nearly normal
incident on a transparent film with air in
cither side. The incident beam (1) is split
into two beams at the film’s front surface,
areflected beam (2) and transmitted beam
(3). The transmitted beam (3) split into
two beams at the back of the film; reflected
beam (4) and transmitted beam (5). The
reflected beam (4) is further split to
obtain transmitted beam (6) and reflected
beam not indicated in the diagram. Beam
(2) and beam (6) are coherent, since they
originate from one beam, and they have
the same wavelength.

Incident ray To camera

w

(b)

Figure 8.26 Reflections from the front and back
surfaces of a film
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From Figure 8.26 (b). ¢ is the thickness of
theair wedge at . Since the incidence ray
at P is nearly normal, the path difference
between rays at P is 2r. At M where the
thickness is zero dark fringes followed
by alternate bright and dark fringes are
obtained.

For dark fringes 2r=nl, where
n=0,1,2,3..., it follows that when n=0
first dark fringe, 7 =1second dark fringe,
n=2third dark fringe and so on.

For bright fringes 2r=(n~%)l, where

n=1,23.., it follows that for n=1 first
bright fringe, n=2second bright fringe
and so on.

The angle 6 of the wedge can be obtained
by taking the tangent of the angle at the
point where the fringe is formed. For the

dark fringe at P, tanB:LA When the
"-I
angle 6 approaches zero, tan6 = € hence

o=L.
xl

Consider the #" and (n+ k)" dark fringes
at Pand Q respectively.

26x,=nA and 20x, = (n+k)A.
Subtracting the two equations results to
26(x,—x,)=kA ifk=1x-x=0
where @ is the width of fringe, then
200 =A.

Therefore, the wedge angle. 6= i
2w

[ \esamplesiy) — ]

A piece of wire of diameter 0.050 mm
and two thin glass strips are available
to produce the air wedge. If a total of
200 fringes are produced, what is the
wavelength of the light used?

Solution

The wavelength of the light is given by:
2t _2x0.05x10° m

n 200

=5.00x107 m

Therefore, light of wavelength
5.00%107 m was used.

A=

[ \amples2) —

Anair wedge is made by separating two
plane sheets of glass by a fine wire at
one end. When the wedge is illuminated
normally by a light of wavelength
590 nm, a fringe pattern is observed in
reflected light. The distance measured
between the centre of the first bright
fringe and the centre of the eleventh
bright fringe is 8.1 mm. Calculate the
angle of the air wedge.

Solution 0
Using vector resolution, tanf=—,
x
A

where h:"—.

Therefore,

f=tan" el
2%

_ _{leS%xlO‘”m

——— |=0.021°
2x8.1x107 m) ]

The angle of the air wedge is 0.021°.
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Example 8.21

In a Newton’s rings experiment, the
diameter of the 15" dark ring was
found to be 0.59 cmand that of the
5% ring was 0.336 cm. If the radius of
curvature of the Plano-convex lens is
100 cm, calculate the wavelength of
the light used.

Solution
Using equation (8.72) for a given n
and m fringes:

D2, =4ak(n+m)

Then,
D:, -D:
A
4 (os9x102 m) ~(0.336x10”" m)’

- 4x10x100%107> m
= 5.88x107 m

Therefore, the wavelength of light used is
5.88x107 m.

Example 8.22

In a Newton’s rings experiment, the
diameter of the 12" dark ring changes
from 1.50 em to 1.35 cm when a liquid
is introduced between the lens and the
plate. Calculate the refractive index of
the liquid.

Solution

The refractive index 4 of liquid can be
obtained by taking the ratio of the square
of the change of diameter of curvature of
the ring D! before introducing the liquid
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to that of the liquid D, after introducing.

DY (150m)
Ths, fr=| == | = 153
el [DJ [1‘35 m)

"

Therefore, the refractive index of the
liquid is 1.23.

(d) Applications of interference of light
One of the most spectacular applications
of interference is the hologram. Light from
a laser, which is completely coherent,
falls on an object and is reflected in all
directions. Some of the reflected light lands
on a photographic plate, where it interferes
with light coming directly from the laser.
This interference produces a complex set of
fringes of maxima and minima, recorded on
the photographic plate. To see the hologram,
light of the same wavelength is allowed
to fall on the developed photographic
plate. This produces further interference,
allowing you to see a three-dimensional
image of the original object. Holograms are
used extensively in scientific measurement
and data recording, but their striking three-
dimensional images have made them
important in art and design: they are on
most credit cards.

The phenomenon of light waves interference
atoily or filmy surfaces has applications in
areas relating to optics: sunglasses, lenses
for binoculars or cameras and even visors
for astronauts. In each case unfiltered light
could be harmful or at least inconvenient for
the user, thus, the destructive interference
eliminates certain colours and unwanted
reflections.




—

Secondary Schools

. Explain the effects on the fringe

spacing (width) when the following

happens in Young’s double slit

experiment:

(a) The Young’s apparatus is
immersed in water;

(b) The distance between the slits
is reduced;

(¢) The source of light is moved
closer to slits;

(d) The screen is brought closer to
the slits: and

(e) Athin transparent plate is placed
in front of one of the slits.

. A Young’s double slit experiment

is carried out with the light of
wavelength 5000 A. If the distance
between the slits is 0.2 mm and the
screen is at 200 cm from the slits.
Calculate the distance of the third
bright fringe and third dark fringe
from the central bright fringe.

3. The distance between the two

consecutive dark fringes is 8.0 mm
when light of wavelength 630 mm is
incident on a pair of slits. A second
monochromatic light is used and the
dark fringes are 7.0 mm  apart. What
is the wavelength of second light?

. InYoung's double slit experiment, a

total of 23 bright fringes occupying
a distance of 3.9 mm were visible
in a travelling microscope. The
microscope was focused on a plane
which was3 c¢m from the double slit
and the wavelength of the light being

used was 5.5x 107 m. What was the
separation of the double slit?

. Coherent light that contains two

wavelengths, 660 nm and 470 nm,
passes through two narrow slits
0.300 m apart. The interference
pattern is observed on a screen
5.0m from the slits. What is the
distance on the screen between the
first order bright fringes for the two
wavelengths?

. Inan experiment using Young’s slits

the distance between the center of the
interference pattern and the length
of the bright fringe on either side is
3.44 cm and the distance between
the slits and the screen is 2.00 m .
If the wavelength of the light used
is 5.89x 107 m , determine the slit
separation.

. When monochromatic light is

reflected from two flat glass plates,

with a wedge-shaped air film of

small angle between them, a pattern

of bright and dark lines can be seen.

Explain in detail:

(a) Why this pattern is produced:

(b) How the separation of the lines
depends upon the angle of the
wedge: and

(c) The effect of filling the space
between the plates with a
transparent liquid.

. An air wedge is formed using two

optically plane glass plates of length
15 ecm each by placing a human
hair of diameter 0.006 cm at one
of their ends. When the air wedge
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is illuminated by a monochromatic
light of A=5890 A | fringes are
formed. Calculate the fringe width.

9. InNewton’s rings experiment, rings
are formed by reflected light of
wavelength 5895 A with a liquid
between the plane and the curved
surface. If the diameter of the 5th
bright ring is 3 mm and the radius
of curvature of the curved surface
is 100 cm , calculate the refractive
index of the liquid.

10. A set of Newton’s rings was produced
between one surface of a biconvex
lens and a glass plate using green
light of wavelength 5.46x 10 cm.
The diameters of particular bright
rings of orders of interference m and
m+10 , were found to be 5.72 mm
and 8.10 mm respectively. When
the space between the lens surface
and the plate was filled with liquid,
the corresponding values were
4.95 mm and 7.02 mm respectively.
Determine the radius of curvature of
the lens surface and the refractive
index of the liquid.

8.5.2 Diffraction of light

Diffraction is the ability of a wave to spread
out in wave-fronts as it passes through
a small aperture or around a sharp edge
(Figure 8.27). The light that comes out from
a narrow torch head shines a very wide
area, and sound that comes out of a very
thinwhistle is heard over a very wide region
due to diffraction phenomenon. Diffraction
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can be described as the bending of light
when it strikes a barrier that has an aperture
or an edge. The bending of light becomes
more pronounced when the size of the
obstacle’s edge or aperture is comparable
to the wavelength of light. The amount of
diffraction (the sharpness of the bending)
increases with increasing wavelength and
decreases with decreasing wavelength. In
fact, when the wavelength of the waves is
smaller than the obstacle, no noticeable
diffraction oceurs. This section explains the
necessary conditions for diffraction of light
to occur and the principle of diffraction
grating. It also describes how to determine
the wavelength of monochromatic light by
the diffraction method. Finally, it describes
the applications of diffraction of light.

Obstacle with
single slit

Plane Diffracted
wave ))) e dves

Figure 8.27 Diffraction of waves

(a) Necessary conditions for
diffraction of light

Diffraction of light occurs if the size of
obstacle is comparable to the wavelength
of light (4x107m to 7x107'm). If the
size of opening or obstacle is close to this
limit, diffraction of light can be observed.
If the source and obstacle are kept far apart

from each other, the incident wave-fronts
on the diffracting obstacle are plane.
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Aplane wave can also be produced by using
a converging lens . This diffraction is called
Fraunhofer diffraction. On the other hand,
ifthe source and the screen are close to each
other, the wave-fronts are spherical and the
wave-front leaving the obstacle are also
spherical. This diffraction is called Fresnel
diffraction. However, in this section, you
will deal only with Fraunhofer diffraction.

Fraunhofer diffraction occurs when the
light source and the screen are effectively
at infinite distances from the aperture or
obstacle causing the diffraction such that
all rays are considered parallel (Figure 8 28(a)).
A distant source can be used to provide
the incident wave fronts, but it is often
more convenient to use a source which is
placed at the focal point of a converging
lens, (convex) to obtain the parallel rays.
(Figure 8.28(b)). Likewise, a converging
lens is used to converge parallel rays onto
a nearer screen.

Single slit

A\

==
—

(a)
Single slit

Source '

(b)

Figure 8.28 Fraunhofer diffraction

(b) Determination of wavelength using
Fraunhofer diffraction

Consider a slit of width, a, splits into two

2n (where n=1,2,3...) equal parts of width

4 (Figure 8.29).
2n

Converging lens in
this plane focuses Screen
lightat P | |

Diffracting
slit ‘

v

Plane wavefronts incident on slit
Figure 8.29 Fraunhofer diffraction by single slit

If A is the wavelength of the light used

and Ois the direction to the normal such

A

that, AN =—, the wave from 4 will be
completely out of phase with that from C.
Thus, waves from Aand C will interfere
destructively at point 2 on the screen.
Similarly, light from each point between
Aand C, and that from corresponding
point between Cand Dwill interfere
destructively. This happens for every pair
of sections such as DE and EF . Hence,
the light will not diffract in those directions
6, which are such that, AN =% that is,
ACsinf= %_ then

A

a .
—sinf=—

3 3 therefore, a condition for
n
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dark fringe is;

asin@=+nd (8.73)

where n=1,2,3... and the £ sign shows
that, there are symmetric dark fringes
above and below point P.

Note that, equation (8.73) may be used for
the other segment of the slits. The sin6 =0
corresponds to a bright band, where light
from the entire slitarrives at P is in phase,
giving the central maximum. The positions
of other maxima are placed approximately
mid-way between the minima, and they
are less intense than the central maximum.

From Figure 8.18, tan@ = % and for small
angle 8, tanf=sinf — 6 ; then,

, = TAD (8.74)
d

Equation (8.74) is valid when y, <<<D.

\vamplenas) ]

A laser light of wavelength 633 nm is
passed through a narrow slit and the
diffraction pattern on a screen 6.0 m
away, shows that distance between
centre of the first minima on either side
of the central bright fringe is 32 mm.
Calculate the width of the slit.

Solution
Using equation (8.74), the slit width is;

_nAD _1x633x10° mx6m

Y gx 107
= m

d

=24x10"*m
Therefore, the slit widthis 2.4x10* m.

Physics Form V.indd 275

Vibrations and waves

(¢) The principle of diffraction grating
Diffraction grating is an arrangement of
a large number of closely spaced parallel
slits, all with the same width and equally
spaced between their centre, ruled on
glass or polished metal. The lines scatter
the incident light and are mostly opaque
whereas, the space between them transmit
light and acts as a slit. For a grating of N
slits, where each slit is narrow compared
to the wavelength 4 of the incoming plane
wave, its diffraction pattern spreads out
nearly uniformly. If the slits are equally
spaced and the wave from one slit is in
phase with that of adjacent slit, then, the
wave is also in phase with those from other
slits.

Suppose, a plane wave of monochromatic
light of wavelength A falls ona transmission
grating in which the grating spacing (slit
separation) is d (Figure 8.30).

|7 Grating
A

Monochromatic d
light 1

Figure 8.30 Diffraction grating

Consider wavelets coming from points 4
and B at an angle 6. The path difference
AC between the wavelets is dsin6.

Therefore, for constructive interference,
dsinf =nl (8.75)
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where n is an integer giving the order of the spectrum.
For n=0, @=0,then, the central maximum is
observed (zero order image). The first order, second
order and so on, are given by n=1,2,3..., but these
are less bright than forn = 0 (Figure 8.31) the number

1
of lines per metre of the gratings is given by; N = 7

Incident
beam

Grating

Figure 8.31 Orders of images produced by diffraction grating

Example 8.24

Light of wavelength 5890 A is incident normally
on a grating with a spacing of 2.00x10*m What
is the angle to the normal of:

(a) first order principal maximum,

(b) a second order principal maximum?
Solution

Using equation (8.75),

(a) The first order principle maximum, n=1is;

-10
a=sin*‘[%J:m"[;‘“ﬁi%jom m]:m"

(b) The second order principle maximum, n =2

10
g=sin” [%J:gtn-'[—z"?:?;ﬁ'l m): 36.1°

Therefore, the angles to the
normal of first order and second
order principle maximum are
17.1°%and 36.1° respectively.

\anpiesss)
A special grating has 1000
lines per cm. Determine the
maximum number of orders
one can get when light of
A=6328 A falls on the
grating.

Solution

Using (8.75), maximum value
of nis obtained for sin@=1,
therefore,

A=

T NA

= 1

T 1000x100 m " x6328 %107 m
=158

Therefore, since n must be
an integer, then the maximum
number of order is 15.

[ \evampienze)

A diffraction grating produces
a second order maximum at
50.6° to the normal when
being illuminated normally
with light of wavelength
644 nm. Calculate the number
of lines per millimetre of the
grating.

Solution

The number of lines per mm

of the grating, N =$ is
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N=

1_sing

d al

_ sin(50.6°)
2x644x107 mx1000

=600 lines per mm

The number of lines are
600 lines per mm.

(d) Wavelength of monochromatic
light by diffraction method

The wavelength of a monochromatic
light can be measured by a combination
of diffraction grating and spectrometer.
Once the angular position, 6, of one of the
principal maxima (produced by grating)
is measured and the grating spacing
d is known; then the wavelength of
monochromatic wave can be determined.

[ hiiysa |

Measuring wavelength by using
diffraction grating

Materials

Source of monochromatic light (e.g.
Sodium lamp), spectrometer and
diffraction grating.

Turntable

Monochromatic light
| Collimator

I

Vibrations and.

Procedure

(a) Adjust the eyepiece of the telescope
so that the cross-wires are sharply
focused.

(b) Focus the telescope for parallel light
using a distant object. (There should
be no parallax between the image
seen in the telescope and the cross-
wires seen through the eyepiece).

(c) Place the sodium lamp in front of
the collimator.

(d) Level the turntable of the
spectrometer if necessary.

(e) Looking through the telescope. focus
the collimator lens and adjust the
width of the slit until a clear narrow
image is seen.

(f) Place the diffraction grating on the
turntable at right angles to the beam.

(g) Move the telescope to the right until
the cross wires are centered on the
first bright image. Take the reading
6, from the scale on the turntable.
(Use magnifying lens and lamp to
see the scale more easily).

(h) Move the telescope back through
the centre and then to the first bright
image on the left. Take the reading
6, from the scale. The setup of the
experiment is shown in Figure 8.32.
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Questions
From the obtained readings,
1. Calculate;

(a) Qusing, Q:M

(b) the distance d between the slits
using d =}—Lv. where N is the

number of lines per metre on
the grating

(¢) the wavelength of the
monochromatic light using
equation (8.75).

2. Repeat this for different orders n
and get an average value for the
wavelength.

Applications of diffraction

The knowledge that light undergoes
diffraction has found a number of uses
in science and technology. For example,
the knowledge of diffraction is used
in production of three dimensional
holograms (3D). discovery of X-rays
diffraction provided the means for
studying the atomic structure of crystals
and polymers. In 1952 scientists used
X-rays diffraction to photograph DNA.

1. Diffraction effects for sound waves
and water waves are readily observed
but not for light. Explain.

2. Why is a diffraction grating better
than a two slit set up for measuring
wave lengths of light?

3. A laser light of A=6328 A
illuminates a 0.4 mm wide slit. Find

6.

the width of the central maxima on
a screen kept at a distance of 16m.
Parallel rays of light with wavelength
620nm pass through a slit covering
a lens with a focal length of 40.0cm.
The diffraction pattern is observed
in the focal plane of the lens, and
the distance from the centre of
the central maximum to the first
minimumis 36.5 cm. Calculate the
width of the slit. Do not use small
angle approximation.

Parallel beams of two wavelengths
5890 A and 896 A of sodium vapour
lamp fall on a diffraction grating
having 6000 lines/cm. Estimate the
dispersion produced by the grating
on the two wavelengths, in the first
order spectra.

Light consisting of two wavelengths
which differ by 160 nm passes
through a diffraction grating with
2.5%10 linespermetre. In the
diffracted light, the third order of one
wavelength coincides with the fourth
order of the other. What are the two
wavelengths and at what angle of
diffraction does this coincidence
occur?

Light of wavelength 600 nm is
incident normally on diffraction
grating of width 20.0 mm on which
10.0x10° lines have been ruled.
Calculate the angular positions of
various orders.

. A rectangular piece of glass

2emx3cm  has 18000 evenly
spaced lines ruled across its whole
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surface, parallel to the shorter
side, to form a diffraction grating.
Parallel rays of light of wavelength
5%107em  fa]) normally on the
grating. What is the highest order
of spectrum in the transmitted light?

9. Light of wavelength 535 nm falls
normally ona diffraction grating. Find
its grating spacing if the diffraction
angle 35° corresponds to one of the
principal maxima and the highest
order of spectrum is equal to 5.

10. In a certain experiment using normal
incidence, the readings for the angle
of diffraction in the second order
spectrum for the two sodium D
lines were, D, =42°, D,=42%
If the wavelength of D, line is
5896 A, find the number of lines
per centimeter of the grating D, line
and the wavelength of the D, line.

8.5.3 Polarization of light
Polarization is a characteristic of all
transverse waves. If all the vibrations of a
transverse wave are in a single plane which
contains the direction of propagation of
the wave, such a wave is said to be plane-
polarized (or linearly polarized). Therefore,
polarization is the process of making waves
vibrate in only one plane. Observations and
experiments show that light is a transverse
electromagnetic wave and therefore it can
exhibit polarization.

As discussed previously (section 8.4.2), an
electromagnetic wave is due to fluctuating
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electric £ and magnetic Bfields that are
perpendicular to each other and to the
direction of propagation. The vibrations of
E and B fields of light can be restricted in
particular direction in a plane perpendicular
to the propagation of light. This process is
called polarization of light.

