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Preface

This textbook, Physics for Advanced Secondary Schools, has been written specifically
for Form Five students in the United Republic of Tanzania. The book is prepared in
accordance with the 2023 Physics Syllabus for Advanced Secondary Education, Form
V - VI, issued by the Ministry of Education, Science and Technology (MoEST). It is
a revised edition of Physics for Secondary Schools Student’s Book for Form Five that
was published in 2019 in accordance with the 2009 syllabus issued by the then Ministry
of Education and Vocational Training (MoEVT).

The book consists of eight (8) chapters, namely: Measurement, Scientific investigation,
Motion in two dimensions, Rotation of rigid bodies, Fluid mechanics, Thermal
properties of materials, Vibrations and waves and Electrostatics. The book contains
engaging illustrations, activities, tasks, projects and exercises. You are encouraged to
do all the activities, tasks, projects and exercises together with other assignments that
will be provided by the teacher. You are also required to prepare a portfolio for keeping
records of activities performed in different lessons. Doing so will enhance your ability
to solve problems and promote the development of the intended competencies for this
level.

In addition to your studies at this level, you will be required to design and carry out
a project in Physics, and then submit its final report for assessment. For more details
refer to the project guide.

Additional learning resources are available at in the TIE e-Library at https://ol.tie.go.1z

or ol.tie.go.tz

Tanzania Institute of Education




Introduction

Measurement

Measurement

Being an experimental science, Physics relates the theoretical description of

nature with experimental observations. The relationship between theory and

experimental observation is made through quantitative measuremenis of various

physical quantities. In this chapter, you will learn about the fundamental principles

of measurement which include dimensional analysis, precision, accuracy and

uncertainties. You will also learn to analyse the strengths and weaknesses of

various instruments used in Physics. The competencies developed will enable you

to apply the concept of measument in different contexts.

The world without measurements

1.1 Dimensional analysis

Dimensional analysis is a fundamental
technique used in physics, engineering,
and other scientific disciplines to analyse
and manipulate physical quantities. This
method provides a systematic approach to
understanding the relationships between
different physical quantities and is essential
in problem-solving and experimental

design.
“Vacviyia )
Aim: To identify different

physical quantities

Materials: Worksheets, manila cards,
pen, dictionary/internet,

list of terms

Procedure

I-

2.

Using a dictionary or searching from
the internet: review the following
terms: Mass, length, love, time,
happiness, beauty, temperature,
anger, electric charge, intelligence,
energy, trust, velocity, force,
pressure, honesty, electric current,
acceleration, volume, friendship,
resistance, fear, frequency, creativity
and power.

List terms which are physical
quantities and those which are non-
physical quantities.

Record your results as shown in
Table 1.1.
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Table 1.1
Physical Non-physical
quantities quantities
Questions

I. Justify your answers in step 2. Share
the answers with your colleagues.

2. Prepare a short presentation to share
your findings with the rest of the
class.

3. List the fundamental and derived
physical quantities from the list of
terms provided.

4. Using ICT tools and reference books,
list other examples of physical
quantities and describe them if they
are fundamental or derived.

5. Discuss the results with your
colleagues; then show how they relate
with the concept of dimensional
analysis.

Dimensions are the
fundamental physical quantities that
represent a certain physical quantity.
Dimensions can be represented by square
brackets | |. Dimensional analysis is the
method of establishing the relationship
among physical quantities using the
three  fundamental quantities
(length, mass and time). Any physically
meaningful equation will have the same
dimensions on the left and the right

basic

sides. Therefore, dimensional analysis is

powers  of

important for checking the correctness of
formula and establishing the relationship
among physical quantities. Table 1.2
shows units and dimensions of some
common physical quantities.

Table 1.2: Dimensions of some physical

quantities
Quantity : Unit ‘ Dimensions
Mass | kg | M -
Length m L :
.Time | s rT )
“ Ve]"ucity_ i m_?;'-'w : LT_1 1
" Acceleration - ILms“’ : i I
Force o igms" | MLT™
.Dcnsity | kgm | ML*

C\bampler1)

Derive the dimensional formula for
Kinetic energy.

Solution

Kinetic energy 1is given by the

i ) i
expression Emv2 where m is the mass

and v is the velocity.

Dimensions of
kinetic energy =[mass ]x [velocity]’,

but [mass ] =M and [velocity] =LT".

: L - :
Since E is dimensionless, then,

[lmv2]= MLT™?
2




The dimensions of kinetic energy are:
ML'T™ where M, L and T are the
dimensions of the fundamental quantities
of mass, length, and time, respectively.
Therefore, the dimensional formula for
kinetic energy is ML'T™.

1.1

Dimensional analysis is useful in checking

Uses of dimensional analysis

the correctness of a formula, assigning units
of physical quantities, deriving formula,
and conversion of one system of units to
another.

To check the correctness of formula
Checking the correctness of the formula
of a given equation using dimensional
analysis is based on the principle of
dimensional homogeneity. The principle
works by comparing the dimensions
of each term on either side of an
equation. It states that, “An equation is
dimensionally correct if the dimensions
of the fundamental quantities (mass,
length, and time) are the same in each
term on either side of the equation”. Only
quantities of the same dimensions can be
added, subtracted or equated.

Consider the physical equation
v=u+ at where v and u are final and
initial velocities of a body, respectively,
a is an acceleration, and 1 is time. Using
methods of dimensional analysis, check
whether the equation is dimensionally
homogeneous.

Measurement

Solution

From the principle of dimensional
homogeneity, the equation is
dimensionally homogeneous if each
term on either side of the equation has
the same dimensions.

The dimensions of each term are:
[v]=LT"; [u]=LT"; and [ar]=LT".
Since the dimensions of physical
quantities are the same for every term, the
equation is dimensionally homogeneous.

To assign units of a physical quantity
The method of dimensional analysis is
used to assign units of physical quantities.

For example, the units of the coefficient of
4

. where r is

viscosity given by 1= 4
801

the radius of the pipe, Q is the volume flux
(volume flow per time), % IS pressure

gradient) can be obtained using dimensional

analysis as follows:

[n]z(u J(MLT-
£

units of nare kgm™'s™ or Nm™s,

) :[n]=ML'T" the

Relationship between physical
quantities

Dimensional analysis can be used to
derive an expression of a physical quantity
provided the terms upon which the given
physical quantity depends are known. This

form of dimensional analysis expresses a
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functional relationship of some variables  periodic oscillation, use dimensional
analysis to derive the formula for the

period of oscillation of the system.

in the form of an exponential equation.

The method involves the following steps:
(1)  Identify all the independent variables

Solution

that are likely or assumed to
determine the dependent variable.

(ii) If Q isavariable that depends upon

independent variables; R , R,, R, ...
R then Q@ x RYR}R;..R", where
a, b, c,..m are arbitrary exponent
integers.

(111)) Write the above equation in the

form Q=kR/R]R{.R", kis a
dimensionless constant.

(iv) Express each of the quantities in the

equation in some base units.

(v) By using dimensional homogeneity,

obtain a set of simultaneous equations
involving the exponents a, b, c,...m.

(vi) Solve these equations to obtain the

value of exponents a, b, c,...m.

(vil) Substitute the values of the exponents

in the main equation, and form the
non-dimensional parameters by
grouping the variables with similar
exponents.

The period T of oscillation of the

pendulum depends on the length / of

the pendulum and the acceleration due

to gravity g at the place. That is;
Tocl®g” (i)
T=ki"g"

where a and b are unknown exponents

and k is a dimensionless constant.

Dimensionally, equation (i) can be
written as;

(T1=k[!)[g) (if)
Substituting each physical quantity

with its respective base fundamental
unit in equation (ii) gives,

MLT' = (M°LT)(M'L'T™) (i)

Comparing left-hand side (LHS) and
right-hand side (RHS) of the equation
(iii) M:0=0; L:0=a+b; T:1=-2b

1

H=E and b=—5

This method does not provide the value of o ) ] ,
; ‘ Substituting the values in equation (i)
a dimensionless constant k. The constant i
can be determined mathematically or  gives T=kl%g 2.

experimentally.

found to be 2m. Therefore, the final
Consider a small bob hanging freely
to a string whose free end is attached

equationis T = ZEJZ.
8
to a fixed-support. If the bob is set into

B |-

The value of k was experimentally




Conversion of units

The magnitude of a physical quantity remains the
same regardless of the measurement system used.
For instance, a 1 m rod will have the same length
as a 100 cm rod.

| \Bample1d )

Convert a height (h) of 95 ¢cm of the column
mercury pressure into N/m® by using the
method of dimensions. The density (£) of
mercury is 13.6 g/em’,

Solution

Let
Pressure( P) = pgh

=13.6g/cm” x980 cm/s” x95¢cm

Dimensions of density ( 2 )are ML, acceleration
due to gravity (g) are LT~ and height (h) is L.

-3 -3
p=BOX10 ML e %10 LT x95x102L

D-ﬁn

=13.6x980x95x107 x10°ML'T*

=13.6x980x95x10"'ML'T

=126616 ML 'T?
butM=kg,L'=m'andT?=5s"
= 126616 ~&
ms”
— 1266162y ™
ms’ m
= 126616kgm xL,, where kg:n =N
s om B
N 5 2
=126616—=1.27 x10°N/m
e

Therefore, pressure (P) is 1.27 x 10°N/m".

1.1.2 Limitations of

dimensional
analysis

Although dimensional analysis
is used to check the correctness
of formulae, derive formulae
and assign units of physical

quantities, it has

some

limitations as follows:

(a)

(b)

(c)

(d)

(e)

If a physical quantity
depends on more than three
fundamental quantities (M,
L, and T), then the relation
among them cannot be
established.

It does not show whether a
given physical quantity is a
scalar or a vector.

It does not show the value
of constants involved in a
given formula.

It cannot be used for deriving
equations containing
logarithmic, exponential
or trigonometric relations.