(a) Methods of producing plane
polarized light

There are different ways of producing

polarization. These include use of polaroid,

reflection, double refraction and scattering.

(i) Polarization by polaroid

The most common method of polarization
is the use of polaroid filters (Figure 8.33).
Polaroid filters are made of materials which
are capable of blocking one of the two
planes of vibration of an electromagnetic
wave. When un-polarized light strikes the
filter, the parallel vibrations are allowed
to pass through the polaroid while the
perpendicular vibrations are absorbed. For
this case, polaroid used to polarize light is
called a polarizer. When un-polarized light
with intensity /,is incident normally on a
polarizer, the intensity of the emerging

beam from the polaroid sheet is %‘L.

This is because the vibrations of electric
vector £ which are parallel to the polaroid
transmission axis are allowed to pass while
the perpendicular ones are absorbed.
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Unpolarized 4 Polaroid > Polarized
light filter light

Figure 8.33 Polarized light by polaroid

(ii) Polarization by reflection

When unpolarized natural light is incident on a
glass surface at an angle, each of the vibrations of
the incident light can be resolved into a component
parallel to the glass surface and a component
perpendicular to the surface. The light due to the
components parallel to the glass is reflected, but the
remainder of the light is refracted into the glass. If
metallic surfaces are used, the light reflected vibrates
in various planes and hence, the light will continue in
its un-polarized state. On the other hand, non-metallic
planes (glass) will reflect most of the vibrations at a
single plane parallel to the plane of incidence. When
light hits the material and crosses the interface, the
atoms absorb the light temporarily and the electron
starts vibrating in the direction of the electric field of
the refracted ray. This gets re-emitted with an electric
field vector which is perpendicular to the direction of
propagation of the wave. Thus, light reflected by the
glass is plane polarized (Figure 8.34 ).

Reflected
polarized light

Unpolarized
incident light

Figure 8.34 Plane polarized wave by reflection

Polarization of light by reflection is done by reflecting
off the unpolarized light in a nonmetallic reflecting
surface. The amount of polarization will depend on

the angle of incidence of the
light and the composition
of the material used for
the reflecting surface. The
reflection coefficient of light
will go to zero between the
angles of 0°to 90°, since the
electric field goes parallel to
the plane of incidence. At this
angle, the reflected light will
become linearly polarized.

Unpolarized light can also
undergo polarization by
reflection off nonmetallic
surfaces. The extent to
which polarization occurs is
dependent upon the angle at
which the light approaches the
surface and upon the material
that the surface is made of.
Metallic surfaces reflect light
with a variety of vibrational
directions; such reflected light
is un-polarized. However,
nonmetallic surfaces such as
asphalt roadways, snowfields
and water reflect light such that
there is a large concentration
of vibrations in a plane parallel
to the reflecting surface. A
person viewing objects by
means of light reflected off
nonmetallic surfaces will
often perceive a glare if the
extent of polarization is large.
Fishermen are familiar with
this glare since it prevents
them from seeing fish that
lie below the water. Light

— S
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reflected offa lake is partially polarized in a direction
parallel to the water’s surface. Fishermen know
that the use of glare-reducing sunglasses with the
proper polarization axis allows for the blocking
of this partially polarized light. By blocking the
plane-polarized light, the glare is reduced and the
fisherman can easily see fish located under the water.

(iii) Polarization by double refraction

Polarization can also occur by the refraction of
light. Refraction occurs when a beam of light
passes from one material into another. At the
interface of the two materials, the path of the beam
changes its direction. The refracted beam acquires
some degree of polarization. Most often, the
polarization occurs in a plane perpendicular to the
surface. The polarization of refracted light is often
demonstrated by using a unique crystal that serves
as a double-refracting crystal. The light is split into
two beams when entering the crystal (Figure 8.35).

Unpolarized
incident light

Double refracted
polarized light

Figure 8.35 Polarization by double refraction

If an object is viewed by looking through the
crystal, two images will be seen. The two images
are the result of the double refraction of light.
Both refracted light beams are polarized-one in a
direction parallel to the surface and the other in a
direction perpendicular to the surface.
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Since these two refracted rays are
polarized with a perpendicular
orientation, a polarizing filter
can be used to completely
block one of the images. If the
polarization axis of the filter is
aligned perpendicular to the plane
of polarized light, the light is
completely blocked by the filter:
meanwhile, the second bright
image appears. If the filter is then
turned 90° in either direction, the
second image re-appears and the
first image disappears.

(iv) Polarization by scattering
The scattering of light off air
molecules produces linearly
polarized light in the plane which
is normal to the incident light.
When light strikes the atoms
of a medium, it will often set
the electrons of those atoms
into vibrations. The vibrating
electrons then produce their
own electromagnetic wave that is
radiated outward in all directions
(Figure 8.36).

Incident
light

Radiated
light

Figure 8.36 Polarization by scattering
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The generated wave strikes neighbouring atoms,
forcing their electrons into vibrations at the same
original frequency. The vibrating electrons in turn
produce another electromagnetic wave that is
once more radiated outward in all directions. The
absorption and reemission of light waves cause the
light to be scattered about the medium. Polarization
by scattering is observed as light passes through the
atmosphere. The light that is partially polarized by
scattering, contributes to the blueness of the skies.

(b) Brewster’s Law

Polarization can be achieved by allowing the light
ray to fall on a surface of a transparent medium in
such a way that, the reflected ray makes an angle
of 90° with the refracted ray. This is the Brewster
law named after a Scottish physicist, Sir David
Brewster, who first proposed it in the year 1811.

When a light ray is incident on a surface at an angle
i, (called Brewster angle), part of the ray is fully
polarized by reflection at an angle i,and another
is partially polarized by refraction to an angle

r=90°— i (Figure 8.37).

Unpolarized
incident light Totally plane polarized
I reflected light

Medium |

Medium 2

", Partially plane
polarized
reflected light

Figure 8.37 Polarization by reflection

Applying Snell’s law;
n,sini, =mn,sinr

where 7, and 1, are the
refractive indices of media 1
and 2, i/' and r are the
polarizing and refracted angles
respectively.

i, +90°+r=180°,

therefore, r=90°-1i .

So,
nysini, =1,sin(90°—i )
=1,c0si,
n, sini
l=— L= Ianip (8.76)
n,cos 5

From equation (8.76), if
medium 1 is air or vacuum
n=1 then,

(8.77)

= tan i

Equation (8.77) is Brewster’s
law. The law states that,
“Maximum polarization of

reflected beam occurs for an

angle of incidence i, given by
tani =1, refractive index of
glass”. For a glass of refractive

indexn, =mn, =15, i =57°

Therefore, at the incident
angle of 57°, the light which
is reflected from the surfaces
of glass is plane polarized and
at angles of incidence other
than 57°, the reflected light is
partially plane polarized.

F
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(¢) Optical activity of solution

The concentration of solutions (e.g. sugar) can be measured using a saccharimeter. This
is done by measuring the refractive index or the angle of polarization of optically active
solution. The saccharimeter consists of a polarimeter. A polarimeter is an instrument used
to measure an optical activity. The optical activity depends on various factors including
the concentration of the solution, temperature, length of the tube containing the solution
and wavelength of the light passing through the solution (Figure 8.38).

Polarized light

\ly
N
=(w )=
W
AR
Light  Unpolarized Polaroid
source light

Optically active
sample

Viewer
Analyzer

Figure 8.38 Saccharimeter

Saccharimeter is used in food processing,
brewing and alcohol industries. The sample
of the solution is placed in the tube 7. and
un-polarized light emerging from the
light source falls on the polarizer P. The
polarizer P produce polarized light that get
into the optically active solution in tube 7.
The viewer can observe the polarized light
by the solution through the analyzer 4.
Note that, the optical activity measurement
is carried out in a dark room.

(d) Applications of polarization

Polarization has wide applications in various
fields including glare-reducing sunglasses,
transparent plastics and entertainment
industry. When light is reflected from a
flat surface (e.g. water), it tends to become
horizontally polarized. Watching at such
polarized (glare) light become annoying
and reduce visibility. Polaroid sunglasses
provide a superior glare protection. The
sunglasses contain a special filter that
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blocks such reflected polarized light,
hence reducing the glare and improving
visibility. However, polaroid sunglasses
may not be required when skiing down hills
as they may block light reflected from ice
patches. In addition, sunglasses may reduce
visibility of images displaced on liquid
crystal display (LCD) or light-emitting
diode display (LED) found on a dashboard
of some cars or teller machines.

In industry, polaroid filters are used to
perform stress analysis tests on transparent
plastics. As light passes through a plastic,
each colour of visible light is polarized
with its own orientation. If such a plastic
is placed between two polarizing plates,
a colourful pattern is revealed. As the top
plate is turned, the colour pattern changes
as new colours become blocked and the
formerly blocked colours are transmitted.
In addition, three Dimensional (3D) movies
are produced and shown by means of
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polarization. Movies are (3D), actually
two movies being shown at the same time
through two projectors. The two movies
are filmed from two slightly different
camera locations. Each individual movie
is then projected from different sides of the
audience onto a metal screen. The movies
are projected through a polarizing filter. The
polarizing filter used for the projector on the
left may have its polarization axis aligned
horizontally while the polarizing filter used
for the projector on the right would have
its polarization axis aligned vertically.
Consequently. there are two slightly
different movies being projected onto a
screen. Each movie is cast by light that is
polarized with an orientation perpendicular
to other movie. The audience then wears
glasses that have two polaroid filters. Each
filter has a different polarization axis; one
is horizontal and the other is vertical. The
result of this arrangement of projectors and
filters is that, the left eye sees the movie
that is projected from the right projector
while the right eye sees the movie that
is projected from the left projector. This
gives the viewer a perception of depth (3D
perception).

1. Calculate the polarizing angle of
glass, water and diamond with
refractive indices: 1.53. 1.33and
2.42 respectively.

2. (a) What is meant by polarization

and angle of polarization?

(b) Calculate, the angle of
polarization for water of
refractive index 1.33.

3. Explain what is meant by double
refraction. Describe how you could
demonstrate experimentally that two
refracted beams produced from a
single beam by a piece of calcite
are plain polarized at right angles
to each other.

4. Explain why polaroid sunglasses are
effective in reducing glare.

5. (a) Use a sketch diagram to show
how you would demonstrate that
a beam of light is completely
polarized.
A parallel beam of un-polarized
light is incident at an angle of
58°ona plane glass surface and
the reflected beam is completely
polarized. What is the refractive
index of the glass, and the angle
of refraction of the transmitted
beam?

(b

=

8.6 The Doppler Effect

Perhaps you have noticed how the sound ofa
vehicle’s horn changes as the vehicle moves
past you. The frequency of the sound you
hear as the vehicle approaches you is higher
than the frequency you hear as it moves
away from you. This apparent change in
pitch, due to the relative motion between the
source and the observer, was first explained
by an Austrian scientist, Christian Doppler
and is known as Doppler effect.

Doppler effect in sound is different from
that in light. In the case of light, the Doppler
effect is symmetric i.e. the apparent
frequency is the same for the two cases,
either when a source moves towards a
stationary observer or when an observer
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moves towards a stationary source. In this
section, you will compare the Doppler
effects in sound and light and discuss its
applications in real life.

8.6.1 Doppler Effect for Sound

When either sound source or observer
moves, or both of them move, the
observer will notice a change of pitch of
sound. From this effect the observer can
determine whether the source of sound
is approaching or receding. Then, the
speed of either the source or observer can
be estimated. Doppler effect has many
important applications as it depends on
things moving. It can generally be used
to determine the apparent frequency of an
object approaching to or receding from an
observer.

(a) Source moving towards a stationary
observer

When the source of sound moves, the
waves in front of it are compressed while
those behind it are stretched. Therefore,
a moving source affects wavelength of
the wave. Consider a source S moving
towards the stationary observer O, with
velocity . the frequency of the sound
fis compressed in smaller distance
(v—u)because S moves a distance u,
towards O per second (Figure 8.39).

N

Figure 8.39 Source moving towards stationary
observer

Vibrati d waves

Then, it follows that, the apparent
V=i,

wavelength, "=

. It follows that,

if vis velocity of sound in air, the apparent
frequency f s given as,

v _[»
4 T [v~u_\ Jf

Since (v—AlA) is less than v, then the
apparent frequency f” is greater than the
frequency of the sound f, thus, there is
an apparent increase in frequency when
a source is moving towards an observer.

(8.78)

(b) A source moving away from a
stationary observer

In this case, the sound wave ( / wave) is

moving away from O per second occupy a

distance (v+ u‘) as shown in Figure 8.40.

vu,

SERRERE

Figure 8.40 Source moving away from a
stationary observer

The wavelength A’ of the waves at Ois

therefore, 1’ = %, hence the apparent

frequency, is

(8.79)

v [ v ;
/ s [v+u\]"

Since v+u, is greater than v, then the
apparent frequency f* is less than the
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frequency of the sound f: thus, there is
an apparent decrease in frequency when a
source is moving away an observer.

T
A ftrain standing at the outer signal of
a railway station blows a whistle of
frequency 400 Hz in still air.

(a) What is the frequency of the whistle
for a platform observer when the
train,

(i) approaches the platform with a
speed of 10 ms™'?

(i1) recedes from the platform with
aspeed of 10 ms™?

(b) What is the speed of sound in each
case? Speed of sound in still air is
340 ms™.

Solution

(a) Source is moving

(i) Sincethetrain (source)is approaching
the observer, therefore, the source
moves in the direction of the waves,

" v
= s
LGl
=1
e 340 ms 400 Hz
(340—10) ms
=412 Hz

(i) Since the train recedes away from
the observer, therefore, the source
and the wave move in opposite

directions.
i [ - Jf
vt
340 ms™
= %400 Hz
4 (340+10) ms™
=388.6 Hz

(b) The speed of sound in either case will
be 340 ms™ as it does not depend
on either the motion of the source
or the observer or both.

(¢) An observer moving towards a
stationary source

In this case, the velocity of the sound

wave relative to O is given by,

v+u, (Figure 8.41). Hence the apparent

frequency f” is given by _t"=ﬂ‘
where 1=2 *
7
thus,
f’=[ﬂjf (8.80)
v

- V+u,

D))

Figure 8.41 Observer moving toward stationary

source

Since (v+uﬂ) is greater than v, then,
the frequency f”heard by the observer
is higher than f. This implies that the
listener moving towards the stationary
source hears a frequency that is higher
than the source frequency.

(d) An observer moving away from
stationary source

In this case, the wavelength of the waves

reaching O is unchanged and is given

by % The velocity of the sound waves

relative to O is now v—u, (Figure

8.42).
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Figure 8.42 Observer moving away from
stationary source

Hence the apparent frequency /” is given

by f’:v_l,L—u”, where l=%, then

PEERE
v

Since (\'Auu) is less than v, then the
apparent frequency f”is less than the
frequency of the sound /', thus, there is
an apparent decrease in frequency when a
source is moving away from an observer.

Two stationary sources 4 and B each
emit notes of frequency 392 Hz. A
listener is between the two sources and
is moving towards B with a speed of
15 ms™'. What is the beat frequency
detected by the listener? Velocity of

sound in still air is 340 ms™.

(8.81)

Solution
The frequencies detected by a listener
away from 4 and towards B are

(5 (552

v
respectively.

The beat frequency f” is given as:
g | 2 )
= = S ={TJL
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=1
SIXISWE s =345 Ha
340 ms
Therefore the beat frequency detected

by a listener is 34.6 Hz.

(e) Both source and observer moving

In this case, both wavelength and
frequency will be affected as both
source and observer are moving. When
source and observer are moving towards
cach other, the apparent wavelength is

A=

« and change in velocity,
7

V= vu; then,

,_ Vv v+u,

I'= A _[ v—u, ]f
Since (V+u“) is greater than (v~u‘),
then, the frequency /" heard by the
observer is higher than the frequency
f of the source. This implies that the
listener hears a frequency that is higher
than the source frequency.

(8.82)

When source and observer are moving
away from one another, the apparent

1
wavelengthis "= YEY and v'= v=u;
therefore,
vy v=u ),
H= v j,f (8.83)

Since v—u, is less than v+u, , then the
apparent frequency f”is less than the
frequency of the sound f, thus, there is
an apparent decrease in frequency when
a source and observer are moving away
from each other.
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When both observer and source are moving
in the same direction with source behind
the observer, the apparent wavelength

v—u

s then the change in velocity

Therefore,
v V=i o
L s P (8.84)
F=g [V‘“‘]f

The apparent frequency f* heard by
the observer will depends on the value

v—u s
of —=. If u, is less than u, . then,
v—u,

s

apparent frequency f”will be greater

than the frequency / of the source. On
the other hand, if «,is greater than u, .
then, apparent frequency f* will be less
than the frequency fof the source. When
both observer and the source are moving
in the same direction with source in front

of the observer, the apparent wavelength
v+u,

X 7 =, then apparent frequency,
o VU,

===

Therefore,

(8.85)

The apparent frequency f” heard by
the observer will depends on the value

v ;
of <. If u,is greater than u_, then,
U,

appareni frequency f” will be greater

than the frequency / of the source. On

.E

the other hand, if #,is less than u,, then,
apparent frequency f” will be less than
the frequency fof the source.

(f) Source moving at an angle to the
line joining the source and the
observer

If the source moves at an angle to the
observer, the apparent frequency changes
continuously. The frequency heard by
the observer depends on the situation of
source at the time of emission and not at
the time of hearing.

Consider a source moving along a line
AB while the observer O is stationary
(Figure 8.43).

[¢)
A
/: \\‘

1

l

|

| \

; . \.P_. v
A N o B

Figure 8.43 Oblique Doppler effect

When the source is moving at an angle 6 to
the line joining the source and the observer,

v—u cos@
the apparent wavelength A= ————

then the apparent frequency,

f’=[;]f (8.86)

v—u_cosf

Since v is greater than v—u, cos@, then,
the frequency f” heard by the observer
is higher than the frequency f of the
source. This implies that the listener hears
a frequency that is higher than the source
frequency.
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When the source reachesP, the
component of u, is u cosf away from
stationary observer. Thus, when the
source is moving at an angle € away
from the stationary observer, the apparent

wavelength A’=w, then the
apparent frequency,
v |
¥ |p (8.87)
Y [\r+u‘c059j'/ ‘

Since v+u cos@ is greater than v, then,
the frequency /” heard by the observer is
less than the frequency f of the source.
This implies that the listener hears a
frequency that is lower than the source
frequency.

Note that, the motion of the observer
affects only velocity v of the waves
arriving at the observer, while the motion
of the source affects only the wavelength
of the waves reaching the observer.

A police car’s siren emits a sinusoidal
wave with frequency 300 Hz. The
speed of sound is 340 ms™ and the
air is still. Find the wavelength of the
waves in front of and behind the siren
if the car is moving at 30 ms™".

Solution
The source in front of the observer
provides the value of wavelength,

v—u

i =
i

B

_ (340-30) ms™
© 3008

X =1.03m

Vibrations and waves

The wavelength of the observer behind
the car is given as:

P
f
-1
= G030 ms™ 5,
300s™

Therefore, the wavelength of the waves
in front of and behind the siren are
1.03 m and 1.23 m respectively.

A\ Gamplensn)
Ahorn of frequency 900 Hz is sounded
by a car travelling towards a cliff and
normal to the cliff with a velocity of
20ms™". Calculate the beat frequency
of the horn sound as heard by the
car driver. Velocity of sound in air is
320ms™.

Solution

The car driver will hear beats with
frequency, f, dueto theactual frequency
ofthe horn, /', and the frequency, f;.of
the reflected sound from the cliff. Since
the apparent wavelengthis 1/ = V_—f“*',

then, the apparent frequency is:

.,_v_’= v
) A [V—le]f,

=)
fr=—320m 500 Hz

" (320-20) ms™
=960 Hz

The frequency f, is the one that
reaches the cliff. This “frequency”
will be reflected back to the car driver.
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Therefore, the cliff acts as a source of
sound and the car driver is the listener.
The apparent frequency f, heard by
the driver from the cliff is:

fi= [”—"Jf
=

-1
f‘=(320+20)4r‘ns NS
= 320 ms

[, =1020 Hz—900 Hz =120 Hz

Therefore, the beat frequency of the
horn sound heard by the car driver is
120 Hz .

8.6.2 Doppler Effect for Light

The theory of the Doppler’s effect in light
is different from that in sound. In the case
of light, the Doppler effect is symmetric
i.e. the apparent frequency is the same for
the two cases, either when a source moves
towards a stationary observer or when an
observer moves towards a stationary source.
Doppler effect for light waves depends on
only one velocity, the relative velocity v
between source and observer measured
from the reference frame of either.

Suppose a star is moving with a velocity
vaway from the earth and emits light of
wavelength A. If the frequency of the
vibrations is f* cycles per second, then f
waves are emitted in one second, where
¢=fA and cis the velocity of light in

vacuum. Owing to the velocity v, the /'

waves occupy a distance (¢+v). Thus, the

apparent wavelength A" to an observer
on the earth in line with the star’s motion
is,

A’zly:[cf"}l, o ]
! ¢ c

(8.89)

—
Since :>l, it follows that, A’ is
(53

greater than A when the star is moving
away from the earth, i.e. there is a shift or
displacement towards the red end of the
spectrum.

If the star is moving towards the earth
with a velocity v, the apparent wavelength
A is given by

L=V o o ‘s
Since —— <1, it follows that, A" is less
&

than A when the star or planet is moving
towards the earth, i.e. there is a shift or
displacement towards the blue end of the
spectrum.

8.6.3 Applications of Doppler Effect

The Doppler effect has a number of
applications with regard to the sensing of
movement. For instance, Meteorologists use
Doppler radar to track movement of storm
systems. By detecting the direction and
velocity of raindrops or hail, for instance,
Doppler radar can be used to determine
the motion of winds and, thus predicts
weather patterns that will follow in the
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next minutes or hours. Moreover, Doppler
radar can do more than simply detecting
a storm in progress: Doppler technology
also aids meteorologists by interpreting
wind direction, as an indicator of coming
storms. The radar also uses radiowaves to
determine the location and velocity of the
distant moving objects, such as aeroplanes,
jets, etc. for navigation purposes. Police
officers use Doppler effect to calculate the
speed of moving cars by measuring the shift
in frequency of microwaves reflected by it.
Consider a car (observer) moving with
the speed v towards a stationary police
(source). The frequency, [’ received by
the car is given by,

ctvy

S=(=—Ixf (8.90)
c

This frequency is reflected by the car as the
moving source of velocity v towards the
stationary police (observer). The frequency
noted by police is given by,

===y
c—v

Substituting equation (8.90) into (8.91)
gives,

(8.91)

c+v

Sr=—x S
c—v

The change in frequency Af observed by
the police is,

Af=f"-f (8.92)
which results to

A _ 2

7 - c—v

Since vis very small compared to ¢, then

(c=v)=c
Af _2v
T e

-

Yoy (8.93)
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Similarly, physicians and medical
technicians apply it to measure the rate
and direction of blood flow in a patient’s
body, along with ulira-sound. A beam of
ultrasound is pointed towards an artery,
and the reflected waves exhibit a shift in
frequency, because the blood cells act as
moving sources of sound waves.

Consider a ultrasonic transducer emitting
waves of frequency, f and velocity, v
incident on the blood vessel of cross-
sectional area, 4 at an angle 6 with the
vessel in which blood cells flow with speed.
w as shown in Figure 8.44.

Ultrasonic transducer
(emitter/receiver)

Reflected' £ Coupling medium

frequency . Incident

S= A —
6

frequency

Blood’vcssels Blood cells

Figure 8.44 Blood flow measurement

The speed, wof blood cells is given
by: 1,=ﬂ where Af'is the shift in
2f

frequency.

If the speed, u is resolved along the
direction of the ultrasonic transducer, the
equation becomes,

vAf
2 fcos

ucos@:ﬂ; so that, u=
2f

The blood flow rate, Q is such that
O=Au
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In the measurement of blood flow in
a patient, ultrasound of frequency of
10.0 MHz is incident at an angle 30°
to the blood vessel and a Doppler shift
in frequency of 8.8 kHz is observed. If
the velocity of ultrasound can be taken
as 2.2 kms™ and the diameter of blood
vessel is 0.8cm. Calculate:

(a) Blood flow velocity; and

(b) Volume flow rate of blood.

Solution

(a) From, xl:‘f;‘f
2f'cos®
3 -~ 3
_22x10°ms x8.8x10'Hz _ | 1o,
2x10%10%cos30°

Therefore, the blood flow velocity is
L12 ms™

(b) Volume flow rate,

2

0= Au; Q=%xu

_3.04x(@8x10°)m’ x1.12 ms™!
- 4
=5.63x10"m’s™"

Therefore, the volume flow rate is

5.63%10°m’s™!

0

Bats use the Doppler effect phenomena
to hunt for prey. Note that as a bat flies,
it navigates by emitting whistles and
listening for the echoes. When it is chasing
down food, its brain detects a change in
pitch between the emitted whistle, and
the echo it receives. This tells the bat the
speed of its prey, and the bat adjusts its
own speed accordingly.

The Doppler effect in light can also be
used to determine the speed of distant
stars and extra solar planets by using the
measurement of the wavelength of the
spectral lines they emit. If the shift is
towards the red, the star is receding from
the earth; if it is towards the blue, the star
is approaching the earth.

The Doppler effect has also been used
to measure the speed of rotation of the
sun. Photographs are taken of the east
and west edges of the sun; each contains
absorption lines due to elements such
as iron vaporized in the sun and also
some absorption lines due to oxygen
in the earth’s atmosphere. When the
photographs are put together so that the
oxygen lines coincide, the iron lines are
displaced relative to each other. This
shows that in one case the edge of the sun
approaches the earth and in the other, the
opposite edge recedes from the earth.

The Doppler effect in light can also be
used to measure plasma temperature. At
plasma temperatures, molecules of the
glowing gas move away and towards the
observer with very high speeds and owing
to Doppler effect, the wavelength A of
a particular spectral line is apparently
changed.

One edge of the line corresponds to an
apparently increased wavelength 4, and
the other edge to an apparent decreased
wavelength A,. The line is thus observed
to be broadened. If v is the velocity of the
molecules, then,

li:[ﬂjl - L:[ﬂ)a
c - ¢
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Thus, the width of line is given as:
i~ =24
o
The width of the line can be measured by
a diffraction grating, and as 4 and ¢ are
known, the velocity v can be calculated.
From kinetic theory of gases, the velocity
v of the molecules is roughly the root

p 3RT
mean square velocity, v=v S

where T'is the absolute temperature, R is
the molar gas constant and M is the molar
mass of one molecule.

Therefore, the absolute temperature of
the plasma can be found.

\Wamples.sz) ]

Two stars of equal mass move in a
circular orbit of radius r about their
common centre of mass. Observations
in the plane of the orbit show that the
wavelength of a spectral line from one
of the stars varies between 599.9 nm
and 600.1 nmin the course of one
revolution.
(a) Calculate the speed v of the star in
its orbit.
(b) If the orbital period T of the stars
is 3.5%10° s, calculate the orbital

radius 7.
Solution
(a) Using the relation A=A, = M’
¢
= A-d c
24 )7
(600.1-599.9) nm e
=11 x3x10" ms
2x600 nm
=5x10* ms™
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(b) _vI_ 5x10* ms™' x3.5x10° s
Tom 2n

=2.78x10"m

[ \Example833/
The wavelength of the yellow sodium line
5896 A emitted by a star is red-shifted to
6010 A . What is the component of the
star’s recessional velocity along the line
of sight? For small recessional speeds,
you may use a formula for Doppler effect
analogous to that of sound (speed of light
is3x10" ms™' ).

Solution
In this case,

I={”:“Jl,v={1;l)xc

_ (6010-5896)x10™" m
5896x10™" m

%x3%x10" ms™

=5.8%10° ms™

Therefore, the star’s recessional velocity
vis 5.8x10° ms™.

1. Two sources of sound are emitting
waves of wavelengths 5m and
5.5m. If the velocity of sound is
340 ms™', what is the number of
beats that will be produced?

2. Suppose that a source at rest is
emitting sound having frequency
of 800 Hz.Calculate the frequency
observed when a listener moving
with a velocity of 25 ms™ is
(a) approaching, and
(b) receding from the source.
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. A source is emitting a sound with

a frequency of 400 Hz. A listener
hears a sound with a frequency
of 380 Hz. If the speed of sound
=342 ms ™', what is the speed and
direction if

(a) the source is in motion, and
(b) a listener is in motion?

. Asound source and a listener are both

atrest on the earth, but a strong wind
is blowing from the source towards
the listener. Is there a Doppler effect?
Why or why not?

. A red shift is observed in the

light received on earth from some

galaxies.

(a) Explain what a red shift is and
how it oceurs.

(b) What useful information can be
obtained from the red shift of a
particular galaxy?

. Many bats use the Doppler effect for

detecting obstacles and prey. State
what could be deduced about the
obstacle if a bat detected a reflected
wave of frequency less than that
emitted.

. Alight of wavelength 6560 A comes

from a hydrogen atom in a distant
star. Find the speed and direction of
the star if there is to be an increase
of 10% in its observed wavelength.

. Show that when a source emitting

sound waves of frequency fmoves

towards a stationary observer with

velocity u, the observer hears a note
v

of frequency (v—u) >where v is the

velocity of sound.

-

1. Compute the velocity of waves on
a string under a tension of 36 N
and having a linear density of
6.25% 107" kgm™.

2. A stationary observer is standing at
a distance / from a straight railway
track and a train passes with uniform
velocity v sounding a whistle with
frequency f, . Taking the velocity
of sound as u, derive a formula
giving the observed frequency
/ as a function of time. At which
position of the train will f'= f ?
Give a physical interpretation of the
result.

3. Determine which gaseous source
would have less Doppler broadening, a
mercury lamps at 200°C ora Krypton
lamps at 0°C. Relative atomic mass of
mercury is 200, relative atomic mass
of Krypton is 84.

4. Apolice car chases a speeder along
a straight road towards a cliff. Both
vehicles move at 160 km/h . The
siren on the police car produces
sound at a frequency of 100 Hz.
Calculate the Doppler shift in the
frequency heard by the driver in a
car behind the police car, moving at
120 km/h towards the cliff. (velocity
of sound in air is 330 m/s )

. A train approaches a stationary
observer alongside the railway line
while blowing a whistle of frequency
1000 Hz. After passing alongside
an observer, the apparent frequency
changes in the ratio 14:15. Estimate
the speed of the train given that the
speed of sound in air is 340 m/s.

w
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. It has been found experimentally

that, the frequency of a fundamental
note produced by a resonant tube, is
affected by the end correction r and
the air temperature 6. Show that the

frequency is related to » and @ as;
Yo +i , where v, is
4L+n\ 273

the velocity of sound at STPand L
is the length of the resonant tube.

=

Interference can occur in thin films.
Why is the line between “thin™ and
“thick” important with regards to the
film? Explain your reasoning.

. Newton’s rings are formed with

light of wavelength 5.89x10™ cm
between the curved surface of a
plane convex lens and a flat glass
plate in perfect contact. Find the
radius of the 20" dark ring from
the centre if the radius of curvature
of the lens surface is 100 cm. How
will this ring move and what will
its radius become if the lens and
the plate are slowly separated to a
distance of 5.00x107* cm apart?

. A two slits Young’s experiment is

done with a monochromatic light
of wavelength6000A . The slits
are 2 mm apart and the fringes are
observed on a screen placed 10 em
away from the slits and it is found that,
the interference pattem shifis by § mm
when a transparent plate of thickness
0.5mm is introduced in the path of
one of the slits. What is the refractive
index of the transparent plate?

=

%)

w

=

7

Vibrations and

. Explain why

(a) light can be polarized but sound
cannot.

(b) itisnecessary to use satellite for
long distance TV transmission.

. Describe an experimental

arrangement to observe interference

of light. How would you use this
experiment to determine a value for
the wavelength of the light used?

2. An air wedge is formed between two

glass plates which are in contact at
one end and separated by a piece
of thin metal foil at the other end.
Calculate the thickness of the foil if
30 dark fringes are observed between
the ends when light of wavelength
6x107 m is incident normally on
the wedge.

. With the aid of diagrams, differentiate

between Fresnel and Fraunhofer
diffraction.

. Calculate the bulk modulus of air

from the fact that. the speed of sound
inairis 331.5 ms™'. The density of
air is 1.3 kgm™.

. The wavelength of mercury green

light is 5461 A in vacuum. If
this light meets a glass surface
and is partly reflected and partly

transmitted, what is the frequency
and wavelength of reflected and
transmitted light? The velocity of
light in vacuum is 2.998x10° ms™

and that in glass is 1.898 % 10° ms™.
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16. The transverse displacement of a
string (clamped at both ends) is given

by: y(x,r) = 4cos[?jsin(40m),

where xisin ¢cm and ¢in s.

(a) Does the function represent a
travelling wave or a stationary
wave?

(b) Interpret the wave as a
superposition of two waves
travelling in opposite directions.

(¢) What are the wavelength,
frequency and speed of
propagation of each wave?

17. Explain why the note emitted by
a stretched string can easily be
distinguished from that of a tuning
fork with which it is in unison.

18. Explain the colour of a thin film in
a white light and show that films
which appear bright in reflected
light, appear dark in transmitted
light.

19. Determine how fast you would have
to go through a red light to have
it appear green. Take 620 nm as
wavelength of red light and 450 nm
as the wavelength of green light.

20. A whistle emitting a sound of

frequency 440 Hz is tied to a string
of 1.5 m length and rotated with an
angular velocity of 20 rad s™" in the
horizontal plane. Calculate the range
of frequencies heard by an observer
stationed at a large distance from the
whistle. Take velocity of sound to be
330ms™.
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Chapter

Nine

Introduction

Electrostatics

Have you ever thought what causes charge to build up in a thundercloud?
Why is it that when a plastic ruler is rubbed with wool it attracts paper scraps?
These questions and other experiments help to explain why when some kinds of
materials are rubbed against each other produce electric charges. For example,
when glass and silk are rubbed against each other, they repel each other.
However, when a glass rubbed with silk is brought close to ebonite rubbed with
fur, they attract each other. The electrification of materials is due to the transfer
of electrons from one material to another. In the process of electrification,
charges are conserved and quantized. In this chapter, you will learn about the
electric fields, electric potential, and capacitance.

9.1  Electric field

To visualize how a charge, or collection
of charges, influences the region around
it, the concept of an electric field is
used. The electric field £ is analogous
to g, the acceleration due to gravity
which in reality is gravitational field.
Hence electric field is a region around a
charged particle or object within which a
force would be exerted on other charged
particles or objects. A charge O sets up
an electric field in the space around it. If
another charge ¢ is brought near Q: then,
electric field of O exerts a force on ¢.
Therefore, the electric field due to a point
charge Q is definedas “the space around
the charge in which any other charge
experiences an electrostatic force”. The
concept of electric field is described by
a quantity called electric field intensity.
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The electric field intensity ata point is the
force experienced by a unit test charge
placed at that point. In this section, you
will deal with different aspects of electric
fields. These include Coulomb’s law,
electric field intensity of a point charge
and electric field intensity of simple
symmetrical charge distribution.

9.1.1 Coulomb’s Law

Experiments show that charges interact
by exerting forces on each other. A
general rule called fundamental law of
charges states that, “Like charges repel
and unlike charges attract”. Charles de
Coulomb investigated the interaction
forces of charged particles and found
out that, “The electrostatic force between
two point charges is directly proportional
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to the product of their magnitudes and inversely
proportional to the square of the distance between
their centres”.

Consider two point charges O, and Q, held at a
distance 7 apart in a medium (Figure 9.1).

0,

-e—> F, Like charges

Fe &
-<—=e Unlike charges

Figure 9.1 Interactions between point charges

From Coulomb’s findings,

(9.1)

where k is a constant of proportionality called
clectrostatic force constant whose numerical value
depends on the nature of medium where the charges
are placed. Its value and SI unit is approximately to
9.0x10" Nm°C™ in a free space or a vacuum, and
the constant £ is given by

ol
4re

o

where £ is another constant, called absolute
permittivity of free space with a value of
8.854x107"* C*°N"'m ™. Therefore, Coulomb’s Law
can now be written as,

Fe2l ©.2)

Ame 1

For a non-free space material, we have relative
permittivity given by;

. ..\ permitiivityof material(e, )
Relauvepermmlvny(e‘,,

absolute permittivity of air (é‘“ )

Vector form of Coulomb’s
Law

Consider Figure 9.1. Let IIJ':l
be force on O, due to O, Il‘]z
be force on O, due to O, and
7 be unit vector pointing
from O, to Q.. According to
Coulomb’s law,

k22 4y
7

where 7#=1_. Therefore,
=
equation (9.3) becomes

i.e., force

Experiments show that when
two (or more) charges exert
forces simultaneously on
another point charge, the total
force acting on that charge is
the vector sum of the forces
that the two (or more) charges
would exert individually.

This property is called the
superposition principle. The
net force acting on one point
charge due to a number of
mteraamw charges is b]Veﬂ
as, F F +F +F +. +F

Generally, the magnitude of
net force acting on a point
charge is given by,

F
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How many electrons must be removed
from a piece of metal to give it a
positive charge of 1x107C?

Solution
Using the relation that, O =wne, then
_0_ 1xl07¢C

e 16x10"C

=6.25% 10" electrons

N eampiesa) ]
The distance between the electron
and the proton in a hydrogen atom is
5.3x107" m. Calculate the electrostatic
force of attraction between them.

Solution
From Coulomb’s law,
e k QI’QZ
E
9.0%10" Nm*C (1610 C)’
(s.3%10™" m);
=82x10" N

[ Neompess) ]

Two point charges are located on
the x-axis of a coordinated system:
0, =+1.0nC is at x=+2.0 cm, and
0, =+3.0nC at x=+4.0 cm, What is
the total force exerted by @, and Q, on
acharge O, =+5.0nC at x=0cm ?

Solution
Figure 9.2 (a) shows the condition for
the problem,

9, 2} 0,
Ote— 2.0cm —»f 1%
«——— 40cm ———>»
(a)
¥
~<—<—ol—x
LT ®)

Figure 9.2 Point charges

Let, £}, be electrostatic force on O; due
to O, and F, be electrostatic force on
O, dueto O,.