It can only verify whether
a physical relation is
dimensionally correct
or not. It cannot show
whether the relation is
absolutely correct or not.
For example, applying this
formula, s=ut+4at’ is
dimensionally correct, but
the appropriate formula is

|
S=ut+—at.
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U

. Use dimensional analysis to check
the correctness of the following
formula:

(a) v =u'+ 2as where u and v
are velocities, a is acceleration
and s is distance.

(b) E=mc’ where E is energy, m
is mass and c is the velocity of
light.

(¢c) T =2m where Tis period.

2. Write the dimensions of @ and b in
the relation p= = where p is
power, x is distance and 1 is time.

3. Identify the physical quantity x

IFV’

defined as x= , where [ is

moment of inertia, F is force, v is
velocity and W is work done.

a
4. Write the dimension of E in the

relation F = a\/_;-{- bt* . where F is

force, x is distance and 1 is time.

Ln

Use method of dimension to convert
1.0 m/s into km/h.

6. A jet of water of cross sectional area
A and veloeity v strikes normally
on a stationary flat plate. The mass
per unit volume of water is Q. By
dimensional analysis, show that an
expression for the force F exerted
by the jet against the plate is given
by kAV’Q.

1.2 Uncertainties

The concept of error involves comparing
measurements to “true” values, but there
are numerous values, especially direct
measurements that cannot be compared
to known or accepted values. Consequently,
a result close to an accepted value may
occur purely by chance. Determining
the error in such cases does not provide
insight into the confidence we should have
in the measurement techniques employed.
It is important to include an indication
of the certainty in our measurements
when reporting them. Keep in mind
that all measurements are essentially
approximations. To convey the level of
precision in our measurements, we can
refer to the potential margin of error known
as uncertainty. In essence, error represents
the variation between the actual value and

* the measured value. Uncertainty, on the

other hand, is the reported value that falls
within the range of values where the actual
value is believed to be located.

1.2.1 Errors

Measurements of physical gquantities
are normally subjected to some errors.
These errors may originate from various
sources, mainly from measuring devices,
environment, an observer taking the
measurements, and mathematical
computations. Errors are uncertainties in
measurements. Measured values normally
deviate from exact values. The difference
between the exact value (sometimes taken
as a mean value) and the measured value
gives an error of the measurement which

= 000000000000

LERELILL



can be positive or negative. The word error
should not be confused with mistake which
is simply doing something incorrectly or
carelessly.

In this section, you will learn about types
and sources of errors, how to determine
errors in the measurement, methods of
estimating errors of derived physical
quantities, techniques for determining
errors from graph, and the differences
between accuracy and precision.

Types and sources of errors

Errors of measurement are divided into
two types, namely systematic and random
errors. Systematic errors are caused by

instruments. For example, a ruler or a

beam balance with incorrect scales. These

are errors whose cause is known and tend
to happen or occur in a systematic pattern.

Some specific causes of systematic errors

include:

(a) Incorrect design or set up of an
instrument which includes construction
and calibration.

(b) Incorrect reading or interpretation of
the instrument in an experiment.

(c) Limitation of the method used for
measurement.

(d) Poor accuracy of formula being used.
Systematic errors can be minimized

by proper design and calibration of the
measuring instruments.

On the other hand, the causes of random
errors are unpredictable and have no
systematic pattern. They keep on varying
in terms of their magnitude and direction.

Measurement

Causes of random errors include changes
in experimental conditions such as
pressure, temperature, and wind. Also,
lack of sensitivity of the instrument and
human inaccuracies. Random errors can
be minimized by repeating a measurement
several times and then finding the arithmetic
mean (or average) for all the recorded values.

Determination of errors in
measurements

Measured quantities are always subject to
errors because of the uncertainties that are
involved in the process of measurement.
Hence, itis important to make some analysis
to find out the magnitude of those errors
and make interpretation. The following are
common terms used in errors:

(a) Absolute error

Absolute error is the magnitude of the
difference between the true value and
the measured value of the quantity. It is
obtained by taking the absolute value
between the predicted or observed value
and the true value. Assume a physical
quantity to be measured n times and let
the measured values be a,, a,, a,, ..., a,.
The arithmetic mean, a_ of these values
becomes,

_a+a,+..+a

n

(4]

m

hence the absolute error |Aa"|in a Is

la,~a|.
n m

(b) Mean absolute error

Since the error may either be positive
or negative, it is worth to find the Mean
absolute error that is the arithmetic mean
of the magnitudes of absolute errors.
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Mathematically, this is expressed as,

_ |,ﬁal‘ +|£1fd'z

mean

* i +|Aau|

n

The final result of measurement can be
writlen as. a=a_ T Aa
mean

.
micin

This implies that value of a is likely to lie
between a+Aa__ and a-—Aa

n mean”

(c) Relative error or fractional error

The relative error or fractional error is

defined as the ratio of the mean absolute

error to the mean value of the quantity
Aa

THn

measured. Relative error =

Imicaan

When the relative error or fractional
error is expressed in percentage, then
percentage error is obtained. Thus,

Aa
percentage error = —=#-x 100 %

menn

Relative error gives an indication of |

how good a measurement is compared
to the size of the object being measured.
Consider two students measuring objects
with a meter stick. One student measures
the height of a room and gets a value
of (3.125 £ 0.001) m. Another student
measures the height of a small cylinder
and gets (0.075 £ 0.001) m. Clearly,
the overall accuracy of the room height
is much better than that of the cylinder.
The comparative accuracy of these
measurements can be determined by
looking at their relative errors as follows:

Relative error in a room height is
0.00Im

———=32x10"
3.125m

Relative error in a cylinder height is
000Im _1.3x10°
0.075m

Clearly, the relative error in the room
height is considerably smaller than the
relative error in the cylinder height even
though the amount of absolute error is the
same in each case.

“Nctiyaz )

Aim: To determine errors of
mass, length, and time of a
simple pendulum

Materials: Inextensible string, metre
rule,  stopwatch, retort
stand, pendulum bob, and
beam balance

Procedure

(a) Measure the mass (m) of the
pendulum bob.

(b) Tie the bob on the string and suspend
it on the retort stand so that it hangs
freely.

(c) Measure the length (/) of the string
from the point of suspension to the
centre of the bob.

(d) Set the bob to oscillate at small angle.

(e) Measure the time (r) for 10
oscillations.

(f) Repeat step (a) to (e) then record the
values of m, [ and r as in Table 1.3.

Table 1.3

Measurement Mass| Length | Time
| | (8| (em) | (s)
First |
Second |
Third |




Question

How can you minimize the errors in
measuring the values of m, [, and 1?

An object weighs exactly 36.5 grams.
When weighed on a faulty scale, it
weighs 38 grams.

(a) What is the percentage error in
measurement of the faulty scale to
the nearest tenth?

(b) If a chick weighs 14 grams on the
same defective scale, what is the

chick’s weight in gram to the nearest
tenth?

Solution
(a) Percentage error
138 2-36.5 ¢
T 365g
which is approximately 4.1%.

(b) Let the true weight of the chick be x.
then, 14g=x+0.041x : x=134g.

x 100%

Therefore, the chick’s weight is 13.4
grams.

U bample16 )

The actual length of the playing field is

500 m. A measuring instrument shows

the length to be 508 m. Find:

(a) Absolute error in the measured
length of the field;

(b) Relative error in the measured length
of the field; and

(c) Percentage error in the measured
length of the field.

Solution
(a) The absolute error in the length of
the field is |5()0_503| m=8m.
(b) The relative error in the length of
the field is [S00m—508m| _
500m
(c) Thepercentageerrorin thelengthofthe

|500m — 508 m|
00m

.016.

field is x 100% = 1.6%.

Errors of derived physical quantities

In any experimental results, the measured
values which are normally subjected to
various errors can propagate errors when
the measured quantities are manipulated.
Such manipulation includes addition,
subtraction, multiplication, division and
exponents. The propagation of errors in any
mathematical computation depends on the
formula used to determine the final answer.
In this part, the errors in sum, difference,
product, quotient, and exponents will be
discussed.

(a) Errorsin asum

Suppose you are given this equation,
x=a+b. Let Aa be the absolute error in
the measurement of a, Ab be the absolute
error in the measurement of b, and Axbe
the absolute error in the value of x.

When a and b are added, such that

x=a+b
xtAv=atAa+bx+ Ab (1.1)

+tAx=at+xAa+bxt Ab—x

+Ax=+Aa+ Ab
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After expanding equation (1.1), four
possible values of Ax are: Aa+ Ab,
Aa—Ab, —Aa+ Ab, and —Aa— Ab. The
maximum possible absolute error in x is
Ax=Aa+ Ab. Therefore, the maximum
absolute error in the sum of two quantities
equals to the sum of the absolute errors in
the individual quantities.

Suppose a=(20.Si{}.S)cm and
b=(10.0+0.2)cm . Calculate the

maximum possible error of a+ b.

Solution

Let x=a+b then,
x=20.5cm+10.0cm =30.5cm and
Ax=0.5cm+0.2cm =£0.7cm.

Maximum possible errorin x is £0.7cm.

Therefore, the value of x ranges from
29.8cm to 31.2 cm.

(b) Errors in a difference

Error in difference can be calculated by
following the same procedure used in the
SUm.

Let x=a—b, and Aa be the absolute
error in the measurement of a, Ab be
the absolute error in the measurement
of b, and Ax be the absolute error in the
measurement of x. Then,
x+Ax=(atAa)-(bxt Ab) as in sum.
the four possible values of Ax are;
(Aa+ Ab), (Aa— Ab), (—Aa— Ab) and

(—Aa + Ab).

The maximum possible error in x is

(Aa+ Ab). Hence, the value of x can

range from, (a—b)—(Aa+ Ab)to
(a—b)+(Aa+ Ab)

Therefore, the maximum absolute error in
the sum is equal to the maximum absolute
error in the difference.