920,

()

From Coulomb’s law, F;, =k
thus,

9x10° Nm*C=x1x10™ Cx5x10™” C
(20x10% m)’

31

=113x10" N
and F, =k QzQ; .
()
—9x 10! NmiC: XJ.DXIO"(‘XSXIO‘” C>§5x10‘” C
(4.0x107 m)
=844x10° N

From free body diagram for Q; in
figure 9.2(b):

S FeF B,

Y F=844x10° N+1.13x10™ N
=1.97x10™" N
Therefore, the total force exerted by O
and O, onacharge 0; is 1.97x10° N
to the left of Q.
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Three point charges of 2pC, 3 nC, and 4 uC are placed on the vertices of an
equilateral triangle of side 0.2 m. Calculate the magnitude of force on the 4 uC
charge due to other charges.

Solution
Consider Figures 9.3 (a) and (b),

g=3uC

g=4uC g72uC

Figure 9.3 Point charges at vertices of an equilateral triangle

The free body diagram for the 4 pC charge is shown in Figure 9.3 (b), 17] is the

electrostatic force on 4 pC due to 3 uC, 17“2 is the electrostatic force on 4 C due
to 2 uC.

Considering the magnitudes:
Net force vertically;

D F, ==F,sin60°+ F,sin0° =~ sin60°

5 Cx2x107°C
=9 10" Nm?e 2 x 2L CX2XI0TC 5 g
02m)

WY F =-1.56N
Net force horizontally,
ZE = F,cos60°+ F,

4x107° Cx2x10° Cxcos60°+3x10™° Cx4x10° C
(02m)*

Y F.=9x10° Nm*C™x

£Y F.=36N

%
!
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F= \/(ZF, F+(ZE). F:J((}.ﬁ N) +(-1.56 N))2 =392N

Therefore, magnitude of the force is 3.92 N.

9.1.2 The electric field of a point charge
The strength of an electric field at a point in space is determined by placing a small
charged body (test charge) at the point. If the charge experiences a force, then there is
an electric field at that point and its strength is given by

1;" - (9.4)

q

where F isthe electrostatic force experienced by a test charge, ¢ is the magnitude of
the test charge and £ is the strength of the electric field at a point where g is placed.
This field is produced by charge other than ¢. Thus, the electric field strength at a point
is defined by equation (9.4) as the electric force per unit test charge experienced by a
charge at that point.

For example, a source charge ¢, is at O in space, a test charge ¢ is at point P at distance
r from 0 (Figure 9.4).

% L -
o o — > F
| r > P

Figure 9.4 Relationship between electric field and electrostatic force

The magnitude F of the force is given by Coulomb’s law;

ot

4ne,”

From equation (9.4), the magnitude £ of the electric field at P is,

Ezﬂz oql __q, 615

q 4ner’q 4mey”

'
The electric field vector (£ ) is in the direction of the force on a unit positive test
charge.
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Electric field lines

An electric field line is a path along which a positive test charge would move if it is free
to do so. Electric field lines always originate from a positive charge and terminate at a
negative charge. The tangent to the line at a point gives the direction of the electric field
intensity at that point. Therefore, electric field lines are sometimes called electric lines
of force see (Figure 9.5). The electric lines of force never cross each other, leave and
enter the surface of a conductor at right angle.

Field lines

(b)

E ositive
%@y
EN\S=)

“Field lines

(c)

Figure 9.5 Electric field lines

N Eampleas)
Two point charges 2 uC each are placed
20 cm apart. What is the electric field at
the midpoint on the line connecting them?

Solution
Consider Figure 9.6.

Figure 9.6 Two point charges
The net field E, is given as .
2E= E +(-E,)=E-E,.

S ek 2 butg=0,mdr=1
kg

L)
hence O, -0,=0

The net electric field at point P is

Y E=0.

[\ Bampless ) |
A point charge of 3.3nC is placed in a
medium of relative permittivity of 5.
Calculate the electric field intensity at
apoint 10cm from the charge.

Solution
Using the relation that:

€
g = then, .6 =¢,

_ 07 O
2
Ame,r”  AmeEr €,
5
E=9%10° N2 x — 23107 C
5%(10.0x102 m)

=594 NC'

The electric field intensity is

E=594NC™".
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Four point charges of —4 uC, +2 pC,
—2uC and +4uC are placed on
corners ABCD of a square respectively.
Determine the strength of the electric
field at the centre of a square of side
2m.

Solution
Figure 9.7 (a) shows four point charges
at corners of the square.

+2uC B

.
.

(b)
Figure 9.7 Four charges placed at the corners
of a square

From the free body diagram for point O
in Figure 9.7(b),

Vertically,
XE=(E,
Y E =(E,—E.+E,~E,)sing
ksin®
y£, =220, +0,)-(0.+0)
r
where l':\/Z_m, 6=45" and
k=9%10" Nm°C™

—E,)sing+(E,~ E,)sin6

Physics Form V.indd 303

Substituting variables by the numerical
values, you get

Y E =12728NC™

Horizontally,
D E =(E,~E,)cos0—(E, ~E,)cosd
SE =(ED+EA—EA—EH)CGSO

ZE kcosG

Substituting variables by the numerical
values, you get

> E =0NC"
ZE=y(Za) +(Zn)

E,=q(0NC) +(12728 NC '

(@, +0:—-0,~0y)

=12728 NC'

The net electric field at O will be
12728 NC™' upwards.

9.1.3 Electric field due to

continuous charge distribution
In practice we deal with charge
distribution on bodies, for example along
a line, over surface or volume. We speak
of linear charge density Z, surface charge
density o, and volume charge density p,
given by:

_charge dOQ _ charge _ dQ

Tlength  dl’  surfacearea  dd
and p= charge = 0
volume dV
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These quantities describe the amount of
charge per unit length, per unit area and
per unit volume respectively. In calculating
electric field caused by continuous charge
distribution, you consider the distribution to
consist of an infinitesimal charge elements

do.

(a) Electric field due to a line of charge
The electric field of a line of charge is
found by superposing the point charge
fields of infinitesimal charge elements
dQ. Consider the diagram in Figure 9.8.

T

3

0

8 —e— &

l

Figure 9.8 Electric field due to a line of charge

The electric field at point P, due to the
charge element dQ is given as,

dE =k d?

72

The net horizontal field at P is given by
zIEx = dEcos6. Thus,

where dQ = Ady, A =linear charge density.
The net vertical field component at P is zero
(0). due to field cancellation effect when

elements of charge are considered from
both sides of the line, about O.

The total field at P is given by,

xdy
3

E =" dE =kaf"
n -a ¥ —a 52
(x"+p°)?

Using calculus techniques to integrate the
equation you obtain

£, =k 2

» o
@+

+—2 | 9

1
(¥ +a’)?

As the limits @ and b approach infinity,

equation (9.6) approaches the infinite line

of charge expression given as

E = ﬂ or E,= A
rox e

P

Electric flux and Gauss’s Law

From the discussion on electric field lines,
it was shown that electric fields can be
described by the lines of force. Since the
density of lines increases near the charge
where the Ielcctric field strength (£) is
high, then £ atapoint can be given as the
“number of lines per unit area” through a
surface perpendicular to the lines of force
at that point. Consider Figure 9.9.

E

Figure 9.9 Electric flux through an area A due
to a positive point charge

F

| Physics Form V.indd 304




Physics Form V.indd 305

The number of lines of force crossing
normally a given surface give the values
to a quantity called electric flux. denoted
as ¢. Therefore, flux is given as,
¢=E-A
¢=EcosOx A

9.7)
9.8)

where @ is measured from a normal to
surface.

Therefore maximum flux is Iobte\ined
when the angle between £ and 4 is zero,
that is when E and 4 are parallel. If the
electric field E is not uniform or if 4 is
part of curved surface, then the surface is
divided into small area element d4 and
the equation (9.8) is integrated to obtain
the total flux as:

zp:J"EcosedA 9.9)

The integral in equation (9.9) is called
surface integral of the component £ over
the area, or surface integral of E.dA.

|\ Bempleds )/ ]

A disc of radius 0.10m is oriented
with its area vector at 30° to a
uniform electric field £ of magnitude
2.0x107 NC™. Calculate the electric
flux through the disc.

Solution

Figure 9.10 shows condition for the
problem.

Eleotrostatics

Using equation (9.8),
0=(2.0%10° NC*)xx (0.1 m) xcos 30°

=54 Nm’C"'

Gauss’s Law

Gauss’s law states that, “The total
electric flux through any closed surface
is proportional to the net electric charge
inside that surface”. i.e. The electric flux
through any closed surface is equal to the
total charge inside divided by,

Suppose the surface encloses several
charges Q,.0;,...,0, . Let O, be the
total charge enclosed by the surface;
0, =0 +0,+..+0,. Also let £ be the
total electric field at the position of the
surface element dA .

Then Gauss’s law can be written in
mathematical form as,

o= (9.10)
4

Combining equations (9.9) and (9.10)
gives the general form of Gauss’s law:
$ Ecospdd =& o §E.di= 3
€, €,

‘When using Gauss’s law, there are some

important steps to follow:

(i) Draw an imaginary surface called
Gaussian surface to enclose the
charge. This charge may be a single
point charge, a collection of point
charges or a given charge distribution.

(ii) Divide the Gaussian surface into
smaller area element d4 such that
dAand E at that particular position
are parallel.
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(iii) Carry an integration over the entire
surface to get the total electric flux.

Gauss’s law is useful in determining
electric fields when the charge distribution
is characterized by a high degree of
symmetry. The following examples show
ways of choosing the Gaussian surface
over which the surface integral is applied
to determine the electric field. In choosing
the surface, always take advantage of the
symmetry of the charge distribution so
that you can remove E from the integral
and solve for it.

(b) Electric field due to a sphere
of charge

When charge is distributed over a sphere
of radius R the electric field due to that
charge will have spherical symmetry.
However the flux passing through any
closed surface of any shape is always equal
to 2 That is, the field will have the same
va]u(L: at equal distance r from the centre of
the sphere. For a solid insulating sphere,
the electric field inside and outside are
different. Consider a uniformly charged
non-conducting (insulating) solid sphere
with centre O, radius R, volume charge
density P and total charge 0.

(i) Electric field outside the insulating
sphere (r>R)
Because the charge distribution is spherically
symmetric, select a spherical Gaussian
surface of radius r, concentric with the
sphere. Then find the electric field intensity
ata point outside the solid sphere, distance
r from the sphere surface (Figure 9.11).

F

\ Gaussian

surface

Figure 9.11 Electric field outside the
insulating sphere

Since it is an insulating sphere, charge
will reside entirely in the volume. The

4
net charge Q=§TER3,D- Since E is
constant and normal to the spherical
Gaussian surface of radius r, the surface
integral equals, Ex4mr’. Therefore,

Ex4m’ = g At a distance r> R, the
0

electric field is identical to that of a point

charge, O at the centre of the sphere.

Hence,

E=Q

4ner?

(9.11)

(ii) Electric field inside the insulating
sphere (7 <R)

Since the sphere is not conducting
material, a charge Q" will reside inside
the sphere as well. For a radius r<R,
Gaussian surface will enclose less than
the total charge and electric field will be
less (Figure 9.12).
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Gaussian
surface

b

Figure 9.12 Electric field inside an insulating
solid sphere

Therefore, the field E ata distance » from
the centre of the sphere is still spherically
symmetric and is given by

=<

4re, "

Note that the charge O’ is obtained from
the ratio of volumes as follows:

Q_’_g. r=Q then, '=Q'_'3
vy 2 v o=
or

E= 4ne R® (.12)

(¢) Solid conducting sphere

Consider a thin spherical conducting (metal)
shell of radius R charged uniformly with
charge 0 . Electric field £ can be obtained
by considering outside and inside the sphere
as follows:

(i) Electric field outside the sphere
(r>R)

Since charges reside entirely on the

surface of a solid conductor, the electric
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field will have spherical symmetry and
will be given by equation (9.11) same
as for point charge. This implies that, £
outside a uniformly charged conducting
sphere is the same as if charge were
concentrated as a point charge at the
centre of the sphere.

(ii) Electric field inside the sphere
(r<R)

Since there is no charge within a concentric
spherical Gaussian surface of a conducting
charged shell, then the net flux equals
zero from Gauss’s law. From symmetry
therefore; the electric field is zero inside the
spherical charged shell. Hence, the electric
field due to uniformly charged sphere is
zero at all points inside the sphere.

(d) Hollow conducting sphere
Consider a hollow sphere of inner radius
R and outer radius R, charged uniformly
with total charge O (Figure 9.13). What
will be the electric field at any point, a
distance r from the centre.
(i) Electric field outside the sphere
(r>R,).
From Gaussian,

Ex4mr =g;

\Outside

\

5

Figure 9.13 Electric field variation inside and
outside a hollow sphere
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Therefore, the electric field will
resemble that of a point change for
same reason that the charge resides
entirely on the surface of a sphere
and the field will have spherical
symmetry.
(ii) Electric field inside the sphere

(r<R). The field will be zero.
No net charge can reside inside a
conductor.

(e) Hollow insulating sphere

Consider a hollow insulating sphere with

uniform charge density P. Its inner and

outer radii are R and R, respectively.

The expressions for the magnitude of the

electric field in the regions are:

(i) Electric field outside the sphere
(r>R,). The field will be given by
equation (9.11) for similar reasoning.

(i) Electric field inside the sphere
(r<R,). Because of the spherical
symmetry of the charge distribution
and because the net charge inside
the surface is zero, application of
Gauss’s law shows that £ =0 in the
region 1

(iii) Electric field within the sphere
(R, <r<R,). From Gauss’s law,

Ex4m-2:3igun><(r3—R\})p,

but

Therefore,
1 (R
£= dney” mg

(1) Electric field due to plane charge
distribution

Consider an infinity plane sheet with charge
Q distributed uniformly. The electric field
intensity at a distance d from the sheet
of charge can be obtained by choosing
Gaussian surface, say cylindrical surface
with radius r (Figure 9.14a).

Figure 9.14 (a) Electric field due to infinity
plane sheet of charge and (b)
Parallel sheet of charges

There are three surfaces, two end surfaces
(A &4,) and one side surface (4).
Therefore the total flux is given by;

o= gw‘h Edd, cos6, +<j54: Edd,cos0, +§, Edd,coso,

where 6, =6,=0°, 6,=90°, also,

A4 = 4, = A, which is a circular area.
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Then from Gauss’s law,

0_

e 2E$ da
hence,
NG 7 L ) )
£, 24e, 2,

Equation (9.13) shows that; electric field
intensity due to infinity sheet of charge is
independent of distance from the sheet.
But it depends on the density of charge
distribution only. Consider the two parallel
sheets with charge densities 0, and o,
(Figure 9.14b).

Electric field intensity due to two parallel
infinity sheet of charge at three regions
(IIL,110) is as follows:

The electric fields due to two sheets is the
vector sum of individual sheets:

Region I: Two vectors acting in negative
direction
E=E +E,
_—0,,6 -0, -1

2=—1(o,+0,)

E=—H+
2¢, 2¢, 2

Region I1: Two vectors acting in opposite

directions
E=E +(-E,)
-0, —O 1
E=—l+—2=——(0,+0,)

T2e, 2¢, 2,

o

Region III: Two vectors acting in the
positive direction

Ble

Special case: When the charge distribution

is the same, ie. 0,=0,=0:

Region I: Two vectors acting in the
negative direction

-0 -0 —O0
E -

= —
2 Eu 25‘“ Eu

Region IT: Two vectors acting in opposite

directions
=
E=—+—=0
2¢e, 2¢,

Region III: Two vectors acting in the
positive direction

g [ o

T2 26, ¢,

Note that, A parallel plate capacitor which
is an arrangement of metal plates connected
in parallel and separated from each other
by some distance, behaves like a plane
with charges distributed uniformly and
its electric field can be calculated using
the concepts applied in the plane charge
distribution.

1. Explain the following observation
in relation to electrostatics:

(a) The free electrons in a metal
are gravitationally attracted
towards the earth. Why do they
all not settle to the bottom of the
conductor like sediment settling
at the bottom of a river?

(b) Bits of paper are attracted to an
electrified comb or rod even
though they have no net charge.
How is this possible?
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. Two small plastic spheres are given

positive electrical charges. When
they are 15.0 cm apart, the repulsive
force between them has a magnitude
0f 0.220 N . Find the charge on each
sphere,

(a) if the two charges are equal.
(b) if one sphere has four times the

charge of the other.

. A negative charge of —0.55uC

exerts an upward force of 0.20 N
on an unknown charge which is
0.30 mdirectly below it.

(a) What is the unknown charge
(magnitude and sign)?

(b) What is the magnitude and
direction of the force that the
unknown charge exerts on the
—0.55 uC charge?

. A small insulating sphere is given

a charge of +15 uC and a second
sphere of equal size is given a charge
of =10 uC. The two spheres are
allowed to touch each other and then
separated 20 cm apart. Assuming air
as the medium, what force exists
between them?

. Two identical small spheres with

mass m are hang from silk threads
of length L . Each sphere is given a
charge @. Show that when the two
charged spheres are at equilibrium,
the distance d between their centers
is given as,

1

2 3
(=)
2ne,mg

State the assumption used to arrive
at your answer.

~

%

. Two charges, one of 2.5uC is

placed at the origin and the other
of —3.50 uC is placed 0.60 m on
the x-axis. Find the position on the
x-axis where the net force on a small
charge +¢ would be zero.

. A point charge O of +8nC is

placed at the origin of the x — y
coordinate system. Determine the
electric field strength at a point
P(x,y)=(12m,~L6m).
Two tiny spheres, of mass 6.80 mg
each carry charges of equal
magnitude, 72.0 nC but opposite
sign. They are tied to the same
ceiling hook by light strings of
length 0.53 m. When a horizontal
uniform electric field £ directed to
the left is turned on, the spheres hang
at rest with the angle ¢ between the
strings equal to 50°.
(a) Which sphere has a positive
charge?
(b) What is the magnitude of the
electric field?

. A particle of mass 1kg and charge

0.01 C is placed on an inclined
plane making an angle 30° with the
horizontal. The incline and the charged
particle are placed in a uniform
horizontal electric field of 100 NC™.
What should be the coefficient of static
friction for the particle not to slide
down the incline?

. ABC'is an equilateral triangle whose

side is 1 m. Two point charges of
2 pC and -2 pC are placed at corner
A and B respectively. Determine
the magnitude and direction of the
electric field E at corner C.
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. Two horizontal parallel plates 10 mm
apart have a potential difference
(p.d.) of 1000 volts between them,
the upper plate being at positive
potential. Ifa negatively charged oil
drop of mass 4.8% 107" kgis held
stationary between the plates, find
the number of electrons on the drop
(Use e=1.6x107" C).

. Show that the magnitude of the electric
field at any point perpendicular to the
plane of an infinite plane sheet of

2

o o
charge is given as E=7—, where
2g

0

o is the surface charge density.

W

A small charge ¢ is placed at a
midpoint on the line connecting two
other charges of equal magnitude
and sign. The charge ¢ is displaced
along the line and released, prove
that it performs simple harmonic
motion.

9.2 Electric potential

Just like a mass has potential energy in
the gravitational field, electric charge
has electrostatic potential energy in the
electrostatic field. There is electric potential
energy associated with interacting charges.

The electric potential is useful, since it
provides an alternative to the electric field
in electrostatic problems. This section
discusses concept of electric potential,
potential due to charge distribution and
motion of a charged particle in a uniform
electric field.
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9.2.1 The concept of electric
potential

When a positive test charge O is moved in
an electric field against such field, work has
to be done to overcome the electrostatic
repulsion. The work done to move a unit
positive test charge is called the electric
potential. Therefore, an electric potential
is a property of an electric field at a given
point defined as being numerically equal
to the work done in bringing a unit positive
test charge from infinity to that point against
the electrostatic field.

Electric potential due to a point charge
Consider a point charge +Q such as proton
placed at point O as shown in Figure 9.15.
This charge sets up an electrostatic field
which extends up to infinity. Suppose a
unit positive test charge ¢ is at a point P a
distance r from O. If ¢ is moved from point
B to point 4, work has to be done.

2 P A B

0 . Infinite
0 q ~dr= point
e

Figure 9.15 Electric potential due to a point
charge

The work done by an external agent on
moving charge ¢ a small distance dr
from B towards 4 is equal to the work
done by electrostatic force 7 on moving a
charge from 4 to B if charge O does not
accelerate.

w,, =—J-;Fdr, where F kOf’. Thus,

W, = AI\"Q(]L rdr

The negative sign is important because it
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implies that, the test particle
loses potential energy when
moving to r=0.

From the definition of electric
potential,
W, 4 5
V, =—L=—kO| r7dr
2e=—tg],

BA

Therefore,

Vs =kQ[:— IL} (9.14)
A B

Equation (9.14) gives the
electrostatic potential difference
between points A and B. Itis the
work an external agent has to do
to carry a unit positive charge
from B to A.

When calculating electrostatic
potential, a reference point
is always chosen at infinity
where the electric potential is
zero. Therefore, if point B is at
infinity, equation (9.14) changes

(9.15)

The unit of potential and
potential difference is volt (V)
or JC™. It should also be noted
that electrostatic potential is a
scalar quantity and therefore
the potential of a point due to
a group of point charges is the
algebraic sum of the (separate)
potentials due to each charge.
Remember that, potential due to

F
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apositive charge is positive and that due to a negative
charge is negative.

Electrostatic potential energy (U) of a point in the
electrostatic field is numerically equal to the work
done in bringing a positive charge from infinity to
that point. That is,

U, =W, (9.16)

e
However, electric potential is potential energy per
unit charge. Thus,

UpmWo=aV .= U, =qV,

Aes

~U=gAV (9.17)

[ eempess ) — ]
Two point charges +20 uC and —20 uC are placed
20 cm apart. Calculate the electrostatic potential at a
point midway on the line connecting the two charges.

Solution
Consider Figure 9.16.

Figure 9.16 Point charges

Using the principle of superposition of electric
potentials,

e kQ, kO,
Vy=Votla: ¥,==24=2,
2 2

2k
hence ¥, = T(Q' + Qz)A
9 22
:wx(zoxuﬁ C+(-20x10" €))
20x10™ m

=0V

Electrostatic potential at a point midway is 0'V.
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Three charges of 2 uC,-3uC and
4uC are placed on the three corners
A, B, and C of an equilateral triangle
of sides 2 m respectively. Determine
the electric potential at a point half way
between AB.

Solution

Figure 9.17 shows the conditions of the
problem.

0=-3uC

i 2m o

Figure 9.17 Point charges placed at corners of
atriangle

Using the principle of superposition of
electric potentials.
N
g kQ,.
y KO KOy KO
Ty Iy %

rﬂ=ﬁ and Q:C_P

0,=0,, 0y=0,and 0. =0,

r=9x10" Nm’c*{

2x|0*€+-3x|n‘c+4xla‘c
Tm Tm Bm

=11784.6 V

Therefore, the electric potential at the
midway of 4B is 11784.6 V.

[Neampesrr) ]

Two positive point charges of 10 pC and 8 uC respectively are 10 cm apart. Find
the work done in bringing them to a separation of 6 cm.

Solution

Suppose the 8 uC charge is fixed in position. Then the potential difference between

6 cm mark and 10 cm mark is, AV =V, =V, then,

AV:kQ[{__LJ

Ty

Therefore the work done in moving charge ¢ =10 uC up to a distance 6 cm is,

AW =qaV =kQq| -1
r.4 rﬂ

AW=9xlO“NmZC'2XSXIO"SCxlOXlO*’CX[

1 1

— =48]
6x107m lelO"'m]

Hence, the work done in bringing the charge a distance 6 cm apart is 4.8 I.
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Two charges of 3nC and —3 nC are fixed in positions 3 ¢cm apart. A dust particle
with a mass of 5 ug and a charge of 2 uC starts from rest and moves in a straight
line from a point 1.0em from the3 nC charge to a point 1.0 cm from the —3 nC.
What is the speed of the dust particle at the second location?

Solution
Figure 9.18 shows the conditions for the problem.
0,=3nC a b 0,=-3nC
- |- |+
|[¢———¢———>|«—>|
I em

lem 1 cm

Figure 9.18 Two charges at fixed positions

From conservation of mechanical energy, K, +U, =K, +U,, where K and U, are
kinetic and potential energies respectively. Since the particle start from rest K, =0.

KEU, Uy, K,=3m=U, =U, Where U, <0, = (7, ~7,)

e, =7,
v 9V, = V)
m

®
Solving for V, and V};
¥V, =9.0x10° Nm’C?x3x107 Cx ;2+_412 =1350V
4 10107 m 2.0x10™ m
9 202 -9 1 =1l
V,=9.0x10" Nm°C™ x3x10™” CX| —————+————|=-1350 V
20x10"m  1L.0x10™ m
¥, —V,=1350 V—(~1350 V)=2700 V (ii)

=3
From equation (i), V= M =1469.69ms ™.
' 5x107kg

Therefore, velocity of a dust particle at A is about 1469.69ms™".
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Relationship between electric field and
electric potential difference

When electric field at a point is produced
by a charge distribution, the electric
potential at the point in that field can
casily be calculated using the expression
of E at that point. Suppose a test charge
g, in a uniform electric field £ is moving
from point ato b (with constant speed)
distance dr apart. The work done on g,
along displacement ab by electric force
is given by

w, J’F a'r-J.q“E -dr.
Thus, the potential difference —2& U = J'E -dr.
9o

The work done per unit charge is given as,

w
—=V, -V,

b =
1(,4;:[5-& (9.18)

Therefore, the general relationship between
electric potential and electric field intensity is

V;—Vh=—JE[/l' or dV =—Edr

50 that
_av
o
The displacement of charge will be in the
direction opposite to the direction of electric
field. Consequently, the angle between force
on charge and the displacement of charge
is 180°. The angle between the two vectors
is 180°, thus E-dF =
Setting the potential at b to be zero (b at
infinity) the potential at a point is given

by VH:TE-dF.

Edrcos180° =—Edr.
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9.2.2 Electric potential due to
charge distribution

Electric potential ata point due to continuous
charge distribution depends on the geometry
of distribution. The electric potential due to
uniform distributed charge can be obtained
by using the relation V, -V, = —J'Edr. In
practice there exists a variety of distribution
geometries, for example along a line and
over a surface or volume.

(a) Electric potential due to infinite
line of charge

The electrostatic potential due to an
infinite line of charge is calculated
using the relation V, =V, =—jEdr. But
the electric field due to a line charge
distribution is given by, E=——.
2ne -

The electric potential is then,

Vomty= J';“ 2ner

- L,n[ _)

2ne, \r,
The expression of equation (9.19) can be
used for a conducting cylinder of charge.
Suppose R is the radius of such a cylinder.
Then, the potential at a point 4, distance
r from the axis of a cylinder for which
r>Ris

V=V(r)-

V= —J. Edr— J‘HZLdr

dr

v, - (9.19)

V(R) but, V(R) =

o], -

71(5
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Therefore,inside the conducting cylinder,
E=0, and V=0 as on the cylinder’s
surface.

(b) Electric potential due to finite line
of charge

Consider electrostatic potential due to a

finite line of charge. Suppose a positive

electric charge Q is distributed uniformly

along a line of length 2¢ as shown in

Figure 9.19.

Figure 9.19 Electric potential due to finite line
of charge

The electric potential at point P is,

V,= J‘:‘k#, where r:(yz+,\'z)*{

Then,
4 _uk Ady ‘
(vz_H(l):
Using integration techniques, you get
A “ +a
V =——In| -——— )
S [ _aJ (9.21)

(¢) Electric potential due to charged
conducting sphere

Suppose a total charge O is placed on the

solid sphere of radius R (Figure 9.20a). The

electrostatic potential at a point distance 7,

such that » > R is given by:
k0

»

(9.22)

This is because for a sphere of charge,
an electric field at a point outside such a
sphere resembles that of a point charge.
Inside a conducting sphere, ¥, =¥,

That is the electric potential inside, is the
same everywhere and is equal to its value

kQ

on the surface which is, V' = e
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Equipotential
An equipotential is a three dimensional
region in space where every point in it is
at the same electric potential. In practice
there are equipotential surfaces and
equipotential volumes. A line that traces
all points on an equipotential is called an
equipotential line.

(i) Itis important to note that equipotential
lines are always perpendicular to
electric field lines. No work is required
to move a charge along an equipotential,
since AV'=0.

(a) Constant electric field

(b) Point charge

(ii) Equipotential lines never intersect or
touch each other.

That means that at a particular region the

electric potential (¥) is constant which

creates an equipotential surface.

The quantity ‘j{—y shows how the potential
B

changes with distance, and is called the
potential gradient. The diagram in

Figure 921 shows equipotential and
electric lines of force for point charges
(dashed lines are equipotential lines
while solid lines are electric field lines).

(c) Electric dipole

Figure 9.21 Equipotential and electric field lines of capacitor, point charge, and dipole

9.2.3 Motion of a charged particle in a uniform electric field

When a particle of mass m and charge Q is placed in a uniform electric field of strength
E, the field will exert force OF on the charge. If it is the only force on the particle, the
particle will accelerate uniformly. Note that, if the particle is negatively charged. it
will accelerate in the direction opposite to that of the electric field. If the particle has a
positive charge, its acceleration is in the direction of the electric field (Figure 9.22).

- —> -
u

’ x i
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Suppose that an electron of charge -e
is projected horizontally into a uniform
electric field (Figure 9.22) with an initial
velocity u. Then, using kinematics
equation in two dimensions:

Casel: Vertical motion
The electron experiences electrostatic force
in the vertical direction

F =eE=ma,

_ek
m

(9.23)

3
From first equation of linear motion
Ve=u tad

Since the electron is horizontally projected:

u,= 0. Therefore,
Vv =agt

Using equation (9.23), you obtain

v, :[é)t (9.24)
m

From second equation of motion
= li]l
2m

(9.25)

Case 2: Horizontal motion
From first equation of motion

v, =u +aft, where u =u, a =0
Hence v_=u implying constant velocity
From second equation of motion,

1
x=ut+—at  butu =u, a =0,
d+ 54 e v

x=ut (9.26)

Combining equation (9.25) and equation
(9.26) gives
_1eE

e x
2 mu”

Since e, E, m and u are constants, then,
y=k

Hence, the trajectory of the charged

particle in the electric field is a parabola.

Note that, for a charged body to move
undeflected in electric field mg = EQ .

[\ Eampie 5,13 )
An electron enters horizontally in the
region of a uniform vertically downward
electric field with a velocity of
3.0x10° ms™. The electric field strength
Eis 200 NC™ and the horizontal width
of the field is 0.1 m.

(a) Find the acceleration of the electron
while it is in thefield.

(b) Find the time it takes the electron to
travel through the field.

Solution
(a) Using equation (9.23)

_ L6x107™" Cx200NC™

A 9.11x10™" kg
=3.51x10"ms™

Therefore, acceleration of the electron
while in the field is 3.51x10" ms™.
(b) Using equation (9.26)
p=ZaOLE 43000
u  3.0x10" ms
Hence, the time taken by the electron
through the field is 3.33%x10™s.
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6.

studying electric potential.

. Briefly explain why electric-field

lines must be perpendicular to
equipotential surfaces.

. Which way do electric-field lines

point, from high to low potential
or from low to high? Explain your
reasoning.

. A conducting sphere is to be charged

by bringing in positive charge a little
at a time until the total charge is Q.
The work required for this process is
assumed to be proportional to 0. Is
this correct? Explain.

. A high voltage d.c power line falls

on a car. So the entire metal body
of'the car is at a potential of 10.0 V
with respect to the ground. Explain
what happens to the passengers:
(a) When they are sitting in the car;
and
(b) When they step out of the car.
If the electric field is zero throughout
a certain region of space, is the
potential necessarily zero in that
region? If not, what can be said about
the potential?
Two concentric spheres of radii R
and r had similar charges with equal
surface charge densities. Determine
the electric potential at their common
centre.

. An electron is accelerated through

a potential difference of 100V .
Calculate its speed.

. An infinite plane sheet of charge

density 10*Cm™ s held in air.
In this situation, how far apart are

Expalin why there is a need of

two equipotential surface whose
potential difference is 5 V?

10.Three charges Q.+¢ and +¢

1

w

o

are placed to the vertices of an
equilateral triangle of length L . If
the actual electrostatic energy of the
system is zero, find the value of Q.

. Electric field strength at a point

due to a point charge is 70NC™'

and electric potential at that point is
10 JC™'. Calculate the magnitude of
the point charge.

.A point charge Q=240UC is

held stationary at the origin.
If a second point charge
0, =—4.34 C moves from the point
(.\',y) =(0.15m, 0 m) to the point
(X,J‘)= (0.25 m, 0.25 m), how
much work is done by the electric
force on O, ?

.An electric dipole of charges

+2.0nC and +2.0nC separated
by a distance of 0.1 mm is placed
in vacuum. Calculate the electric
field strength and electric potential
at a point P on the perpendicular
bisector of the dipole such that Pis
10 cm from the centre of the dipole.
Calculate the work done on placing
a charge of +2 nCat point P.

. Two point charges 0, =2.4 uC and

0, =-6.5UC are+0.10 m apart.
Point A is midway between them;
point B is 0.08 m from @ and
0.02 m from Q,. Calculate the work
done by the eleetric field on charge
0, =24 uC that travels from point
B to point 4.

. Asmall sphere with a mass of 1.50 g
hangs by a thread between two
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parallel vertical plates 5.00 cm apart.
The plates are insulated and have
uniform surface charge densities +o
and —o. The charge on the sphereis
0 =89 uC. Calculate the potential
difference between the plates that
will cause the thread to assume an
angle of 30° with the vertical.

16. A point charge O is located at the
centre of a thin ring of radius R with
uniformly distributed charge—Q.
Find the magnitude of the electric
field strength £ at a point lying on
the axis of the ring at a distance x
from its centre, if x>>R.

9.3  Capacitance

Capacitors are circuit components used
for storing charges. To store energy in a
capacitor, electrons (charges) are transferred
from one plate to the other so that one plate
has a net negative charge and the other has
an equal amount of positive charge. This
process is called charging of a capacitor.

It requires energy to do the work of
moving these charges through the resulting
potential difference. The work done is
stored as electric potential energy in the
capacitor. Note that, at each instant of time,
the net charge of'a capacitoris ideally zero.
This section describes types of capacitor,
factors affecting capacitance of a capacitor,
effective capacitance for series and parallel
arrangement, charging and discharging of a
capacitor and energy stored in a capacitor.

9.3.1 Types of capacitor

A capacitor is a device consisting of two
or more parallel conductive (metal) plates
not connected or touching each other, but

are electrically separated either by air or
by some form of a good insulating material
such as waxed paper, mica, ceramic, plastic
or some form of a liquid gel. The insulating
layer between the plates is commonly
named the dielectric. The types of capacitors
range from those with very small size and
storage capacity used in oscillators or radio
circuits, up to large capacity metal-can
type, used in high voltage power correction
and smoothing circuits. The comparisons
between different types of capacitors are
generally made with regards to the dielectric
material used between the plates.

Types of capacitors include air capacitor,
paper capacitor, electrolyte capacitor and
mica capacitor (Figure 9.23). For example,
a paper capacitor uses paper dielectric
while an air capacitor uses air as dielectric
material. Capacitors can have fixed or
variable capacity value (Figure 9.24).
Variable capacitors are used in tuned
circuits such as in AM radios. A basic fixed
value type of capacitor consists of two
plates made from metallic foil, that are
separated by different insulating materials,
having good dielectric properties.

\

b

Figure 9.23 Types of capacitor
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Single variable Dual variable

capacitor

N
T T

Capacitor Capacitor
(non-polarised) (polarised)
Altenatives

Curved plate =outer plate of ground conneetion

Preset capacitor

capacitor

Figure 9.24 Symbols of fixed and variable capacitors

Capacitance of capacitors

The amount of charge a capacitor can
store depends on the value of capacitance
of the capacitor. Capacitance (C) is
measured in the basic unit of the Farad
(F). How do we charge capacitors?

Suppose a parallel plate capacitor with
plates M and N is connected to a battery of
e.m.f. V. When the switch S is open as in
Figure 9.25, the capacitor plates are neutral.
When the switch is closed, the electrons
from plate M will be driven by the battery
and start accumulating on plate N. This
movement of electrons creates potential
difference between plates M and N. The
motion will stop only when the voltage
across capacitor C (V) becomes equal to
V', less the potential difference across R.

Figure 9.25 Capacitor charging circuit

It should be noted that the energy required
to transfer electrons from one plate to the
other is provided by the battery. It is this
energy which the capacitor stores between
its plates. The electrons do not cross the
gap between plates due to presence of
dielectric material between the plates.

Experiments show that the quantity of
charge O on a capacitor C in Figure 9.25
is linearly proportional to the potential
difference between the conductors; that
is Qo< V. Therefore, O =kV where k
is a constant of proportionality called
capacitance; denoted by C,

Q

C== (9.27)
The capacitance C of a capacitor is defined
as the ratio of the magnitude of the charge
on either plate to the magnitude of the
potential difference between the plates. It
is the amount of charge required to raise
a unit potential difference between its
plates. Capacitance is measured in farad
(F).
1 Farad =lcoulomb/volt.
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Capacitance of a parallel plate capacitor
Consider a capacitor consisting of two
parallel conducting plates, each of area
A separated by a distance d that is small
compared to the dimensions of plates. When
the plates are charged, the electric field
between the plates is uniform (Figure 9.26).
Each plate is connected to one terminal of a
battery, which acts as a source of potential
difference. Let us assume the plate acquire
charge Q.

Q  E -0

—-
+—>-
+—>-
+—>-
+—>-| ¥

—-

T d—>

Figure 9.26 Charged plates of a parallel plate
capacitor

The magnitude of the uniform electric
field due to charge O on the plate with
surface area 4 is given by; E = Z l
€, AEU
Since the field is uniform, the potential
difference between the plates is V = Ed.

It then follows that; V:f—d.

Then, ‘
0  Ae
=m0 9.2§,
== (9.28)

Comparing equation (9.27) and (9.28)
you will get,

Ae,
c== 2
7 (9.29)

If the capacitor is made of any N parallel
plates, then,

e (N=1) e,
d

Thus, the capacitance of a parallel-plate
capacitor is proportional to the area of its
plates and inversely proportional to the
plate separation. Generally, the capacitance
of a capacitor depends on the geometry of
the plates (their size, shape, and relative
position) and the medium (such as air,
paper, or plastic) between them.

9.3.2 Factors affecting capacitance
of a capacitor

From equation (9.29), the capacitance of

the capacitor depends on surface area of

the plate, distance between the plates and

dielectric material used.