(c) Errors in a product
Let x=ab, then
(xtAx)=(ax Aa) bt Ab) (1.2)

By simplifying equation (1.2) and dividing
each term by x on both sides gives,

— = —1T —X—
X a b a b
Since .éﬁxg 1s very small, it can be
a b

Ax
neglected: the possible values of e

Aa Ab Aa Ab  Aa Ab

+_! ___Q__+_'
a b a b a b o
e

a b

But the maximum possible values are

Aa Ab :
ﬂ+£ and L The maximum

a b a

value of
Ax [Aa Ab}
— _+_
X a b

Therefore, maximum fractional error in
product of two or more quantities is equal to
the sum of fractional errors in the individual

quantities.



(d) Errors in division

a
Let x=—
b
(axAa)
xtAx
( )= (b AD) (1.3)
simplifying equation (1.3) gives
Ar_, Aa Ab
X a b
Maximum possible value of = are
-A—I{-k—AB and —E—&, hence,
a b a b
Ax_(Aa b
X a b

Thus, the maximum value of fractional
errors in division of two quantities is
equal to the sum of fractional errors in the
individual quantities.

(e) Errors in exponents

n

Let x= -{% then applying natural logarithms

on both sides, In(x)=nlna—=minb.

Differentiating both sides gives,
dx  da db

—_—=p——-m—
X a
which can be writtenin terms of fractional
errors as,
Ax Aa Ab

—=n——-m—
X d b

Therefore, the maximum value of

Ax ( Aa Ab]
—=|ln—+m—|.
x a b

This equation can be regarded as a general
form for computation of errors in derived
physical quantities.

Measurement

“eampers)

Calculate percentage error in the

when

o 2 |
determination of g=4na" =

[ and T are measured with *2% and
+39% errors respectively.

Solution

? is

constant, then, the maximumpercentage

error in _"ﬂ?_ 15 =k N ZﬂT % 100%.
8 l T

By substituting the values for / and 7,
the percentage error in gis +8%.

Therefore, if the actual value of g is
9.8ms * then, the approximated value of
¢ may vary from 9.0ms ™ to 10.6ms .

Errors from a graph

The fact that no individual measurement
is accurate, the experimenters are often
required to carry out several measurements
of a given quantity hopping that these
measurements will cluster about the
true value required to be measured.
The distribution of these data values is
represented graphically by showing a
single data point representing the mean
value of the data, and error bars to
represent the overall distribution of data.
Error bars are used on graphs to indicate
the error or uncertainty. They look like a
cross (Figure 1.1)whose vertical bar gives
the error on the ordinate and the horizontal
bar gives the error on the abscissa.
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Figure 1.1: Determination ef errors from graph

For example, the uncertainty associated
with a data point
A(x,y)=(3.7s%20.15,4.0m+0.2m) on
a (x,v) graph is plotted by drawing a
cross whose vertical bar goes from 3.8m
to 4.2 m and whose horizontal bar goes
from 3.6 s t03.8 s.

When calculating a gradient from a graph,
it is important to determine the magnitude
of uncertainty. This is done by drawing two
lines of “worst fit” also known as lines of
minimum and maximum gradient. These
lines are drawn by first constructing a
square (or rectangle) around the error bars
of the two extreme data points.

' Then, the top left corner of the first data

point is joined with the bottom right corner
of the n” data point and the bottom right
corner of the 1* data point is joined with
the top left corner of the n” data point

(Figure. 1.1).

Suppose the gradient of the line of best fit
is m , the gradient of the worst fit line one
is m, and the gradient of the worst fit line
two is m, . The uncertainty in the gradient
of the best fit line is then taken as half the
difference between errors in the gradients
of the worst fit lines. Mathematically,

_ Am +Am,

. Where Am =|mI - m!
2




and Am, = |4mJ - m|.'['his formula applies to
a straight line graph and a curve, although
the gradients of the graph would vary.

[ \eample1s )

Suppose the slope of the best fit line
is 1.0 and slopes of maximum and
minimum worst lines are 1.16 and 0.81
respectively. Estimate the value of slope
of the graph.

Solution
From the given information,

Am, =[1.16-1.0|and Am, =(0.81-1.0)

0.16+0.19

Am= = 0.18.

Therefore, the slope of the graph to the
nearest hundredth is 1.0£0.18.

1.2.2 Accuracy and precision

Accuracy and precision have different
meanings, although some people use them
interchangeably. Precision refers to the
closeness of two or more measurements
to each other. For example, if you weigh
a given substance five times, and you
get the same value each time then your
measurement is very precise. Precision is
determined by the smallest scale division
or least counting unit of the measuring
instrument. The smaller the least counting
unit or the smaller the scale division, the

greater the precision.

Accuracy is the measure of how close the
measured value is to the true value of the

quantity. Accuracy in measurements always

Measurement

depend on several factors like personal
errors and imperfection in techniques
or procedures used. Others include
instrumental errors and environmental
factors like weather changes, wind, and
temperature. Therefore, accuracy refers to
the degree of conformity and correctness
of something when compared to a true or
absolute value, whereas precision refers
to a state of strict exactness. Accuracy in
measurements can be improved in many
ways, including the following:
(a) Make measurement with an instrument
that has the highest level of precision
(smallest possible unit)

(b) Apply correct techniques when using
the measuring instrument and when
reading the value measured.

(¢) Avoid the error due to parallax by
taking readings while looking at aright
angle to the scale of an instrument.

(d) Repeat the same measurement several
times to get a good average value.

(e) Take measurement under controlled
conditions. If the object you are
measuring could change size (expand
or shrink) depending upon weather
conditions, make sure you measure it
under the same conditions each time.

" Vhetwiys )

Aim: Todetermine uncertainties
in the measurement
Materials: Ruler (with millimeter

markings),vernier
calipers,stopwatch,
weighing scale, various
objects for measuring
(marbles, coins, small
blocks). ICT tools, graphs
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Procedure

A. Error analysis
I. Measure the length of an object using
a ruler and record its value.

2. Repeat the measurement several
times and record all values.

3. Use ICT tools such as spreadsheet
software (e.g. Microsoft Excel and
Google Sheets) to enter measurement
data, then calculate the average value
and the standard deviation.

4. By plotting the data points on a
graph, visualize the spread of the
data around the mean and assess the
precision of the measurements.

5. Compare the average value to
the known length of the object to
determine accuracy.

Question

How does the standard deviation influence
the precision of the measurements?

B. Precision analysis

I. Measure the diameter of a small
object using a vernier caliper and
record the value.

2. Repeat the measurement several
times and record all values.

3. ‘Use ICT tools such as spreadsheet
software (e.g. Microsoft Excel and
Google Sheets) to enter measurement
data, then calculate the average value
and the standard deviation.

4. Compare the average value to the
known diameter of the object to
determine accuracy.

Question

How does the precision of the vernier
caliper affect the measurement results?

C. Accuracy analysis

1. Allow an object to fall from acertain
height. Use a stopwateh to record the
time taken for the objeet to hit the

ground.

(S

Repeat step | several times.

3. Use ICT tools such as spreadsheet
software (e.g. Microsoft Excel and
Google Sheets) to enter measurement
data, then calculate the average value
and the standard deviation.

4. Compare the average time to the
expected time calculated using

physics equations.

Question

How do the reaction time and human
error influence the accuracy in measuring
time?

D. Weight measurement

I. Weigh various objects using a
weighing scale and record their
values.

2. Calculate the percentage error for
each measurement compared to the
known weight of the objects.




Questions

(a) How do the precision and accuracy
of the weighing scale influence the
measurements?

(b) Propose ways to improve the
precision and accuracy of the
measurements conducted in this
activity.

A measurement agrees with an accepted
value if the accepted value falls within the
measurement’s uncertainty bounds. For
example, when comparing the generally
accepted value of acceleration due to
gravity at earth’s surface (g = 9.8 m/s?),
a measurement of 9.6 + 0.3 m/s* agrees
because 9.8 m/s? lies inside the range of
9.3 and 9.9 m/s%. But a measurement of
9.2 £ 0.3 m/s’* does not agree because
9.8 m/s? lies outside the range of 8.9 m/
s*and 9.5 m/s’. So, for the measurement
to be precise, the uncertainties also have
to be reasonably small. The minimum
uncertainty in an observation -made
directly from a measuring device is equal
to half of the smallest readable graduation
on the scale of the device.

Strengths and weaknesses of measuring
instruments used in Physics

Measuring instruments used in Physics
can provide reliable measurements. But
they also have various limitations that
must be understood and accounted for
when using them. For example, digital
instruments are relatively easy to use and
provide more accurate readings compared

Measurement

totheiranalogy counterparts. For instance,
a digital balance is more accurate and
easier to use compared to an analog beam
balance. Analog instruments, on the other
hand, are more prone to error and require
regular calibration.

There are several factors that contribute
to instrument inaccuracies, including
inherent instrumental errors, improper
calibration, conditions,
and human factors such as operator bias
or procedural Understanding
these sources of error is crucial for
mitigating their impact on accuracy of
measurements.

T A

Identify four different instruments
used for measurement in Physics, then
analyse their strengths and weaknesses.

environmental

CITOrS.

B :ccrcso 12 N

1. Inacertain experiment, the refractive
index of a glass was observed to be
1.44, 1.50, 1.48, 1.45, 1.60 and 1.52.
From these data calculate:

(a) Mean absolute error;

(b) Mean value of the refractive index;
(c) Fractional error; and

(d) Percentage error.

2. The relative error in measuring the
mass of a certain substance is 5% and
in its volume is 2%. What will be the
percentage error in the measurement
of the density?
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3. The initial and the final temperatures

1.

of a liquid are found to be
(63.5+ 0.5)°C and (72. 6% 0.4)°C
respectively. Determine the rise in
temperature,

The period of oscillation of a
[

simple pendulum is 7=2xn [— .
8
The value of /is 20cm known to |

mm accuracy, and the time for 100
oscillations of the pendulum is found
to be 90 s using a wrist watch of 1s
resolution. What is the accuracy in
the determination of g?

A certain experiment shows that the
frequency f of a tuning fork depends
on the length / of the prongs, density
p, and the Young's modulus E of
the material. Using dimensional
analysis, derive an expression for
the frequency.

An explosion that happened in water
created a gas bubble within it. It was
found to oscillate with a period of
oscillation 7. If T is proportional
to p'p E° where p is the static
pressure, g is the density of water
and E the total energy of explosion,
determine the values of x, y and z,
using methods of dimensions.

It is suggested that the velocity of
water waves in a basin depends on
wavelength 4, density of water p,

and the acceleration due to gravity
g. Using dimensional analysis, check
if the dependence of these quantities
is correct.

A certain wire with a length of
(125.2%0.1)cm was subjected to
an extensional force and caused it to
extend to (128.3£0.1)cm. Calculate
the elongation of this wire with its
error limit.

A physical quantity Q is given by the
following equation @=ka'b’c’d".
If the percentage error in each
measured value of a,b,cand d is
0.6%, determine the percentage
error in .

. The length, breadth, and thickness

of a glass block as measured
by a student were found to be
(25.12£0.05)cm, (15.55+£0.05)cm
and (5.15%0.05)cm. Determine the
percentage error of the volume of
this glass block.

In the ancient years, the Earth’s
daily rotation on its axis was once
used to define the standard unit of
time. What other types of natural
phenomena could currently serve
as alternative time standards?

8. (a) You are given a thread and

a metre scale. How will you
estimate the diameter of the
thread?

(b) A micrometer screw gauge
has a pitch of 1.0 mm and 200




9.

10.

divisions on the circular scale.
Do you think it is possible
to increase the accuracy of
the micrometer screw gauge
arbitrarily by increasing the
number of divisions on the
circular scale? Why?

(¢) The mean diameter of a thin
brass rod is to be measured by
Vernier calipers. Why is a set
of 100 measurements of the
diameter expected to yield a
more reliable estimate than a
set of 5 measurements only?

A student measured the volume of a
cylinder which had the radius r and
height A, and wrote the formula of
the volume as 7' h. Explain whether
the student was dimensionally
correct or not.

A book with many printing errors
contains the following four different
equations for the displacement y

of a particle undergoing a certain
periodic motion:

11.

Measurement

. | 2wt
(a) ¥ —sm(?}.

(b) y =sin (vr);
A (1
(c) )’=FSIH(I); and
(d) y = (A\E](sin[z?m% cos[%)v

where A is maximum displacement
of the particle, v is speed of the
particle, ¢ is the time and T is the
periodic time. Find out the wrong
equations on dimensional grounds.

Precise measurements of physical
quantities are needed in science. For
example, to ascertain the speed of an
aircraft, one must have an accurate
method to find its positions at closely
separated instants of time. Think
of different examples in modern
science where precise measurements
of length, time, and mass are needed.
Also, give a quantitative idea of the
precision needed.




Scientific investigation

Introduction

The core of every scientific discipline is the problem-solving method called the
scientific methods. Our pursuit of knowledge about the natural world depends
greatly on scientific inquiry, which entails delving into the basic principles,
methods, and human understanding of nature. Scientific investigation involves
using a set of steps to investigate a physical problem or answer a question. In
this chapter, you will learn how to design and carry out scientific experiments
and projects in Physics. In addition, you will learn how to use ICT tools such
as MS Excel, PSPP, R, Matlab/Octave, Python and Origin to analyse data and
disseminate scientific results. The competencies developed will enable you to

conduct scientific studies and communicate vour findings effectively.

@_

g Problem-solving without scientific methods

»

2.1 Methods of investigation in
Physics

Physics, as a scientific discipline relies
on various methods to solve societal
and industrial problems, investigate
different phenomena and understand the
fundamental principles governing the
natural world. These methods provide a
systematic approach for studying physical
phenomena, formulating theories, and
making accurate predictions.

Your sister has a small shop that has
few electrical appliances. Recently, she

has been complaining that the electric
consumption in the shop is too high. She
thinks one of the appliances is faulty
and consumes too much electricity. As
a young scientist, describe how you
will assist your sister to investigate
the cause of a high consumption of
electricity. Explain all the methods that
you will use in your investigation.

2.1.1 Experimental methods in Physics
Physics is an experimental discipline.
It requires creating and executing
procedures under controlled conditions
in order to collect data and analyse the
information so as to test the anticipated

i



phenomenon. Essentially, the experimental
methods in physics involve developing
research inquiries, designing experiments,
gathering and analysing data, and making
conclusions based on empirical evidence.
The methods enable physicists to quantify
physical occurrences, confirm and validate
theories, and establish new physical laws
and principles.

2.1.2 Observational method

Observational methods in physics
complements experimental methods by
studying natural phenomena without direct
manipulation. For example, astronomers
collect data by observing the outer space
using telescopes, satellites, or other
instruments. The collected data may be
analysed to gain insights into celestial
bodies, cosmic radiation, and the behaviour
of the universe. This method is particularly
prominent in astrophysics and cosmology
where scientists observe and study objects
and events that are beyond human'’s reach.

2.1.3 Theoretical method

Theoretical physics plays a crucial role
in understanding the laws and principles
that govern the fundamental nature
of the universe. Using mathematical
equations and frameworks, theoretical
physicists develop a deep understanding
of physical phenomena. The method
involves developing mathematical models,
equations, and frameworks to describe and
predict physical phenomena. Theoretical
physicists employ the mathematical
language of to describe and predict the
behaviour of particles, waves, and complex
systems through models. The models are
tested against experimental data to validate

Scientific Investigation

their accuracy, validate physics theories,
and the establishment of new physical laws
which result to a better understanding of
the universe. An example of theoretical
investigation is the study of the behaviour
of electrons in quantum systems such as
atoms, molecules, or solid-state materials.
Theoretical physicists would typically
employ mathematical tools to model and
describe the behaviour of particles with
very small size such as electrons and gas,
to mention but a few.

2.1.4 Mathematical methods of Physics

Mathematics serves as the backbone
of physics, providing the tools and
language to communicate physical
concepts quantitatively. Physicists apply
mathematical methods, such as calculus,
algebra, differential equations, probability
theory and trigonometry, to describe and
analyse the behaviour of physical systems.
Mathematical models and equations enable
scientists to calculate, predict, and advance
our understanding about the universe. An
example of a mathematical investigation
is the study of projectile motion whereby
various mathematical formulations are
deployed to describe the trajectory, time
of flight, range, maximum height reached,
and other characteristics of a projectile.

Note: Theoretical methods involve
developing methods on how the universe
works while Mathematical methods are
mostly concerned with properties of these
models. Sometime in theoretical methods
new concept are introduced but not

expanded mathematically.
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2.1.5 Computational method

Computational physics has emerged as a
powerful tool in physics. By harnessing
the power of computers and mathematics,
physicists simulate complex physical
systems, solve intricate equations,
and analyse vast datasets. Computer
simulations enable physicists to study
phenomena that are difficult or impossible
to observe directly or solve analytically.
Computational methods are useful in fields
such as fluid dynamics, medical physics,
meteology. and condensed matter physics.
An example of computational investigation
is the study of stellar evolution. In this
study, the evolution of stars over time is
observed using computer simulations as
it involves complex processes such as
nuclear fusion, gravitational collapse, and
the interplay of various physical forces
making it impossible to study analytically.

C k22

Through searching in various sources,
explain the strengths and weaknesses
of various methods of investigation in
physics.

2.2 The scientific method of
investigation

The physics methods of investigation
are not mutually exclusive and are often
used in combination, depending on the
specific research question or problem
being investigated. The combination of
various methods form a robust systematic
approach of acquiring knowledge. The
approach is known as the scientific
method of investigation. It is described as
a systematic and iterative process used for
various investigations in physics and other
scientific disciplines.

Aim:
small metal washer

To investigate the effect of thread length on the oscillatory period of a

Materials: Thread, metal washers of equal weights, a pair of scissors, stopwatch or
timer, ruler, tape, worksheet, retort stands

Procedure

1. Measure and cut two pieces of thread each of about 50 cm long and tie three metal

washers (o one end of each string.

2. Hang the unweighted end of the one string on a retort stand such that the length
of the string from the retort stand to the top of the washers is 25 cm. Wrap the
excess string around the stand so that it does not interfere the experiment. Name

this setup as pendulum A,

3. Repeat step 2 for the other string ensuring that the length of the string from the
retort stand to the top of the washers is 15 cm. Name this setup as pendulum B.
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4. Simultaneously, pull the two pendulums aside at a 45° angles and gently let them
start oscillating. Observe the motions of the two pendulums.

5. Pull aside pendulum A to an angle of 45° and gently release it to oscillate. Record
the time taken by the pendulum to complete 10 oscillations. Repeat this to obtain

two more readings and record your findings in Table 2.1.

6. Repeat step 5 using pendulum B.

7. Repeat step 5 with the pendulum lengths, / varied to 30 em, 25 cm, 20 cm, 15 cm,

and 10 cm. Record your data in Table 2.2.

8. Plot a graph of period, T against the length, / of the pendulum and use lh;:_gfaph
to deduce an equation that relates the length of a pendulum and its period of

oscillation.

Table 2.1

Pendulum

Trial

Time (t) in seconds

‘Period (T = t/10)

Pendulum A

LI | D | —

i Average A

Pendulum B

Average B

Table 2.2

Pendulum length (1)

~ Time of oscillation

I

I

i

Average 1

Period (T = t/10)

Questions

(a) Based on your records in Table 2.1, which pendulum had a longer period of
oscilation? Why?
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(b) How were the motions of the two pendulums similar, and how were they different?

(c) What are the error sources in the experiments? How would the errors affect the
findings of this experiment?

(d) Do you think the results would change if each of the pendulums had only one
washer instead of three? Explain.

(e) If you were to repeat the experiment with longer strings, how would the pendulums
move? Would the periods change? Explain.

(f) What conclusion can be made from this experiment?