(a) Surface area

The capacitance of a capacitor increases as
surface area increases. That is capacitance
is proportional to the surface area of the
plate. The larger the surface area the
larger the charge accumulated. Therefore,
the construction of capacitors is such that,
the separation between parallel plates is
small but area is large enough.

(b) Distance between the plates
Capacitance of a capacitor is inversely
proportional to the distance between the
plates. That is the larger the distance the
smaller the capacitance of the capacitor
and vice versa.

dent’s Book Fors

F
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(¢) Dielectric material

Capacitance of a capacitor is direct
proportional to the dielectric constant
of the material used between the plates.
Dielectric constant of the material is the
ratio of capacitance of a capacitor with
dielectric material to capacitance without
dielectric material (with air or vacuum).

Ag,
Without dielectric material C, = /“ and
d

with dielectric material C = % Therefore,
d

. # ¢
dielectric constant €, = ok g =—.

G
o o

Also, &, iscalled the relative permittivity
of the dielectric material. Some materials
offer less opposition to field flux for a given
amount of electric field force. Materials
with a greater permittivity allow for more
field flux (offer less opposition), and thus
a greater collected charge, for any given
amount of field force (applied voltage).

Action of dielectric material

If a dielectric material contains polar
molecules, they will generally be in
random orientation when no electric field
is applied. Application of electric field
polarizes the material by orienting the
dipole moments of the polar molecule.
The dipoles are urged in the direction of
the field, and the electrons in the opposite
direction (Figure 9.27).
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Figure 9.27 Effect of a dielectric on
capacitance of a capacitor

Thus, each polarized molecule has an
excess of positive charge on one end, and
an excess of negative charge on the other
end. These charges are of opposite signs
to the charges on the plates, and so reduce
the potential difference between the plates
(compare Figures 9.27 and 9.28).

Figure 9.28 Capacitor with partially filled
dielectric

The induced electric field E, reduces
the electric field between the plates and
therefore reduces the potential difference
eventually the capacitance increases.
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Consider the dielectric material of
permittivity € partially filling between
the parallel plate capacitor as shown in
Figure 9.28. The voltage across the plates
is V=Ed . Hence, V= Vo ¥V tmicr
V= E(d~r)+E’l. Therefore,

v=Bd-+L (9.30)
B

E
where E,=— and ¢ is the thickness of

the dielectric material.

Using the relationship of Eand Q and
simplifying the equation (9.30);
0 _ Ag

v

— .,
t
([1 = t) F—
€
Since Q is the capacitance of a capacitor,
then

e,
C=—"—2—

7
(d=t)+—
gt
If there is no dielectric material between

the plates (plates in vacuum) ¢ =0, then
A
c =25
vod
If the dielectric slab fills completely the
space between the plates that is, d =,
Ae g
then, C= % hence, C=C g,
a

Catad

[ \eompesis) ]

Aparallel plate capacitor having plate area
100 em® and separation 1.0 mm holdsa
charge of 0.12 4C when connected to a
120 V battery. Find thedielectric constant
of the material filling the gap.

Solution
From equation (9.29),

Ae,

,then capacitance with no
dielectric material is,
_8.854x10™ C'N"'m™ x100x10™ m*
1.0x107 m

=8.854x10" F

The capacitance with dielectric material,

Cu

£
C=2=0.12x10 C:lxlO‘“’ F
14 120V
The dielectric constant is;
-9
ol dKOTE .

"7 C, 8854x107" F

Therefore, the dielectric constant of
the material is 11.3.

9.3.3 Combinations of capacitors

A capacitor with certain capacitance may
be required in practice although they
may not be commercially available. The
required specification can be obtained by
combiningcapacitors; many combinations
are possible but the simplest combinations
are a series connection or a parallel
connection. In these combinations two or
more capacitors are often involved.

Capacitors in series

A schematic diagram of a series connection
is shown in Figure 9.29. Three uncharged
capacitors of capacitances C,,C,and C,
are connected across a battery of constant
potential 7. Let the charge O be placed
on the plates of each capacitor.
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Figure 9.29 Capacitors in series

It follows that, V=V, +V,+V, From
equation (9.27), it can be shown that;

The quantity, % is the equivalent

capacitance Cw/ of a single capacitor of
which charge O and the potential difference
V is the same as for the combination.
Therefore, the combination of capacitors
can be replaced by an equivalent capacitor
of capacitance C, obtained by:

1 1 1 1
RS (3 S IO
C. c G G
e 7 3
Generally, for n number of capacitors
connected in series its effective (equivalent)
capacitance is given by:

1 1 1 1 1 <
—=—t—+—d..t—o0r ) —
Cu, CI Cz Ci Cn =%

For two capacitors in series, the effective
capacitance is,
= CICZ
o IGHC
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Capacitors in parallel

Capacitors are said to be connected in
parallel if the potential difference for all
individual capacitors is the same.

Figure 9.30 shows the capacitances C,
C, and C, connected in parallel across a
battery of constant potential V.

-
L

.
4

.
L&

| L

1

!
+

|

1

il
1
¥
Figure 9.30 Capacitors in parallel

Let charge on capacitors C, C, and C;
be Q. O, and Q; respectively. The total
charge O of the combination, and thus the
total charge on the equivalent capacitor is
0=0,+0,+0;
Q=CV+CV+ClV

Z-crare
V

Q

The quantity % is the equivalent

capacitance C,, of the capacitors. Thus,
C,=C+C+C;

Generally, for n capacitors connected

in parallel, its effective (equivalent)

capacitance is given by,
C,=C+C,+C+..+C, or

n
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Two capacitors of capacitances
C,=6.0 uF and C, =3.0 uF are
connected in series across a battery of
18 V. Find

(a) the equivalent capacitance.

(b) the charge for each capacitor.

(c) the potential difference for each

capacitor.
Solution
CC.
a) From equation, C,, = —-2—;
¢ < LT

_ 6X10° Fx3x10™ F

@ (6+3)x10°F
=2x10°F
The equivalent capacitance of the two
capacitors is 2x107°F.
(b) Using Q=CV,
0=C)
0=2x10°Fx18 V=3.6x10" C

Therefore, the charge of each capacitor
is 2x10° F

: 4]
Using ¥ ==,
(¢) Using c

0 36x10°C
e
C, 6x10°F
-5
yoQ_3exi0CC_ ),
* ¢, 3xI0°F

Therefore, the potential difference
across capacitor C; and C, are
6Vand12 V respectively.

F

InFigure 9.31 determine (a) the equivalent
capacitance, (b) the total charge on each
capacitor.
6 uF 6UF  6uF
—

Figure 9.31 Capacitors in series and parallel

Solution
(a) From Figure 9.31 capacitors
C,, C, and C; are in series. Thus

their equivalent capacitance is

%=CL,+ é+é It then follows
that,

11 1 I~
C'6WF GUF 6uF 24F
hence, C’=2 pF

Now, capacitors C,, C,, C, are
replaced by ©'. This will make C”
and C, to be connected in parallel.
Then,

€, =C7+C,=(2+3] uF=51F

Therefore, total capacitance is 5 UF.
(b) Since capacitors C,, C,,and C; are
in series connection: then, they will
have the same charge: Q'. Therefore,

the charge Q' on each of capacitors
C, C,,and C, is O'=C'V.

Q'=2x10" Fx10 V =20°C

Student’s Book Form
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The charge on capacitor C,is
0,=CF)
0,=3x10°Fx10V =30uC

9.3.4 Energy stored in a capacitor
Once the charging of a capacitor has
begun, the addition of electrons to the
negative plate involves doing work
against the repulsive forces of electrons
which are already there. Equally the
removal of electrons from the positive
plate requires work to be done against the
attractive forces on the positive charges
on that plate. The work which is done is
stored in the form of electrical potential
energy.

To find the energy stored, suppose that
a capacitor of capacitance C is already
charged to a potential difference F"and that
the charge on its plate is 0. If a small charge
dQ is to be increased on the capacitor
plates, the work dW is needed to do the
transfer. Hence,

dW =VdQ
The total work W needed to increase the
capacitor charge dQ from zero to Q is
such that;
W o
W=| dw= L Vdo

o

W= (f’%dg:g (9.31)

2C

The other expressions for energy stored
in the capacitor are

This work done is stored as electric
potential energy between the plates of the
capacitor.

Therefore, equations for energy stored in

NN ol G N o

the capacitor is 5" ZQP T
Energy density of electric field

The energy density denoted by # is defined
as the electric potential energy stored per
unit volume of the electric field (volume
between the plates).

totalenergy stored

Energy density, )= ——————
& 97 volume of electric field

If the plate area is 4 and the separation
is d, the energy density of a parallel plate
capacitor is

1 3 ﬂ Ed)*
2% _1[ d ]( :
T2 Ad
2 —leE: (9.32)
..n-z % .32

Example 9117,
Calculate the magnitude of the electric
field required to store L00Jof electric
potential energy in a volume of 1.0 m’
in vacuum.
Solution
Using equation (9.32),

2% 1.0 Jm™
8.85%107" C*N"'m™

=4.75x10° Vm™
The magnitude of electric field is
4.75%10°Vm™.
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An uncharged capacitor of capacitance
C,=8 UF is connected to a power
supply and charged to a potential
difference ¥ =120 V. The powersupply
is disconnected. If another uncharged
capacitor of capacitance C,=4 puF is
connected to the capacitor C,, determine
(a) the final potential difference across
each capacitor;
(b) the final charge on each capacitor;
(c) the initial and the final energy of the
system: and
(d) account for the energy difference.

Solution
(a) From conservation of charges,

C+CV,=(G+C,)V, where

V; is the final common potential

difference.
v :Msime V, = 0; then
T,

1 2
_ OV, 8uFx120V
T C+C, (8+4)uF
Therefore, the final potential
voltage is 80 V..

=80V

(b) The final charges on each capacitor,
0,=CF, =8x10" Fx80 V=640 uC
0,=CV, =4x10 Fx80 V=320 uC

The final charges in capacitor C; and C,
are 640 pC and 320 uC respectively.

(c) The initial energy is the one stored
in capacitor C,,

= %C‘V"Z =0.5x8x10™ Fx(120 V)?
=0.0581J

Ul

Therefore, the initial energy is 0.058 J .

The final energy is the one stored in
capacitors (af and C,. That is,
1 3
u,= E(Cu H Cz)Vf
:%(8+4)x10*’ Fx (80 V)?

=0.0384 1
Therefore, the final energy is 0.0384 J.

(d) The final energy U, is less than the
initial energy U, : this is because the
difference in energy was converted
to other forms of energy like thermal
energy on the connecting wires and
plates of the capacitors.

9.3.5 Charging and discharging of a
capacitor

When a voltage is applied across the
terminals ofa capacitor the potential cannot
rise to its final value instantaneously. As the
charge builds up it tends to repel addition of
further charge. The rate at which a capacitor
can be charged or discharged depends on
its capacitance and the resistance of the
circuit through which it is being charged
or discharged. This fact makes a capacitor
to be a very useful component in timing
circuits needed in variety of circuits ranging
from clocks to computers.

Charging of a capacitor

Suppose the capacitor in Figure 9.32
was initially uncharged: then potential
difference ¥, across it is zero at t=0.
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The switch § is closed and the capacitor starts charging and the voltage ¥ increases
and the potential difference across the resistor R V, decreases.

[/

4

R

C

TR

Figure 9.32 Charging of a capacitor

At an instant of time t, ' = VeV, then

V:IR+gand ,=K_£:M
C R RC RC

Note that, current I (dQ/d1) is the rate
at which positive charge arrives at the top
(positive) plate of the capacitor.
_d0_¥C-0 _do _dr
dt  RC 'VC-0Q RC

Integrating both sides;
0 do 1
I ~zch

' Q-VC  RC
o-vce t X B
1 =—— sives
D{ 7 RC which gives
re-o0 _ g'#_ Therefore,

cv

Q=VC[I-8_E) (9.33)

nitially, at 1= 0, 0=V C(1—¢")=0

At an infinity time of charging Q9 =pC
which is the final maximum charge on
plates of the capacitor when fully charged.
The quantity RC in equation (9.33) is
called the time constant, denoted by 7. It
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is a measure of how quickly the capacitor
charges. When 7 is small, the capacitor
charges quickly, when 7 is large, the
charging takes more time.

An alternative to equation (9.33) is that

of instantaneous current / instead of

charge Q. Taking time derivative of Q in

equation (9.33),

=30 ¥
dt R

maximum possible current)

.

L Vv d
e "¢ where —=1 (thisis
R

(9.34)

Equations (9.33) and (9.34) can be
represented graphically as shown in
(Figure 9.33).

I=lg®

(a) (b)
Figure 9.33 Variation of (a) charge versus time
and (b) current versus of charging
capacitor
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Discharging a capacitor

Suppose a fully charged capacitor is
connected to a resistor with an open
switch (Figure 9.34). The switch is closed
at ¢t=0, at this time the charge on the
plates of a capacitor is O, . The capacitor
then discharges through the resistor, and
eventually decreases to zero.

Figure 9.34 Discharging a capacitor

At an instant of time r; VR+I{ =0,

V==V, hence, ]R:—QA But current
[

is the rate of change of flowing charge,

0

hence, d—Q =——

. It follows that,
dt RC

2d0 J" de . ;
—=—| —;integrating and
0.9 hrC
rearranging you get;
In 9] o Applying the exponent
0, RC

to both sides;
0=

The instantaneous currents /, is the time
derivative of O in equation (9.35),

(9.35)

Graphically, equations (9.35) and (9.36)
are as shown in Figure 9.35.

Q
(4
0 )
(a)
I
0 t
,(\
-1
(b)

Figure 9.35 Variation of (a) charge versus time
and (b) current versus time of a
discharging capacitor

M Neempiesss)

A 10 MQ resistor is connected in series

with an uncharged 1.0 UF capacitor and

battery with e.m.f. 12.0 V.

(a) What is the time constant?

(b) What fraction of the final charge is
on the capacitor at 1=46s?

(¢) What fraction of the initial current
is still flowing at £ =46s?

Solution
: ; o
_ @=¥g,_g-kj.! (a) Time constant:
dt RC From7 = RC,
. 7=10x10° Qx1.0x10° F=10s
I==Ie * (9.36) | Therefore, time constant is 10 seconds.
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(b) Using equation (9.33),

[e) 55
=== l-e W |=0.99
o [ e 9

The fraction of the final charge on the
capacitor is 0.99.

(c) Fraction of the initial current, can
be obtained using the relation that

=il
I=le %€
Thus,

1 16

I—”=e 9 =001
Therefore, the fraction of the initial
current still flowing is 0.01.

Neampiesz0) —

Uncharged capacitor is connected in
series with a resistor and a source with
e.m.f. of 110V . Just after the circuit
is completed, the current through the
resistoris 6.5x 10~ A. The time constant
for the circuit is 5.2s.

(a) What is resistance of the resistor?
(b) Find capacitance of the capacitor.

Solution

(a) The resistance of the resistor
Initially (at £ = 0), the current through
the resistor is

[V gok__1ov

°"R I, 65x10° A
=1.7x10° Q
Resistance of the resistor is

L7x10° Q
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(b) The capacitance of a capacitor.
Since 7= RC; then
=325 sy
R 1.7x10"Q

The capacitance of the capacitor is
3.1uF.

Neempes2r) —

A 5.0 uF capacitor is charged by a
12V supply and is then discharged
through a 2.0 MQ resistor.

(a) What is the charge on the capacitor
at the start of the discharge?

(b) Find the charge and p.d across the
capacitor afier 5 seconds from when
the discharge started.

(c) What is the current in the circuit after
the 5 seconds?

Solution
(a) The charge on the capacitor at the
start of the discharge.

0,=VC,
0, =12Vx5x10° F=60uC

Therefore, the initial charge is
60 uC.

(b) After 5 seconds

-l
From 0=Q¢ *

3
0=60x10* ch{ ) =364 pC
Therefore, the charge on the capacitor
after 5 seconds is 36.4 uC.
Then the p.d. is,
el AOHE g
©C 5 uF
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(c) The magnitude of the current in the
'
circuit is given by, 7= Ine_ RC

5
I=6pAxe V=364 uA

\

1. A 500 pF capacitor with a charge
of 300 uC is discharged through a
resistor.

(a) What is the initial discharge
current?
(b) What is the current after 20 s ?

]

. Describe the charging and
discharging of a capacitor through
a resistor.

3. (a) (i) State Coulomb’s law of

electrostatics

(ii) Calculate the force between two
charged particles each carrying
a charge of 1.0 C when they
are placed in air lm apart. Use
the result to define the ST unit of
charge.

(b) Two identical copper spheres A and
B are situated at a distance of 6 cm
apart and each carries a charge of
+6 uC . A third identical copper
sphere C isfirsttouched with 4 and
then with B . Thereafter, sphere C
isplaced 2 cm from sphere B. Find
the resultant force on sphere C.

() ()

Define electric field intensity
and state two possible SI Units.

(ii) An electric dipole consists of
10 pC and —10 pC charges
separated by 2 cm . Find the

electric field intensity at a
distance of 8cm from the
—10 pC charge on the coaxial
axis on the side of the 10 pC.

(iii) Two point charges 4 and B are
situated 8 cm apart. Point 4
has a charge of —3g and B has
acharge of +2¢. Where should
a particle C having a charge of
—g be placed so that it does not
experience a resultant electric
force?

Derive an expression for the energy
stored in a capacitor of capacitance
C having a charge O on its plates
and hence or otherwise deduce the
energy stored by a parallel plate
capacitor per unit volume in terms
of the electric field intensity £ and
the permittivity of free space €.
A charged capacitor of capacitance
4F is connected in series with a
resistance R, micro ammeter and
key. What do you think will happen
when the key is closed? If the time
taken for the charge to reduce tohalf
its maximum value is found to be
13x107 seconds, determine
(a) the circuit time constant.
(b) the time taken for the charge
on the capacitor to reduce to
125x107 Cfrom7.5x 107 C.

Two identical charged spheres of
charge 93 pC are suspended by light
inelastic strings of equal length of
29 cm . The strings make an angle
of 40°with each other. When
suspended in a liquid of density
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800 kgm'3 , the angle remains the
same. Ifthe density of the spheres is
2600 kgm™, determine the relative
permittivity of the liquid.

7. Two capacitors of capacitances
2 uF and 3 pF are charged to p.d.
of 100V and 250 V respectively.
Find:

(a) The energy stored in each
capacitor.

(b) The loss in energy if the
capacitors are connected
together by wires with plates of
similar charges joined. Account
for the loss of energy.

8. (a) (i) Explain what is meant by
dielectric constant?

(ii) A sheet of paper 40 mm wide
and 0.015 mm thick between
metal foil of the same width is
usedtomakea 2.0 pF capacitor.
If the dielectric constant of the
paper is 2.5, what length of
paper is required?

(b) Two capacitors of capacitances
3.0 uF and 5.0 pF are connected
to form a potential divider with a
5.0 uF capacitor across a 6.0 V
battery. If the input voltage supply

is 12.0 V what are the two possible
amounts of energy stored ina 3.0 pF
capacitor?