2.2.1 Stages of a scientific method

Scientific method of investigation employs a series of logical steps that underlie all
scientific disciplines and provide a framework for conducting research in Physics. The
steps may slightly vary depending on the discipline and the nature of investigation. The
common steps of scientific investigation include observation, gathering information,
formulating hypothesis, experimentation, data collection, data analysis, conclusion,
and peer review as well as communicating the findings. In practice, the process of
scientific investigation is cyclic as illustrated by Figure 2.1.

Accept

Observe hypothesis

Ask questions Conduct Analyse data Draw Communicate

experiments conclusion the findings
L4

O @ O C

Do background Formulate Re-think
research Hypothesis Hypothesis

Figure 2.1: Steps of a scientific investigation




Observation

Scientific investigation begins with
keen observation, which entails a
careful examination of the natural
world, identifying patterns, phenomena,
or questions that arouse the scientific
curiosity. The scientific curiosity normally
leads physicists to ask questions from the
observations they make. The question
is referred to as the research question.
Depending on the observation made,
a research question may be of several
forms such as why, how, or what and
when. A good research question should
be well defined, testable, measurable and
controllable. For example, based on the
observation made in step 4 of Activity
2.1, the research question would be;

“Why does the washer pendulum with
longer thread move slower than the
one with a short thread?”

As a young physicist, you are obliged to
be keen on observing things happening
around you with a view of understanding
how and why they happen. Observations
serve as the foundation for formulating
hypotheses and designing experiments.

Background research

This step involves doing some studies to
discover what is already known about the
observed situation or research question.
This ean also involve finding if anyone
has already worked on the same research
question. The background information
can be obtained from various sources
including books, scientific journals or
magazines as well as internet materials.
Sometimes, this stage is referred to as the

literature review. In Activity 2.1, literature
review was done at stage 7 of the activity.

Hypothesis

A hypothesis is a testable statement
or prediction about an observed
phenomenon. Alternatively. a hypothesis
is an educated guess, a reasonable guess
or logical supposition for a phenomenon
under investigation. The hypothesis
is formulated based on the existing
knowledge and aims to provide a plausible
solution to the observed problem.
Hypotheses are normally specific,
measurable, and falsifiable, allowing
scientists to design experiments for
testing their validity. There are two types
of hypotheses: the null hypothesis (H)
and an alternative hypothesis (H ). A null
hypothesis is a statement that assumes no
significant difference or no relationship
between the observed variables. An
alternative hypothesis contradicts the null
hypothesis. It assumes the existence of
a difference or relationship between the
variables under observation. Examples
of null and alternative hypotheses for the
observation made in Activity 2.2 are;

H,: There is no relationship between
the period of oscillation of a
washer pendulum and the length
of the pendulum thread.

H: The period of oscillation of a

washer pendulum increases
as the length of the pendulum

thread increases.
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Experimentation

At this step, physicists design and carry out an experiment in order to collect and
record data. Experiments are meticulously designed procedures that aim to test the
hypothesis under controlled conditions. They involve manipulating variables and
observing the corresponding outcomes. A crucial step in designing an experiment is
identifying the variables involved. There are three categories of variables: dependent
variables, independent variables and controlled variables. Table 2.3 shows examples of
dependent, independent, and controlled variables from Activity 2.1.

Table 2.3: Experimental variables in Activity 2.1

| Independent variable

Dependent variable

: Controlled variahlas-,

Length of the pendulum

Period of the pendulum | Size and shape of the washers

. Weight of the washers

Data collection

To obtain meaningful results, scientists
must carefully design their experiments,
stating the controlled variables, independent
variables, and dependent variables clearly.
The experiment should outline the required
materials, procedures, precautions, and
the methods for recording data. During
experimentation, a scientist collects
data through various methods such as
measurements, observations, surveys, or
interviews. Depending on the nature of
the investigation, the collected data can
be qualitative or quantitative but should
be accurate, precise, and relevant to the
research question. To get meaningful
analysis, clear recording of the collected
datais important. Generally, two methods
are deployed in recording data. These are
observations and experiments. Observation
is qualitative method of collecting data
which involve seeing, smelling, feeling
and hearing. Measurement is quantitative

Density of the thread

method where the exact numbers are
recorded. In both observtion and measurent,
the exact numbers are recorded. In both
methods; data are recorded through, tables,
videos, photographs, sound recording, and

_filling in questionnaires. In Activity 2.1,

the collected data was recorded in a tabular
form.

Data analysis

Once data are collected, analysis of
the data is done to uncover patterns,
relationships, and trends. Statistical
tools and techniques are often employed
to interpret the data and determine the
significance of the findings. Data analysis
helps scientists to draw conclusions and
make informed interpretations about the
phenomenon under investigation. This
step involves various activities including:

Error analysis: This deals with evaluating
and quantifying uncertainties associated
with measurements. Error analysis involves

LEREAILL



calculating uncertainties, error propagation
through mathematical operations, and
assessing sources of systematic and
random errors. In Activity 2.1, the error
of measuring length of the string could be
0.05 cm if the metre rule was used. The
error of measuring period could be 0.01
second if the stopwatch had two decimal
places. It is worth noting that, the error
of a digital instrument is the lowest value
of the measurement that can be recorded
by the instrument. The error of analogue
instrument is obtained through dividing the
smallest value that can be measured by the
instrument by two (0.lem /2= 0.05¢m).

Graphical  representation:  Plotting
data on graphs helps the investigator
to visualize relationships, trends, and
patterns. There are several graphs that
can be used to represent data. Common
types of graphs used in physics include
line graphs, scatter plots, histograms,
and logarithmic plots. In Activity 2.1,
data has been presented on a graph with
the average period on the y-axis and the
corresponding pendulum length on the
X-axis.

Curve Fitting: When data suggests a
mathematical ~ relationship  between
variables, curve fitting is used to find the
best-fit equation or model that describes
the data. This involves fitting data points
to a specific function such as the linear
or quadratic function and the exponential
function. Sometimes scientists are
interested in determining factors with
most impact in the function. In this case,
regression analysis techniques are used
in determining the best-fit equation.

Scientific Investigation

In Activity 2.1, data should be fit to a
linear equation which would establish
the relationship between the pendulum
length and its period of oscillation.

Statistical Analysis: Statistical methods
are employed to analyse data and
determine the significance of observed
differences or relationships. The
statistical analysis involves calculating
the measures of central tendency (mean,
mode, median) and measures of dispersion
(standard deviation) to describe the data
distribution. When necessary, hypothesis
testing, chi-square tests, t-tests, and other
statistics are usedto assess the significance
of the experimental results. In Activity
2.1, the ayerage values were used instead
of the individual measurements in order
to minimize experimental errors.

Conclusion and peer review

Based on the data analysis, scientists draw
conclusions that either support or refute
the initial hypothesis. This is done by
analysing data in the context of the research
question or objective of the experiment.
The results can also be compared with
theoretical expectations or established
models to draw appropriate conclusions.
This also involves the discussion of any
limitations or sources of error that may
have influenced the findings. In a nutshell,
the conclusions should be objective and
supported by evidence.

Communicating the findings

The final step of scientific investigation
involves effectively communicating the
findings to the scientific community and the
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general public. This can be achieved through
reports, scientific papers, conferences,
presentations, and popular science articles.
Here, the scientist should clearly report the
methods, results, and analysis techniques
used during the investigation. The findings
of data analysis must be presented in a clear
and concise manner, including appropriate
tables, graphs, and statistical measures.
The scientist must provide sufficient
explanations and interpretations to support
the conclusions drawn from the data. Clear
communication ensures that scientific
knowledge is disseminated, debated, and
built upon by other researchers. In some
cases, the reports are subjected to peer
review before they are published.

L\ Task23 )

You are provided with a toy car, inclined
plane, spring scale, stopwatch, masses
of different values and a ruler. Design
an experiment with an objective of
establishing a quantitative relationship
between force and acceleration,

2.2.2 Ethical consideration

Scientific investigations should not
be barren of ethical considerations.
All researchers must adhere to ethical
guidelines to ensure the safety of research
subjects, including human and animals.
Ethical considerations also
research. honesty, data integrity and
respect to intellectual property rights.
This leads to a responsible conduct in
scientific inquiry ensuring the proper use
of findings for the betterment of society.

enforce

LU

Two workers are loading a box onto
a truck using a ramp that is 1 m long
and slanted at 30" to the ground. One
worker argues that they would do much
less work if they used a longer ramp.
The other worker disagrees with the
fellow’s idea leading to a debate. Take
the height from the ground to the truck
to be 0.5 m.

(a) As a physicist, design an experiment
that will settle their argument
based on the experimental proof.
Clearly show all the steps of your
investigation.

(b) With the help of internet resources,
discuss the important ethical
considerations to make when
conducting this investigation.

2.3 Reporting scientific results

Upon completion of a scientific
investigation, scientists are obliged to
report their findings. When reporting
scientific results, it is essential to
communicate the findings accurately,
transparently, and comprehensively.
Effective reporting and dissemination
of scientific findings is crucial for
sharing research findings, fostering
collaboration, and advancing scientific
knowledge. There are various methods for
disseminating scientific results, including
academic publishing, conferences and
symposiums, preprint servers, science
communication platforms, and digital
media. The strengths, limitations, and
considerations associated with each
method, are hereby discussed.




2.3.1 Ways of reporting scientific
findings
Scientific findings can be presented

through various platforms. Some common
platforms are discussed as follows:

Publishing in reputable outlets

Academic publishing in journals and
books stand out as a fundamental method
for disseminating scientific results, It
involves publishing research papers
or articles in peer-reviewed journals
or books. Research papers are formal
documents that provide a detailed account
of scientific investigations. These papers
follow a standard structure composed of
abstract, introduction, methods, results,
discussion, and conclusion. In research
papers, provide in-depth
descriptions of the research questions,
experimental design, method of collecting
data, data analysis, interpretation of
results, conclusion, and recomendations
for further studies. An example of
academic publication is the Mpemba
effect, “Warm water freezes faster than
cold” which was done by Erasto B.
Mpemba of the Mkwawa High school and
published by Physics Education in 1969.

scientists

Academic publication provides a
rigorous evaluation process, ensuring the
quality and validity of research. Before
publishing a research paper or article,
researchers submit their work to undergo
review by subject-matter experts. Upon
acceptance, the researchers give consent
to share their findings with the scientific

Scientific Investigation

community. While it is time consuming,
the traditional publishing model offers
credibility and permanence to scientific
research.

~ Conference presentations

Scientific conferences and symposiums
provide opportunities for researchers to
communicate their research works Lo a
live audiences of peers. In these events,
scientists share their works through oral
presentations, poster sessions, and panel
discussions. Oral presentations involve
delivering a talk to an audience, highlighting
the key aspects of the research, including
the research question, methodology, resullts,
and conclusions. Poster presentations
on the other hand, involves creating a
visual display to summarise the research,
including the background, methods, results,
and_conclusions. In panel discussions,
researchers share their results, receive
feedback, and engage in scientific
discussions with peers. Sometimes the
conference presentations are published as
proceedings and a special issue in academic
journals.

Apart from the chance for scientists to share
their findings, receive feedback, and engage
in scholarly discussions, conferences
also provide a platform for knowledge
exchange, networking, and collaboration.
[n addition, conferences offer opportunities
to showcase preliminary research and foster
interdisciplinary collaboration.

Technical reports

Technical reports are prepared to provide
comprehensive and detailed account
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of scientific research conducted within
a specific organization or institution.
Normally, these reports are used for
internal purposes, such as sharing findings
among team members, documenting
research protocols, or reporting to funding
agencies. Technical reports comprise
sections such as research background,
objectives, methodology, results, analysis,
and recommendations.

Theses and dissertations

Graduate students pursuing advanced
degrees often write theses or dissertations
as part of their research work. Both
documents  provide comprehensive
and detailed account of the research
conducted during the course of their
studies. Theses and dissertations follow
a similar structure to research papers,
including an introduction, literature
review, methodology, results, discussion,
and conclusion.

Science communication platforms

Internet and ICT tools have anabled
scientists to increasingly use online
platforms to share their research findings.
The online platforms used for sharing
research findings are collectively named
communication  platforms.
These platforms include science blogs,
podcasts, websites, and social media.

science

They aim to make scientific findings
accessible and engaging to a broader
audience.  Science  communication
platforms play a vital role in bridging the
gap between scientific research and the
general public. Scientist employ various

storytelling techniques, visuals, and
plain language to communicate complex
concepts effectively. In return, public
understanding of science is made easier
thus promoting scientific literacy while
facilitating dialogue between scientists
and society. However, care must be
taken to maintain accuracy and avoid
oversimplification when communicating
scientific results even when using online
platforms.

Media and press releases

In some situations, researchers work with
their institutions” media departments, or
other media companies to issue press
releases about their significant scientific
discoveries. These releases are channelled
to communicate research findings to the
public in a concise and accessible manner.
Usually, they highlight key findings,
implications, and potential applications
of the research. Meanwhile, digital era
has ushered in new opportunities for
disseminating scientific results. Researchers
can use digital media such as podcasts,
webinars, and video streaming to present
their findings in engaging formats.

Collaborative and open science

practices

Collaborative and open science practices
provide another good platform for scientists
to share their research findings and data
across disciplines and institutions. Such
practices are made possible by the open
access journals, data repositories, and
collaborative platforms. These practices

B I,
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emphasise transparency, reproducibility,
and broader engagement with scientific
results. Open science initiatives promote the
free exchange of knowledge, enable global
participation, and foster interdisciplinary
collaborations. However, the practices are
faced with challenges such as platforms
sustainability, data sharing protocols, as
well as proper attribution and credit for
researchers.

[rrespective of the method chosen for
reporting scientific results, it is crucial to
present the results accurately, transparently,
and with appropriate context. Moreover,
clear and concise writing, effective visual
representations of data, and proper citation
of sources are essential for effective
reporting of scientific results.

To explore reports of
scientific results

Materials: Pen, worksheets, notepad,
computer, tablet

Procedure

1. Search the internet or other sources
for any physies experimental report
on the topic of your interest.

2. Study the report and identify its
important parts.

3. Identify the aim of the experiment.
Study the graph, if provided.

Questions

(a) What is the title of the experiment
you chose?

Scientific Investigation

(b) Were the data presented in a graph?
If yes. state the hypothesis.

(c) What was the aim of the experiment?

D oercic2 I

I. Aform five student is not sure whether
theoretical methods, mathematical
methods, and computational
methods mean the same or not. As
an expert in scientific investigation,
clear her doubt.

2. The chief editor of Tanzania Journal
of Science has invited you to review
an article titled “Computational
modelling of musical systems”.
Identify key issues you will look at
in the;

(a) Experimentation section
(b) Data analysis section

2.4 Application of ICT in Physics

Information and communication technology
(ICT) plays a crucial role in scientific
investigations. Sometimes investigations
involve large amount of complex data
which may be difficult to handle by hand.
In cases like this, ICT is used to record and
process the data. This processing include
calculating and visualising data to identify
trends, simulating physical phenomena,
and writing scientific reports to document
findings of scientific investigations. Some
ICT tools are for general purpose while
others are designed to perform specific
tasks. Examples of these tools include
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spreadsheets such as Microsoft (MS) Excel, general-purpose programming languages
such as Python and R, and domain-specific software packages such as SPSS (statistics),
Matlab/Octave (linear algebra), Origin (advanced data visualisation and analysis), PSPP
(statistics). Some of these tools can be accessed freely while others are commercial. MS
Excel, for example, can be accessed in most computers that run the Windows family
of operating systems. Python, R, PSPP and Octave. on the other hand, are open source
software that anyone can download from the Internet.

Knowledge and skills acquired in this section will enable you to apply ICT tools in
other disciplines.

T

Search the Internet for the official websites of Python and Octave, then download
and install them in a computer.

2.4.1 Recording data

Physical experiments often involve capturing/recording data. Traditionally, physicists
have been recording these data on paper. This approach can become tedious and
error-prone especially when there is a large amount of data to be collected. This is
when software tools come into play. Due to their grid nature (rows and columns),
spreadsheet software such as MS Excel lend themselves well to the task of recording
experimental data.

A scientist can use separate columns for different variables with each row representing
a separate measurement or observation. Different tabs can be used for different
experiments, making it easy to keep track of multiple datasets. For example, in
Activity 2.3, data entry begins by creating an MS Excel spreadsheet like the
one shown in Figure 2.2 (a) with the title of the experiment written at the top of the
worksheet and pre-determined pendulum lengths written in one column. One would
then start performing the experiment while recording the times it takes for the pendulum
to complete ten oscillations for different lengths of the pendulum. At the end of the
experiment the completed spreadsheet would look like Figure 2.2 (b).
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Figure 2.2: Using MS Excel for recording data

In addition to their capabilities in manipulating data, other advantages of using
spreadsheet software for recording data is their ability to validate data and to protect
data against unintentional modification. The ability to validate data as it is being entered
helps to unsure the correctness and reliability of findings of a scientific experiment.
Errors can be introduced in the process of recording data through a number of ways, for
example, human error and unintentional modification. To prevent this from happening,
one can set validation rules to ensure correctness of the collected data. Activity 2.3
demonstrates the process of setting data validation rules in MS Excel.
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‘ Activity 2.3

Aim: To use MS Excel to set data validation rules (prevent entry of negative
values for pendulum length)

Materials: A computer running MS Excel 2016 or newer

Procedure
I. Launch MS Excel and create labelled columns as shown in Figure 2.3.
A B c 0 f.~ F
1
2| Effect of pendulum length on time to compiete 10 ozclistions
3
4
5 No. Length (m} Time [t) for 10 oscillations {s)
- th 12 1
[} 1
8 2
g a
10 3
n &
2
Figure 2.3

2. Select the cell range C7:C11 by first clicking on cell C7 and then clicking on cell C11 while
holding down the shift key. The worksheet should look similar to Figure 2.4,

A E c v &7 5 E
|
2 Effect of pendulism length on tiine to compists 10 oscillations
}
e
3 No Length (m) | Time (1) for 10 oscillations |s)
i i 2 3
i 1 |
\ 38
. e, ~e
11 DE™ {
12

Figure 2.4

3. Click on the Data tab, to access the Data Tools group, then click on Data Validation as
shown in Figure 2.5.
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4. On the Pop-up menu that appears, click on Data Validation. A data validation dialog

box will appear.

5. Inthe dialog box, click on the settings tab then select “Decimal” and “greater than™

in the Allow and Data drop-down lists respectively. Then enter O in the Minimum
text box as shown in Figure 2.6.
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6. Click on the Error Alert tab and select “*Warning” in the Style dialog box. Then, type
in the title and Error Message as shown in Figure 2.7. In this example, we ignore
the Input Message tab as we do not want te show any message when a cell in the

specified range is activated.
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8. Try to enter a value that is less than or equal to zero in any cell in the range C7:C11.
Excel will warn you that the number you are trying to enter is invalid. Answer no
to the “Continue?” question to enter a valid value (see Figure 2.8).

Invalid volue entered )

E Value for l=ngh can not be nagacvel

v | ] o] e |

Figure 2.8

Questions

1. Add validation rules for the time columns t1-t3. This time make use of the Input
Message tab.

2. Describe other scenarios in which you may need to use the data validation
functionality in Excel.

2.4.2 Performing calculations

In the past, the most common tool students used for perfoming calculations in Physics
was the calculator. However, with the emergence of computers, which are more
powerful, flexible, and more capable compared to calculators, it imperatively important
to calculate physical parameters using computers. For example, typing is much easier
on a computer keyboard than on the keypad of a scientific calculator. Thus, a personal
computer running scientific software tools such as Python and Octave presents a very
powerful environment for performing seientific calculations. When launched, these
tools present the user with a prompt (>>> for Python and >> or Octave: 1> for Octlave)
as shown in Figure 2.9 (a) and (b), respectively. This prompt is used as a calculator by
typing the expression whose value is to be computed. The expression is usually made
up of variables and constants (numbers). After the expression is typed. one has to press
the enter key for the software to carry out the computation. The value of the expression
can be assigned to a variable for future use.