9. (a) The plates of a parallel plate air
capacitor consisting of circular plates
each of radius 10 em, placed 2 mm
apart, are connected to the terminals
of an electrostatic voltmeter. The
system is charged to give a reading
of 100V on the voltmeter scale.
The space between the plates is then
filled with oil of dielectric constant
4.9 and the voltmeter reading falls to
24 V. Calculate the capacitance of
the voltmeter. You may assume that
the voltage recorded by the voltmeter
is proportional to the scale reading.

(b) Two capacitors C,and C, are
connected in series and then
charged with a battery. The battery
is disconnected and C, and C, still
in series are discharged through an
80 MQ resistor. The time constant
for the discharge is found to be 4.8
seconds. Calculate:

(i) The capacitance of C, and C,
in series; and

(ii) The capacitance of C, if C,
has a capacitance of 10 pF.
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1. Two charges g =2x10" C and
q,=4x107 Care heldat adistance
d =1m apart. Calculate the force
exerted by these two charges on a
charge 0=107 Cifitis placed half
way between them, and locate the
point between the two charges where
the net force vanishes.

2. Charges ¢, ¢». ¢ and g,are placed
at the corners of a square of side
a=2m. If g, =¢,=¢,=0=1C
and g, =—0. Find the electric field
at the center of the square.

3. The electric field just above the
earth’s surface is known to be
E,=130 NC™'. Assuming that this
field results from a spherically
symmetrical charge distribution
over the earth, find the total charge
O, on the earth. (the earth’s radius,
R, =6400 km ).

4. Two masses m with equal charges
O are suspended by light strings of
length / from a fixed point. If the
strings hang at @ to the vertical, show
that O* = (4ng, )4/ mgsin’ Otan 6

w

. Acylinder of radius R has uniform
charge density pem™.
(a) Show that the magnitude of
the electric field £ directed
Rp
2re,”

o

anywhere is E(r)=

(b) Plot £ as a function of rthe
distance from the axis of the
cylinder.

. Achargeof 5.0 uCisplaced at 0 cm

mark of a meter stick and a charge
of —4.0 uC is placed at the 50 cm
mark.

(a) What is the electric field at the
30 cm mark?

(b) At what point along a line
connecting the two charges is
the electric field zero?

. Two large horizontal parallel metal

plates are 2.0 cm apart in vacuum
and the upper is maintained at
positive potential relative to the
lower so that the field strength
between them is 2.5x10°Vm™.

(a) What is the p.d between the
plates?

(b) If an electron of charge
1.6x10™" C and mass
9.1x10™" kg is liberated from
rest at the lower plate, what is
the speed on reaching the upper
plate?

. The force of 3.2x 107N is required

to move a charge of 42 uC in an
electric field between two points 25
cm apart. What potential difference
exists between the two points?

. A charge of 5.0nC is at (0,0) m

and a second charge of -2 nC is at

(3.0) m.. If the potential is taken to

be zero at infinity:

(a) What is the electric potential at
point P(0,4) m?

(b) What is the potential energy of
a 1.0 nC charge at point P ?
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(¢) What is the work required to
bring a charge of 1.0 nC from
infinity to point P ? and

(d) What is the total potential of the
three charge system?

. Suppose the two plates of a capacitor

have different areas. When the
capacitor is charged by connecting
it to a battery, do the charges on the
two plates have equal magnitude, or
may they be different? Explainyour
reasons.

. Aparallel-plate capacitor is charged

by being connected to a battery and
is kept connected to the battery. The
separation between the plates is then
doubled.

(a) How does the electric field
change?

(b) How does the charge on the
plates change?

(c) How does the total energy
change?

. (a) Explain the differences between

dielectric strength and dielectric
constant.

(b) The dielectric constant of water
is approximately 81, larger than
most insulators. Explain briefly
why water is notcommonly used
as a dielectric in capacitors.

(c

Liquid dielectrics that have polar
molecules (example water)
always have dielectric constants
that decrease with increasing
temperature. Why?

EBlectrostatics

13. A parallel plate capacitor has
plates with the area of 0.2m*
and separation of 0.0l m. The
capacitor is charged to a potential
difference of 200V and the power
supply is disconnected. A dielectric
slab (& = 4) of thickness5 mm
is inserted between the plates.
Calculate:

(a) The final charge on each plate;

(b) The final potential difference
between the plates: and

(c) The final energy in the capacitor.

14. The area of each plate of a parallel
plate capacitor is 0.6 m”, and the
distance between the two plates is
2 mm.

(a) What is its capacitance?
(b) What will be its new capacitance
if half the space between

the plates is filled with mica
(¢, =8).

w

. A parallel-plate capacitor is located
horizontally so that one of its plates
is submerged into a liquid while the
other is above the liquid surface. The
permittivity of the liquid is equal to
£, ; itsdensity is equal to J. Towhat
height will the level of the liquid in
the capacitor rise after its plates get
a charge of surface density 5?

=

. A parallel-plate capacitor has space
between its plates filled with two

slabs of thickness %and dielectric

constants k, and k,, d is the plate
separation of the capacitor.
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Show that the capacitance of the
capacitor is given by:

C=25“A kk,
d \ k+k

. By considering energy of an isolated,

charged parallel plate capacitor,
obtain an expression for the force
between its plates.

When a capacitor, battery, and a
resistor are connected in series does
the resistor affect the maximum
charge stored on the capacitor?
Why?

. Verify that the time constant RC has

units of time.

The plates of a capacitor of
capacitance 2.0 UF carry opposite
charge of 10 mC. The plates are
connected across a 5.0 MQ resistor.
(a) Find the charge flowing through

the resistor during the time
interval of 2.0's.

(b) Find the amount of heat
generated in the resistor during
the same interval.

21. (a) What is an equipotential surface?

2

2

I

w0

(b) Sketchthe form of the equipotential
surface and the electric lines of
force for:

(i) A point charge;

(ii) A charged conducting sphere; and

(iii) A pair of parallel conducting
plates when one plate has a
negative charge and the other
has an equal positive charge.

In towns and cities around the country,
dust is one of the biggest challenges
in offices and residential houses
especially in areas where buildings
and people are crowded. Design a
system that is safe and can reduce dust
particles in rooms (Hint: Consider
electrostatic precipitators).

. Soil moisture content is an important

aspect in agriculture. Measurement
of soil moisture content can be done
using capacitors as soil moisture
sensor. Design a soil moisture sensor
and suggest how to calibrate it. (Hint:
Soil moisture can be considered as
dielectric material).
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| Name [ Symbol | Constant
Acceleration due to gravity g 9.8 ms™

v Avogadro’s number N, 6.023%10% mol ™
Boltzmann'’s constant ky 1.38x107 K™

| Density of air P, 1.29 kg/m’
Density of fresh water P 1000 kg/m*
Electron rest mass m, | 9.1x107™ kg
Electronic charge e 1.602x107° €
Gravitational constant G 6.673%107" Nm’kg™
Mass of the earth M, | 598x10™ kg
Mass of the moon M, 7.35%10™ kg
Mass of the Sun M, | 1.99x10" kg
Mean density of earth P 5.522x10" kgm™
Mokt o5k | G, oot
e o N T
Permeability of free space Hy 4nx107 Hm™
Permittivity of free space £ 8.854x10™" Fm™'
Radius of the earth Ty 6.4x10° m
Radius of the moon Ty 1.74%10° m
Radius of the sun s 6.96x10" m
Refractive index of glass n 1.5
Specific heat capacity, water C, |42kikg'K"
Specific latent heat of fusion, ice L, 336 klkg ™'
g:;::lllﬁc latent heat of vaporization, L 2268 klkg™

| Speed of light in vacuum ¢ 2.998%10" ms™'
Speed of sound in air (at 0°C) v 3.32x10° ms™
Standard atmospheric pressure P 7.6x10° mmHg or 1.013x10° Pa

| Stefan-Boltzmann constant c 5.671x107 WmK™
Triple point of water T, 0.01°C=273.16 K
Universal gas constant R 8.31 Jmol 'K
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Absolute zero temperature
It is zero point (T'=0K or—273.15°C)
temperature at which system of molecules
(such as a quantity ofa gas, aliquid, or a solid)
has its minimum possible total energy (kinetic
plus potential).

Adhesion force
The force of attraction between the molecules
of the different substances

Adiabatic process
Thermodynamic process in which there is
no heat exchange between the system and
surrounding

Amplitude
The maximum displacement from the
equilibrium position during a cycle of periodic
motion: also, the height of a wave

Angle of contact The angle made between the
contact surface and tangential line on liquid
meniscus

Angle of projection
An angle made between the horizontal direction
and the initial velocity of a projectile

Angular momentum
The product between radius and linear
momentum of a rotating rigid body

Beat The oscillation of wave amplitude that results
from the superposition of two sound waves
with almost identical frequencies

Blackbody radiation
Radiation emitted by a blackbody at a given
temperature

Capacitance
‘An ability of a capacitor to store charge or the
ratio of an object’s stored charge to its electric
potential difference

Capacitor
An electric device used to store charge that is
made up of two conductors separated by an
insulator

Centre of mass
A point at which all the mass of the body
assumed to be concentrated

/ sy D

Centrifugal force
The apparent force (made-up force) that seems
to pull on a moving object, but does not exert
aphysical outward push on it, and is observed
only in rotating frames of reference
Centripetal acceleration
The centre-secking acceleration of an object
moving in a circle at a constant speed
Centripetal force
The net force exerted toward the centre of the
circle that keep an object in uniform circular

motion and causes it to have a centripetal
acceleration

Coefticient of friction
The ratio of the friction force to the normal
force

Coefficient of restitution
The ratio between relative velocity of
separation to relative velocity of approach

Cohesion
The force of attraction between the molecules
of the same substance

Composite conductor
A conductor made by joining two or more
conductors

Crest High point of a wave

Critical angle
A certain angle of incidence in which the
refracted light ray lies along the boundary
between two media

Critical velocity
The maximum velocity of streamline flow
which when exceeds, the flow become

turbulence
Damped oscillation
An oscillation whose ampli over

time due to dissipation of energy
Dielectric constant
The ratio between capacitance with dielectric
material to that without dielectric material
fraction grating
A device for producing spectra by diffraction
and for measurement of wavelength
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Diffraction
A spread out of waves after passing in an
aperture or sharp edge

Dimension formula
An expression or formula which shows how

the fund: 1 are rep 1in
relation with other physical quanties
Doppler Effect

The change in frequency due to relative motion
between a source of wave and an observer
Elastic collision
Type of collision in which its total kinetic
energy is conserved
Elasticity
Ability of a material to retain its original shape
and size after a removal of deforming force
Electric field
The region around a point charge in which a
brought test charge can experience electrostatic
foree
Electric flux
The amount of electric field that penetrates a
certain area
Electric potential
Work done in moving a unit test charge from
infinity to a point in the electric field
Emissivity
The ratio of the rate of radiation from a
particular surface to the rate of radiation from
an equal area of an ideal radiating surface at
the same temperature
Equilibrium
A state at which the net force and net torque
on an object equal zero
Equipotential lines
Lines that illustrate every point at which a
charged particle would experience a given
potential
Equipotential surface
The surface with the same electric potential
Error Adeviation from exact or true value
Escape velocity
The minimum velocity a body may be projected
so that it escapes from the earth’s gravitational
force influence completely
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Excess pressure
A difference between the inside and outside
pressure of a bubble

Extension
An increase in length produced by a deforming.
force

Field A property of a region of space that can affect
objects found in that particular region

Fluid A substance that can flow such as liquid
and gas

Forced convection
The convection in which the transfer of heat
energy from hot body is facilitated by an
external agent such as fanning

Free fall
The motion of a body when air resistance is
negligible and the motion can be considered
due to the force of gravity alone

Free-body diagram
A physical model (a picture) that represents
the forces acting on a system

Friction
A force acting parallel to two surfaces in
contact: if an object moves, the friction force
always acts opposite the direction of motion

Fundamental interval
The distance between the lower and upper
fixed points

Gravitation
The force of attraction between two bodies
that tend to pull them towards each other

Gravitational field The field that surrounds
any objects with mass: equals the universal
gravitational constant, times the mass of the
object, divided by the square of the distance
from the object’s centre

Ice point
The equilibrium temperature of ice and water
at standard pressure

Impulse
The product of force and time or simply is the
change in linear momentum

Inclined plane
A plane oriented at any angle with the
horizontal
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Inelastic collision
A collision in which kinetic energy is not
conserved, as opposed to an clastic collision,
in which the total kinetic energy of'all objects
is the same before and after the collision

Inertia
Ability of a body to resist change of state of
linear motion

Interference
A combination of wave fronts to form
secondary wave front

Isobaric process
A thermodynamic process which occur at
constant pressure

Isochoric process
Thermodynamic process which occur at
constant volume

Isolated system
A system for which there are no external
interactions. For such a system there is no
transfer of momentum into or out of the system.

Isothermal process
A thermodynamic process which occur at
constant temperature

Lagged conductor
An insulated thermal conductor

Lamina A rectangular sheet

Laminar flow
A steady flow attained if each particle of the
fuid follows a smooth path and fairly slowly
in straight lines with constant speed

Least count
The smallest value which can be measured
accurately by an instrument

Liquid-in-glass thermometer
The thermometer which uses liquid as
thermometric substance for example; mercury
and alcohol

Measurement
A comparison between an unknown quantity
and a standard

Moment of inertia
Ability of arigid body to resist change of state
of rotational motion

Momentum
The quantity of motion that an object has,
equal to an object’s mass multiplied by that
object’s velocity
Natural (free) convection
The convection in which the transfer of heat
energy from a hot body occurs naturally
without an external agent
Oblique collision
The collision which oceurs at an angle
Orbit A circular path described by an object around
another
Oscillation
To and fro motion about a fixed point
Physical quantity
A property of a material that can be quantified
by measurement
Pitch The highness or lowness of a sound wave,
which depends on the frequency of vibration
Point charge
A charge which is considered to be a source
of electric field
Polarization
A process of restricting transverse waves to
vibrate in one plane
Precision
A characteristic of a measured value describing
the degree of exactness of a measurement
Progressive waves
Travelling waves that transfer energy from
one point to another
Projectile
A body moving in air or space under the
influence of gravitational force

Pyrometer
Ani for high
using thermal radiations emitted by a hot
source

Radius of gyration

The distance between the axis of rotation and
the point where the mass of a body considered
1o be concentrated so that its moment of inertia
about that point remain the same

Random error
An error which has an equal chance of being
positive or negative about the mean value
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Restoring force
A force that restores an oscillating object to
its equilibrium position
Rigid body
A body that retains its shape and size when
subjected to external force
Rotational motion
Type of motion for which the particles in an
object follow different circular paths centred
on a straight line called the axis of rotation
Static friction
A resistive force to a body just before it starts
moving
Stationary waves
Waves which propagate without transferring
energy
Strain An extension produced per unit length
Streamline flow
A flow of fluid at constant velocity or speed
Stress
A deforming force per unit cross section area
Surface energy
The work done by surface tension in changing
a unit surface area of a liquid
Surface tension
An elastic tendency of a fluid surface which
makes it acquire the possible minimum surface
area
Systematic error
An error which is constant in one direction
Tension
A force acting along stretched material.
Terminal velocity
The maximum constant velocity attained by
object moving through a fluid
Test charge
A charge which experience electrostatic force
when placed in electric fields
Thermal conduction
Transfer of heat in solids
Thermal conductivity
A measure of ability of material to conduct
heat through it
Thermal conveetion
The transfer of heat in a fluid by actual
movement of molecules
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Thermal resistance
Ability of material to resist conduction of heat
through it
Thermocouple
An electromotive thermometer used to measure
temperature
Thermodynamic scale
Scientific standard scale adopted for measuring
temperature
Thermodynamics
A branch of physics deals with interaction
between heat and other forms of energy
Thermometer
A device used to measure temperature
Thermometric
A physical property of an object that changes
ina measurable way as temperature changes
Thermometry
A branch of science which deals with the
measurement of temperature
Torque The moment of force which produce turning
effect
Trajectory
A path described by a projectile
Triple Point of water
The temperature at which pure ice, water and
water vapour coexist in equilibrium
Turbulent flow
The movement of fluid with fluctuating
velocity or speed and direction
Ultrasound
High-frequency sound waves (above the range
of human hearing) used to probe the interior
of the body, much as X rays do
Uniform circular motion
The movement of an object or particle
trajectory at a constant speed around a circle
with a fixed radius
Un-fagged material
Anon-insulated thermal conductor
Viscosity
Ability of a fluid to resist relative motion of
its layers and a motion of an object that flows
through it
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Chapter One

Exercise 1.1

2.
4.

MIT, 2
1

L2T1?

Exercise 1.2

2.

3
4.
5.

(a) 0.042 (b) 1.50 (c) 0.028 (d) 2.8 %
7%

(9.1£0.9)°C

(9.74+0.26)ms™

Revision exercise 1

5.
6.
7.

(3.1£0.2)cm
8.4%
1.49%

Chapter Two

Exercise 2.1

SR NS

(a) 4.85 m (b) 4.54seconds

(b) 30N

(a) P21.08M (b) P22.16 M
(b) 2ms™

(a) 3.92N (b) 4.62N (c) 6.93N
(a) 8400N (b) 112500Nm™

(c) 6.25ms™,6328.125]

10. (¢)2.004ms™

Exercise 2.2

3.
5.

(b) 60°
(a) 20.4°,69.6°

9.

Answers

A e T

(b) 27.1ms™,3.91s
(b) 17.29ms™
(a) 57.3m

Revision exercise 2

21.
22.
23.
24.

(a)25.46 N, 424N

. 9.77ms™

. 7.87N,20.4 cm

. 04N

. 2.86seconds, 14.29m

. No, 18.56 ms™ North

. 40.3ms ™", 30°to the horizontal
. 59842 kg

. (a) 8000kgs™" (b) 6907.8ms™
. (b) 3414.21 N

(c) (i) 1.4ms™

(c) (ii) 7ms™,4.2ms™,1.4ms™
(i1i)33.6 N,16.8 N

(b) 323.5m

18.2seconds

330.24m, 68.8ms™

(b) 63.4°

Chapter Three

Exercise 3.1

3.