W python 312 (64-bi} - o X
Python 3.12.3 (tags/v3.12.3:f6650f9, Apr 5 2024, 14:95:28) [MSC v.1938 84 bit (AMDE4)] on win32 «
Type “halp®, “"copyright", "cradits" or "licensa™ for mors inforsation.

23

(a)




{ Octwe-810 18 - o X
Ocrtave, version 9.1.8 ~
(C) 1995-2834 Tha Octave Profect Developers. m
is fres scftwars; ses e scurie coda for copylng conditions,
is ANSOLUTELY MO WARRANTY; not swven for MERCHANTABILITY or
TTMESS FOR A PARTICULAR PURFOSE. for detalls, Type “werranty'.

Dctwve wae configured for “xBl_Gl-whi-singal”,

bowe page: httes://octave.org
PBupport rescurces: httms  //octave . org support
Improve Octave: httes: //octave.ong/ get-irvolved
E:u'u frem previcus versloss, type ‘nims’.

ta>

(b)

Figure 2.9: Default prompts for (a) Python, and (b) Octave

Examples 2.1 and 2.2 demonstrate how to perform calculations by hand (using a
calculator), and using software such as Python and Octave.

A piece of metal at 200 °C is immersed into a copper calorimeter of mass 60 g
containing 50 g of water at 25 °C. After immersing the piece of metal, the equilibrium
temperature reaches 36 °C. Neglecting heat losses, calculate heat lost by the metal.
(Specific heat capacity of copper is 390 J/kg °C and specific heat capacity of water
is 4200 J/kg °C).

Solution

Using a calculator:
Heat gained by the calorimeter = Q,

Mass of the calorimeter (m, ) = v-@—-kg
1000

Specific heat capacity of the calorimeter (¢_) =390 J/kg °C

Temperature of the calorimeter (7) =25 °C (equals the temperature of water)
Equalibrium temperature (7, ) =36 °C
Change in temperature (A7, =7, -7 )=11°C
Q. =m Xc XAT,
=0.06 kgx390 J kg '°C"' x11°C
0.=25741
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Heat gained by water=Q,,
Mass of water(m, ) = Lk kg
1000

Specific heat capacity of water(c, ) =4200 J/kg °C
Temperature of water (7, ) =25 °C
Change in temperature (AT =7, -7, )=11°C
Q =m Xc XAT,
=0.05 kgx4200 J kg '°C"'x11°C
Q,=2310]

Heat lost by the piece of metal (Q, )= Heat gained by the copper calorimeter (Q.)
and water (Q,)

Qﬂl =Qr' +QI|
=25741+2310)

=256741]
Therefore, heat lost by the metal is 2567.4 J.

Using Python:

To carry out the above calculations in Python, launch the Python interpreter and enter the
commands shown in Figure 2.10. When entering the commands, you should not include
units of the different quantities because Python does not use them in computations. In
Figure 2.10 (a), variables have been used to represent values of different quantities,
used to compute the final answer. Alternatively, the numerical values of the quantities
can be substituted directly into the expression representing the required quantity to

obtain the final answer as shown in Figure 2.10 (b).

R — - — e — —

| B rgann 1 st - O R
Python 3.12.3 (tags/v3412, 194665005, Apr § 2824, 14:85:25) [MSC v.1938 &4 bit (AMDE4)] on win32 -~
fType “halp”, “copyright”, “credits” or “licemse” for sore informationm.

3> mass_calorimeter = 5@/1000

l‘»b mass_water = S/ 1680

35 tenp_witer = 25

>3 tesp_calorimeter = 25

23> g _temp & 35

'|:>n dt_water = &q_temp - tamp_water

B3y gt caloriseter = eq_tenp - temp_caloflsster

f;” € _copper = 399

2> water = 4200

@2y Lwater = nass_water * ¢ _water * gt water

22> @ caloriseter = mass_calorimeter * c_copper * ot_raloriseter

?u Q_®etal_lost = Q Water « Q_calorimetar

(233 Q #etal_lost

2567.4

23> -

(a)
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»>> Q metal lost = 58/1000*4260*%(36-25) + 608/1000%390*(36-25)

2> Q_metal lost
2567.4
23>

(b)

Figure 2.10: Performing calculations in Pvthon using (a) variables, and (b) numerical values

A car starts to move from rest and
accelerates uniformly at the rate of
2m/s’ for 6 s. It then maintains a
constant speed for 30 seconds. After
the brakes are applied, it decelerates
uniformly to rest in 5 s. Calculate the
total distance covered in metres.

Solution

Using a calculator:
At the beginning:
initial velocity, u, =0 m/s
acceleration, a, =2 m/s’
time, f,=6s
substituting in v=u+at,

v, =0 m/s+2 m/s* X6 s

=12 m/s

Distance covered initially will be:
|
5, =ul +—al’
| = Wy 5 4

2 m/s’x6’ s’
2

=0 m/sx6 s+

=36m

During the second stage:

u, =12 m/s (constant)

t,=30s
Distance covered,
8§, = Uy X1,
=12 m/sx30 s
=360 m
In the third step:
u, =12 m/s
v, =0 m/s (stopped)
[ ,=35s

Acceleration is given by:

o= Vi — U,
I
_0m/s—12 m/s
5s
=-2.4 m/s’
From third equation of motion,
v:=u’+2as.
vy =y
Sy =——
? 2a,
0 m/s) —(1 :
2x(-2.4 m/s")
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Total distance covered, s, =36 m+360 m+30 m =426 m.

Therefore, the total distance covered 1s 426 m.

Using Octave:

To carry out the above calculations in Octave, launch the Octave interpreter and enter the
commands shown in Figure 11 (a). In entering the commands, you should not include
units of the different quantities because Octave does not use them in computations. As
shown inin Example 2.1, variables have been used to represent different quantities, then
used to compute the final answer. Alternatively, the numerical values of the quantities
can be substituted directly into the expression representing the required quantity to
obtain the final answer as shown in Figure 11 (b).

., Octave-9.1.0 {CLY E C X
1=6 -~

ave:4» vl = ul + al*tl
1=12
ava:5> 51 = ul*tl + 1/2%al*t1"2
= 36
tave:6> u2 = vl X from stage one above
= 12
tave:7> t2 = 38
2 = 38
ave:8> s2 = uZ*t2
= 360
ave:9> ul = u2 % from stage two above
= 12
ave:18> v3 = @ X the car stopped
3=8
ave:11> t3 =§
3=5
ave:12> a3 = (v3 - u3)/t3
= <2, 480600
ave:13> s3 = (v342 - u3"2)/(2%a3)
= 30
ave:14> total_distance = 51 + 52 + 53
otal_distance = 426
ave:15> v

(a)

tave:16> total_distance = @%*6 + 1/2%2%6%2 + 12%38@ + (82 - 1242)/(2%-2.4)
otal distance = 426
ctave:17>

(b)

Figure 2.11: Performing calculations in Octave using (a) variables, and

{b) numerical values




Note that in Octave, the symbol “%" is used to insert comments to describe the variables.
For example, in Example 2.2 the symbol was used when defining the variables u2, u3,
and v3. Similarly, the symbol “#" is used for the same purpose in Python. In addition,
to raise a number to a power (exponent), the operators *“**” and “~” are used in Python
and Octave, respectively.

As you can see in the examples above, using a computer to perform calculation is more
convenient and less prone to errors. In addition, the functionality of scientific software
such as Python and Octave can easily be extended by installing libraries that deal with
a specific subject such as physics.

NSRS

1. Repeat Example 2.1 on a calculator. Comment on the utility of the two approaches.

2. Repeat Example 2.2 on MS Excel. Compare the flexibility of Octave and MS
Excel in performing scientific calculations.

a2

Use the Internet to familiarise yourself with the following ICT tools: R, PSPP,
and Origin.

4. Repeat Example 2.2 using ICT tools learnt in Question 2.

o

Pressing the up and down arrow in a Python and Octave prompt recalls previous
commands. This feature can be very useful when you want to change something in
your calculations. It is called the command history. Use the command history feature
in Octave to recompute total distance covered and maximum speed reached for a
uniform acceleration of 3.5 m/s’,

2.4.3 Visualising and analysing data

One way to understand experimental data is to visualise them using different kinds of
visualisation (seatter plots, pie charts, bar charts, line graphs, and curves). Visualisations
facilitate discovery of the hidden trends in the data, and simplify interpreting the findings
of physical experiments. In addition, physicists include different kinds of graphs in
their reports when communicating findings of their experiments. Software tools enable
a physieist to customise plots in many ways including, but not limited to, inserting
annotations, legends, titles, and scaling plots to different sizes. In addition, they allow
the possibility to export or save plots in different image formats for inclusion in reports
and other documents. Visualisation and analysis of experimental data in Python and
MS Excel are demonstrated in Example 2.3 and Activity 2.4,
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A student carried out an experiment to investigate how the extension of a wire varies
with the load applied to it. The collected data were then utilised to calculate the

, where K is the

Young’'s Modulus (p) of the wire using the formula K= 7
wd-p

slope of the graph of extension against load, L (100 cm) is the length, and d
(0.045 cm) is the diameter of 0.45 mm the wire. Data were recorded as shown in

Table 2.4.