LU

&

(a) 3.13ms™ (b) 1.28ms™
(b) 18.69m

(a) 333 rads™ (b) 266.67N
8.1°
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7. (a) 16.04N(b) 2.72's
8. 88ms”, 9.28ms™
10. 45.6°

1. 2.8ms™,17.6N

Exercise 3.2

6. (a) 2Hz (b) 3.16ms(c) 0.25ms™

7. (a)19.6kgs ™ or 19.6Nm™
(b) 0.63s, 1.58Hz (¢c) 4.9ms™
(d) 0.49ms™’
8. (a) 1.05x10°Nm™ (b) M =36kg
9. (a) 0.13m (b) 0.159 Hz(c) 6.28 s
10. (b) L1s

Exercise 3.3

7. 05%

9. 2.22x10°Nkg™
10. 3.13x10% J
1. 1.69Nkg™
14. 2.39kms™
15. (a) 380.03N
16. 6.02x10" kg
17. 250N

18. 1.16x10"J
19. 2.66x10" ms™

Revision exercise 3
6. 2.lms”

8. 031

9. 22.5°

10. 4.34rads™

11. (a) 2J(b) 2.83ms™' (c) 0.5, 1.5J
(d) 40ms™

12. 9.96ms™, 4.45m

13. (b)32s,7x107°m, 0.28ms ™,

14. 031N,3.9N

15. 1.62Nkg™, —2.8x10°Jkg™

16. 3.4x10°J

18. 3.67x10'm

Chapter Four
Exercise 4.2
5. (a)2 X107 kgm® (b) 8 x10~* kgm*
6. (a) 2.6 kgm® (b) 20.7 kgm®

(¢) L6xkgm®
7. (a) Tkgm® (b) 8kgm® (c) 3.5kgm’
8. 1.58x10" gem’

9. 9.8x10" gem®

Exercise 4.3

1. (a) 8kgm®(b) 24kgm’

2. (a) 4x10 7 kgm’ (b) 8x 10" kgm’
(¢) 2x107 kgm*

3. 4.lkem’

4. (a) 2.083x 10 kgm’
(b) 1.302x10™ kgm”
(¢)1.5% 10" kgm®

5. 1.25x10'kgm®

Exercise 4.4

2. 0.65m
3. 18cm
5. 52.9cm

F
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Answers

Exercise 4.5 25. 4.85s,800revolutions
6. (a)1.03s (b) 2lrevolutions 26. (a) 6 rads™, 3rads™
7. (a) 24Nm (b) 0.036rads™ (b) 63rads™
(c) 1.07ms™
8. 2.36ms” Chapter Five
9. (a)11.36N, 7.57ms™, 9.53ms™ Exercise 5.1
(b) 9.53ms™ 5. 111
6. 3.19ms™
Exercise 4.6 7. 64ms™
2. (a) Skgm’s™ (b) 0.4Nm
3. 17.5kgm’s™ Exercise 5.2
4. 4.lrads™ 3. 165mm
5. 5.4x10° kgm’s™ 4. 10ms™
6. (a)2.67ms” (b) 0.67 ms” s, L
\or

(c) —1.001 rads™

Exercise 5.3

Revision exercise 4 3. 1.98ms™

7. 2.29kgm* 4. 312ms™

8. 4.04%

13. (a) Srads™ (b) 1.5Nm (c) 115 Revision exercise 5

14. (a) 1.5Nm (b) 42397 2. (a) 1.98ms ™' (b) 2.8m
(c) 20.59rads™! 4. 15.8ms™

16. 15.78 s 6. (c) 0.941m of water

18. 0.16kgm* 7. 318.5ms™

20. 52.9cm 9. 15N

21. (2)0.013rads™ (b) 3.14rads™ 17. 3.77x107m’s™
(c) 23555 (d) 118 Chapter Six

22. 4.8ms” Exercise 6.1

23. 0.3m 2. 10cm

24. 226.08rads™ 6. 2.62cm
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7. (a) 1.88x107J (b) 10mm 16. 0.5mm, 0.25mm
8. 9.4x10°Nm” 17. 11.28 gem™
9. 1.0l mm 18. (a) 1.5 (b)6.0x107m, 4.0x10~ m
(c) 780N
Exercise 6.2 20. (a) 1.1x107m (b) 1.5x1072]
3. (b). 64N 21. (a) SON
4. (b). (i) 5x10™ (b) 1.8x107 m, 4.4x107]
(i) 1x10" Nm™ (iii) 0.025J (c) 0.85x10°m
5. (¢) 6.4x10°Nm™, 0.06, (d)0.084 mfrom B
" -2
L1 N 25. (a) 4.62moles (b) 240.3ms™
6. 0.041.0.08) 26. (a) 6.20x107']
3 -3
7. 1m’,4.5kgm (b) 2.33x10°m’s>
o -2
8. 6.0x10"Nm (¢) 483.2ms™
9. 29x10%m
11. 473¢g Chapter Seven
Exercise 7.1
Exercise 6.3 1. 60°C
2. 2.64ms” 3. 384.8°C
3. (a) 6.02x10 moles 4. 57.8°C
(b) 3.63%10*" molecules 5. 87.08°C
(c) 482.7ms™! 6. 369.2K
5. 707.1ms” 7. (a) 369.4K (b) 369.4K
6. 1843.6ms”, 460.9ms™ (¢) 368.9K
8. 50°C
Revision exercise 6 9. 17.3°C
5. 257cm
Exercise 7.2.1
6. 9mm
1. (b) 50005~ or5000 W
T 72
2. 4L12Js7, 37.13°C
8. Scm
2 3. l6cm
12. 1.0x10°Nm™
5 2 4. 3825m
13. 1.45x10°Nm™
= = — nt’s Book Form Fiy
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5. (a) 650Wm™
(b) 2.0x10°ms™
7. S1°C

Exercise 7.2.2

2. 10 minutes

3. (a) 24°C (b) 42.7°C

4. (a) 47°C (b) 15.4minutes
5.

7.5°C/minutes

Exercise 7.2.3

3. (a) 0.71 (b) 2.42
4. 1933K
5. 98.09Js™
6. 5749K

Exercise 7.3

1. (a) 832.6J (b) 2.1x10°J
(¢) 2.9x10% ]

2. (b) -6171.51

(b) 228257, (d) 684.75]

(e) 9131 (f) 113.991

4. (a) 1520mmHg, 17°C
(b) 2006 mmHg , 110°C

5. -7l1.2°C

8. (a) 33.2Jmol 'K, 24.9Jmol 'K
(b) 1.3 (c) 996071

9. 28.8mmHg

o
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Answers

Revision exercise 7

4. 405.6kJ

5. 97.3°C,75.5°C
6. 3.6

7. 83°C

8. 9903W

9. 0.036 Wm 'K
10. 3minutes

1. 1384W

12. 2]

13. 10°J

14. (a) 2kJ (b) 450K (c) 192.87
16. 56.4°C
17. 39.89°C
18. (a).3.96x10°VeC™,
32x10°vec™
(b) 12.5°C™
19. 1.45x10 'kgs™
20. 2.673x10°Nm™

Chapter Eight

Exercise 8.1

5. 3266ms”

Exercise 8.2

4.260 Hz

5. (a)14434ms™ (b) 0.6m
(c) 240.5Hz

6. 299.57ms™

7. 00lm
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8. (a) S—nmd (¢) 6cm Exercise 8.5.2
(d) O%Olsiu5001n 3. 5.06mm
9. (a)30ms‘| (b) 0.017kgm" 4. 6.79%107m or 679nm
10. (a) 82ms™ (b) 16.8m 5. 20.7° 3.1°
(c) 4.88Hz 6. 640 nm, 430nm, 28.7°
11. (a) 105Hz(b) 157.5ms™ 7. 17.5°,36.9°and 64.2°
8
9.

12. (a) 3.2% (b) 6.78% 2
374 lines permm
Exercise 8.3 10. 569x10° lines per metre, 5898A
3. 170Hz
4. 02m Exercise 8.5.3
5. (b) llcm 1. 56.8%53.1° 67.5°
6. 5.044 beats/second 2. (b) 53.1°
7. 27.5beats/second 5. (b) 1.6, 320
8. (a)333ms™', 360.5ms™

=1
(b) 384.9ms Exercise 8.6
9. 1367.6m 1.
10. 100Hz 2

6.18 beats/second

(a). 859Hz (b) 741Hz
3. (a)18ms™ (b) 17.1ms™
7. 3x10'ms™

Exercise 8.4

5. 2.0x10°ms™

» Revision exercise
Exercise 8.5.1 3 ge's

~1
2. 10mm,12.5mm 1. 240 ms
3. 551.25nm 4. 30.16Hz
4. 0.09mm 5. 11.7ms™
5. 32um 8. 343mm, 3.16mm
6. 0.034mm 9. 12
8. 0.74mm 12. 8.7x10°m
9. 1174 14. 1.43x10°Nm™

14
10, L5lm, 133 15. 5.5x10"Hz, 3457A

F
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16. 6cm, 20Hz, 120cms™
19. 8.2x10'ms™
20. 403.3Hz to 484Hz
Chapter Nine
Exercise 9.1
2. (a) 742x107C

(b) 3.7x107C, 1.48x10° C
3. (a) +3.6x10°C

(b) 0.2N, downward
4. 14N
6. 0.25mfrom 2.5°C
7. 50NC',28.1NC”'
8. (b) 432x10>°NC™
9. 0.55
10. 1.8x10°NC™,

60° below x-direction
1. 3

Exercise 9.2

8.
9.

11.
12
13.
14.
15.

5.9x10°ms™

4.43 mm
1.59x10™""C
3.6x10"J
1L29NC™, 0V, 01
461

47.68V

Exercise 9.3

()3 uA (b) 2.50A

1.

Answers

3. (a) (i) 9%10” N (b)379.7N

(¢) (i) 1.09x10"NC™'

(c) (iii) 35.6 cm on the right of +2q
5. (a) 1.88x107’s

(b) 3.36x107's
6. 144
7. (a)107J, 9.4x107J

(b) 9.4x1071J
8. (a)(ii) 33.90 mm

(b) 8.44x107°1, 1.28x107]
9. (a)3.22x107"'F

(b) (i) 6x107°F

(i) 6.04x10°°F

Revision exercise 9

1. -7.2N, 041m

2. 9x10°NC™in ydirection

3. 592x10°C

6. (a) 1.4x10°NC™' totheright
(b) 4.24m from the 0 cm mark

7. (a)5.0kV (b) 42x10'ms™

8. 1904V

9. (a) 7.65 V (b) 7.65%107°]
(c) 7.65x107°T
(d) =2.2x107%7

13. (a) 3.54x107°C (b) 125V
(¢) 2.2x107°J

14. (a) 2.66x10°F (b) 4.72x10°F

20. (a) 8.19mC (b) 1.64 1
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A

absolute error 7

absolute temperature 178, 189,
217,218,229, 251,293

a car on a banked rough curved
road 59

a car on a banked smooth
curved road 60

a car on a level rough curved
road 58

acceleration 68

acceleration due to gravity 81,
337

accuracy 12

adhesive force 160

aerofoil lift 140

angle of contact 161, 162, 163,
164,165,181

angular displacement 52

angular momentum 95, 128,
129, 130, 131

angular velocity 51,52, 63,66,
73,98, 116, 117, 118,
119, 120, 128, 129, 130,
132, 133,134, 296

aphelion 78

applications of circular

motion 61

applications of Newton's Laws
of Motion 34

applications of projectile
motion 38

artificial satellite 92

astronomical bodies 77

atmospheric pressure 140, 143,
160, 163, 182, 187, 188,
192, 225,226, 235, 337,
350

atomizer or sprayer 140, 143

average thermal energy 186

B

Bernoullis equation 138, 139,
140, 142, 144, 150, 151

Bernoulli’s principle 139, 140,
142, 144,151

Boltzmann's constant 179, 337

Boyles law 178,191

breaking point 169

breaking stress 169

brittle 168, 169

bulk modulus 169, 170, 171,
175

bulk strain 167

C

capillarity 161

capillary depr

capillary tubes 162

car shock absorbers 75

castiron 169

Celsius 187, 188, 189, 193,235

centre of gravity 58,60

centre of mass 95,96, 97, 98,
106, 107, 108, 112, 114,
122, 123, 131, 293

centrifugal pump 62

centrifuge 62

centripetal acceleration 52, 53

ceramic 169, 198, 320

change of momentum 26

Charles’ law 178

circular motion 51

clock 74

coalescing 156

coefficient of friction 23,24,
36, 125, 126, 127

coeflicient of surface tension
152, 154, 155

cohesive force 153, 160, 164

compound pendulum 114

compressibility 135, 170

compressible 135, 137, 149

concave meniscus 160, 162

connected bodies in vertical
motion 19

connected bodies on an
inclined plane 22

connected bodies on horizontal

plane 20

conservation of linear momen-
tum 15,25

conservation of mechanical
energy 56,73,121, 123

continuity 135, 136, 137, 139,
140, 151

critical velocity 63, 136

A e

cyclist on a curved rough level
road 60

D

derived physical quantities 1
descending in alift 24
dimensional analysis 1
dimensional homogeneity 3
dimensions 2

displacement 67

ductile materials 168,169
dynamic component 143
dynamic lift 142

E

ejected mass 32

elastic collision 27

elasticity 152, 166, 168, 169,
171, 174, 182, 250, 252

elastic limit 168, 169, 174,175

elastic properties 29, 166

energy changes in simple
harmonic motion 73

energy of liquid surface 153

energy of satellites 89

equation of mass continuity
137

equations of simple harmonic
motion 67

equilibrant forces 15

errorin division 10

error in exponents 10

errors 1

errors froma graph 11

errors in a difference 9

errors ina product 9

errors inasum 9

escape velocity 90,91, 92

excess pressure 72,158, 159,
160, 163, 165

exhaust gases 32

F

Fahrenheit 187, 188, 189

field strength 85, 86, 92, 94,
301, 304, 310, 318,319,
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320,334
fluid 26, 62, 135, 136, 137, 138,
139, 140, 143, 144, 145,
148, 149, 150, 151, 190,
197, 211, 260, 340, 341
fluid dynamics 135
force 15
force of attraction 77
fractional error 7
free fall 24
free surface energy 155, 156
frictional forces 58
fundamental interval 339
fundamental physical quantity 1

G

gases 31- 34,37, 135, 145, 152,
166, 170, 176, 178, 179,
184, 187,191, 192, 223,
224, 226,250, 251,293

geostationary satellites 90

gravitation 77

gravitational field 84, 85, 86,91,
92, 94, 152,297, 311

gravitational field strength 85,
86,92, 94

gravitational force of attraction
81, 84, 88, 92

gravitational potential 77, 85, 86,
89,92, 94,139

gravitational potential energy 85,
92, 139

gravitational potential gradient
86

H

heat 27, 29, 145, 186, 187, 190,
193, 197- 217,219 - 235,
251, 252,336 - 341

Hooke'’s law 65, 69, 70, 168, 172,
183, 184,241

horizontal component 37

horizontal range 40

hydrostatic stress 167

I

ice point 187, 190,191, 192, 193,
196

ideal gas 176, 178, 180, 184, 188,
189, 196, 224, 225, 227,
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228, 229, 230, 232,233,
251
impulse of the force 25,26
inclined plane 18, 19, 22, 23, 41,
43,47, 48,114, 115, 121-
125, 127, 132, 310
incompressible fluid 135, 144
Inelastic collision 27
isothermal condition 156, 157,
182

kelvin 2, 187, 189

Kepler’s First Law 78

Kepler’s laws of planetary
motion 77

Kepler's Second Law 78

Kepler’s Third Law 78

kinetic energy of rolling
objects 121

kinetic theory of gases 152, 176,
184, 293

L

launching of a satellite 87

law of conservation of linear
momentum 30

law of mass continuity 136, 137

lift 24

linear momentum 15,17, 25, 28,
30 - 33,35, 37, 128, 129,
338,339

line of action of the force 115,
155

liquids 135, 152, 164, 166, 170,
187, 190, 250, 251

longitudinal strain 169

lower fixed point 187

M
mass ascending 24
mass flux 137
maximum height 39
‘maximum tension 57
mean absolute error 7
measurement 1
meniscus is convex 160
minimum tension 57
modulus of elasticity 168, 169,
171, 250

moment of force 115, 116, 125,
341

moment of inertia 5, 95,
98-112, 114-121, 123,
125,128 -134, 340

moment of inertia of a disc
101,111

moment of inertia of a hollow

thin sphere 103

moment of inertia of a ring
100, 108

moment of inertia of a
rotating uniform rod 99

moment of inertia of a solid
sphere 102, 111, 125

moment of inertia of flywheel
101

moon 51, 63, 77, 79, 80, 86, 87,
91, 92,94,337

motion in a horizontal circle
54

motion in a vertical circle 56

motion of connected bodies 19

musical instruments 75

N

natural satellite 87
Newton's First Law of Motion

Newton's Law of Universal
Gravitation 79

Newton's laws 47

Newton’s Second Law of
Motion 17

Newton'’s Third Law of Motion
17

non-uniform motion 51

non-viscous fluid 135, 136,
138,139, 149, 150

number of revolution 119

o}

orbital velocity of a satellite 88

oscillations 8

oscillations of a simple
pendulum 72

oscillations of liquid in a
U-tube 71




—
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P

parabolic 39

parallel axis theorem 106, 107,
108, 113,114, 121

parking orbit 90, 92

partly plastic 168

period 67

period of a satellite (T) 88

permanent stretch 168

perpendicular axis theorem 108,
110

physical quantities 1

Pitot tube 143

planets 77

point of contact 161, 193, 267

Poiseuille’s formula 144, 146,
147, 150

potential energy 28, 56,73, 74,
85,89, 92,94,119, 122,
138, 139, 140, 153, 154,
155, 166, 172, 174, 175,
236, 250, 311, 312, 320,
327,334

potential energy of
deformation 166

potential gradient 351

precision 12

pressure gradient 4, 145

principle of conservation of
angular momentum 129,
130

principle of conservation of
mass 136

projectile motion 37

projectile on an inclined plane
43

projectiles fired from a point
above the ground 41

properties of matter 152

quantitative description 15

R

radius of gyration 112,113,
114, 115,123

rational kinetic

energy 121

relative error 7

root mean square speed 176,
178, 179, 180, 181, 185

rotating fluids 61

rotating uniform rod 99

rotational kinetic energy 99,
119, 130, 178,179

rotational motion 98, 121, 125,
129, 130, 340

S

satellites 51,79,87,89, 90,91, 92

sedimentation principle 62

seismometer 75

shearing stress 167

shear modulus 169, 175

shear strain 167,171

simple harmonic motion 64

simple pendulum 7

sinusoidal representation of SHM
65

solar system 77

sources of errors 6

stagnant pressure 143

standard units 1

steady flow 136, 137,138, 144,
149, 340

steam point 187, 191, 192, 193,
96

strain 166, 167, 168,169, 171, 172,
175,183

streamline flow 135, 136, 137, 338

streamlines 136, 137, 142

stress 166 -172,174, 175, 183,249,
283

surface energy 152, 155, 156, 164,
165

surface tension 152 - 166, 181,
182,341

synchronous satellites 90

systematic errors 6

T

temperature 6, 12, 13, 145, 155,
161, 164, 176, 178-181,
184 - 235, 251, 259,283,
292, 293, 295, 335, 338,
339, 340, 341

tensile strength 169

terminal velocity 147, 148, 149,
151

thermometers 187, 190, 191, 192,
193, 194, 195,196, 206, 207

thermometric property 187, 188,

191,192
rigid bodies 95, 106, 130 thermometric scale 187
thrust 32
= —— s

time of flight 39

torque 95,114 - 118, 120, 124,125,
126, 128 - 132, 174, 339

Torricelli's theorem 140, 141

torsional motion 114

total pressure 143, 177

trajectory 39

translational motion 121, 125

turbulent flow 135, 136, 137, 144,
149, 151

U

ultimate strength 169

uniform circular motion 51

universal gas constant 178,
224,229

universal

gravitational constant 79

upper fixed point 187

up-thrust force 142

Vv

variation of g with altitude 81

variation of g with depth 82

variation of g with latitude 83

velocity of a projectile at any point
40

velocity of efflux 140

velocity vector 51

venturi meter 142

vertical component 37

viscosity 4, 135, 136, 144, 145, 146,
147, 148, 149, 150, 151

viscous fluid 135, 136, 138, 139,
144, 148, 149, 150

viscous force 135, 144, 148, 149

wolume expansion 187

volume flow rate 137,292

volume flux 4, 137

volumetric strain 171

w

weightlessness 24

work done 118, 156, 158, 172,
227-229,231

Y

yield point 168

Young’s modulus 175, 352

Young’s modulus of elasticity
169, 250
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