Table 2.4: Recorded measurements of load and extension
Load (N) 0.1 0.2 03 | 04 0.5
Extension (m) 0.03 0.05 008 | 0.10 0.13

After completing the experiment, the student used Python to plot a graph of extension
against load of the wire to see how extension of the wire varies with the load. Then
the student used the slope obtained from the graph to compute the Young’s Modulus
of the wire as shown in Figure 2.12 (a) and (b).

r ‘ CAalsers\hp\Desktogh My 202MICT ssarmgies\pl .-gl'_,,_g--r.,;:_g_-ir:_;_._\- byt Pt - ¢ - 1

Fite Edit Ssarch View Encoding language Sattings Tools Maord llun Puging Window ¢ + W X

LedHB GBI sLRIC A% txMGE ST FERTOS 7

TW
import required libraries :

i L]

2 from scipy.stats import lingegresa | for regression
3 import matplotlib.pyplot as plt # for plotting

4 import numpy as np } for capturing data
5 import math

i

i1 # Capture exparinefbal data and fit a line to the data
& load = np.azrcay(f8.l%. 0.2, 0.3, 0,4, 0.5])

9 extension = np.array([0.03, 0.05, 0.08, 0.10, 0.13}])
10 line = linregress(lcad, extension)

11 # Fegresaiofding is: extension - m*load + ¢

12 | line extengion = line.slope*load + line.intercept

13 L=

L4 d=0,045/200

15 rho = {40/ (line.slope*math.pi * dee2)

16 i/ Display resalt gsing scientific notation & 3 a2igfigs

17 I PRARENL"Young's modulus of the wire is [(rho:.3g) N/m~2.")

in . Flot results

19 plt.scatter(load, extenaion) } axperimental data

Q Plt.plot(load, line extanaion, 'r-') ) regression line
plt.title('Effect of load on extension of a wire')

3 pit.xlabel ("Load (M)')

23 plt.ylabel {"Extenaion (m)"*)

24 plt.grid()

25 plt.show() ¥
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Effect of load on extension of a wire

0.10 015 020 025 030 035 040 045 050

Load (N)
AeEd» Q=B

(b)

Figure 2.12: Using Python to analyse and visualise data in (a) Python program,

(b) output of the program

The Python program in Figure 12 (a) makes use of various features of Python. In lines
24, different modules required for analysing and visualising the data are imported.
In lines 8-9, data representing load and extension are captured. These data are used
in Line 10 to fit a regression line. Line 12 uses the slope and intercept of the line to
compute estimate values of extension (to be used for plotting the line later). Lines
13-15 compute the Young’s modulus of the wire using the value of slope obtained
above. The value of Young’s modulus obtained is displayed in Line 17. Finally, lines
19-25 plot the experimental data and the regression line. Note that the line numbers are

not part of the program, they are used for reference only.

To reproduce Example 2.3 do the following:
|. Type the code in Figure 12 (a) in any text editor (for example Notepad or WordPad).
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2. Save the code in a file with a file name ending with “.py”, for example,
“example23.py”.
3. Open the folder containing the code file.

4. Double-click on the code file to run it. You should see output similar to
Figure 12 (b).

Aim: To use MS Excel to visualise experimental data and fit a linear trend
line (regression line) to the data

Materials: A computer running MS Excel 2016 or newer

Procedure
I. Enter some data in an excel worksheet and select it as in Figure 2.13,

- =} e | o

Effect of load on extension

Load (N) Extension (m)

D m = mu b h o

0.1 0.03
0.2 -
03 -3
s Lo
05 h013
10 | ]

Figure 2.13

2. Click on the Insert tab to access the Charts group, then click on Insert Scatter
(x,y) or Bubble Chart as shown in Figure 2.14.
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Figure 2.14
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3. On the Pop-up menu that appears, click on Scatter. A scatter plot will appear as
in Figure 2.15.

(o’ ™ - 9
Chart Title ||
ni4 | |‘f|
bt | :
, hd
0y | -
™ | ¢ -
Gus | |
.
004 | :
ooz | 1 —
o | £
o o1 o2 ol 04 s e l
G————O0———————————Q
Figure 2.15

4. Click on the Chart Elements button (the green + sign in the top right corner of
the chart), then select axis titles. Type in the axis ‘l';itles (as they appear in the
data) in the formula bar, then press enter. You may need to click outside the
chart area to deselect it so that you can be able to edit the axis titles.

5. Repeat step 4, but this time, edit the chart title to read “Effect of load on
extension of a wire”.

6. Click on the Chart Elements button and select Trend line. This will insert
a trend line on the graph. After completing this step, the chart should look
similar to Figure 2.16.

-

Effect of load on extension of a wire

ol 02 01 Qe 0% ok |

Figure 2.16
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7. Click on the trend line. Options to format the trend line will be displayed on the
right side of the window. Click on “Display Equation on chart™ to display the
equation of the trend line on the chart as shown in Figure 2.17.

Effect of load on extension of a wire

=
—
F

¥ =025+ 000

X
s - B

Extension [m)
o P o O
g ¥

=

[~
—

0 0.1 0.2 03 04 0s ok
Load (N)

Figure 2.17
Questions
1. How do you compare this approach of visualising data to the traditional one of
using graph papers?
2. Use Excel’s built-in functions to find the average and standard deviation of the
extension variable.

B and Brownian motion of gases. Some of

| these experiments, for example nuclear
After going through Examples | fygion, are relatively dangerous (the risk
2.3-2.5, how do_you compare the | of exposure to radiation) and costly (the
data visualisation capabilities of | ¢ of materials). When studying nuclear
Python, Octave, and MS Excel? physics, for example, you will learn about

2. Which of the tools above would radioactive decay (a phenomenon in which
you prefer to use in your scientific | radioactive materials emit radiation and
investigations? Why? decrease mass), instead of your physics

teacher bringing radioactive materials in

class to demonstrate the concept. He or she
2.4.4 Simulating physical phenomena | can simulate the process on a computer.
Scientists normally conduct a lot of

experiments in order to study and understand
physical phenomena such as nuclear fusion

On the other hand, some of the experiments,

. for example Brownian motion, involve




abstract ideas that are difficult to
comprehend (you cannot see the gas
molecules colliding). Again, to make this
concept clear to students, a physics teacher
can simulate the process on a computer.

IS

Use the Internet and other sources to
identify other physical phenomena that
are easier to simulate on a computer
than to perform actual experiments. For
cach phenomenon you identify, find
out the reasons for preferring computer
simulations over actual experiments.

2.4.5 Importing and exporting data

As stated above, software tools used in
scientific investigations offer different
features and capabilities. For example,
while some tools such as MS Excel offer
easy-to-use data recording features,
they do not have the flexibility and a
variety of capabilities required to process
experimental data. Because of this fact,
scientists normally use a combination
of tools to accomplish a task. They
accomplish this due to the ability of
scientific software to import and export
data. For example, a scientist may use
MS Excel to capture and validate data and
import the data into Python for processing

and visualisation.
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2.4.6 Reporting experimental findings

The final stage of a scientific investigation
is to report or communicate the findings
of the investigation (see Figure 2.1). This
is normally accomplished by writing a
scientific report or a research paper that
will be used as a means to share the
findings with other scientists. This is
when word processing software such as
Microsoft Word come into play. These
software enable a scientist to prepare
visually appealing scientific documents
that include tables and graphs. To
appreciate and learn how to use software
tools in reporting experimental findings
complete Task 2.8.

C W Tizs )

Use the Internet to search for scientific
journals and other sources that publish
research and experimental findings
in Physics. Download several papers
and reports and take note of how the
documents have been organised as
well as the use of tables and graphs to
present data.

2.4.7 Using software to perform error
analysis

The task of performing error analysis
can be simplified by using spreadsheet
software such as MS Excel. This is
because spreadsheet software allows the
manipulation of data that is organised in
rows and columns.
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Aim: To use MS Excel to perform error analysis using data shown in
Table 2.5

Materials: A computer running MS Excel 2016 or newer

Table 2.5: Recorded measurements of length

] Measument number 1 2 3 | 4 | 5 6
] Length (cm) 99.80 | 100.05 | 99.30 ‘ 100.08 ‘ 99.80  101.55 |
Procedure
1. Record the measurements from Table 2.5 in an Excel worksheet as shown in
Figure 2.18.
A B ¢ o = =
{ ]
2 Aecorded length (L) measurements
Im
4 No L (om) Absolute error {|aL|) |Reistive error (ALL)  |erronfal il “108%)
2 1 94 By
L R 2 100 D5
T 4 Ba 30
] 4 100 08
3 3 08,80
10 ] 10155
11 Mean
12
Figure 2.18

2. To calculate the mean value of the measurements, click on cell B11, then click
on the formula bar and type =AVERAGE(B5:B10) and then press enter (see
Figure 2.18 (a)). The mean value of the measurement will appear in cell B11 as
shown in Figure 2.18 (b).

AVERAGE - n, v SAVERAGEIRS B10|
'y N » c 1] E

JF% Recorded ength (L) measurements

J i
| Pecentage
4 lhe. L fem) _ |Absolute error (&L |Relative error (sUL)  arron(aliL"100%)
g 1 46 Al

[ 2 100. 054

] E| [

0 i 100.08{

) i a0 gl

10 i 101 55

1 [Mean  ['RAGE(BS:B10) |

7 |

(a)

st
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-Ji B C | o E

1
2| Recorded length (L) measurements
< 2|

f Pecentage
4 |No. L (em) Absolute error {|AL]) |Relative error (ALL)  |error{aL/L"100%)
5 | | 84 80
6 | 2 100,05
7] 3 99.30
A 4 100 i
q | b 0080
10 ] 101.55 j
11 Mean 100.10
2]

(b)
Figure 2,18

To calculate absolute errors, click on cell C5, then click on the formula bar and
type =ABS(SB811-B5) and then press enter (see Figure 19 (a)). The absolute
error for the first measurement will appear in cell CS5. Hover the mouse pointer
on the lower left corner of cell C5, the pointer changes into a cross (+). Click
and hold, then drag down to cell C10, and then release the mouse button.
Absolute errors for the remaining measurements will appear in cells C6-C10

as shown in Figure 2.19 (b).

(a)

AVERAGE * x « £ | -ABSIELICES)
§ o8 8] B . v E
1
2 Recorded length (L) measurements
3
Pecentage
4 No. L (cm) Absolute error (|4L|) Relative error (ALL)  error{dL/L"100%)
5| 1 99 80{=ABS($BS11-B5) [ -
6 A 100 (%
T 3 99.30
] 4 100 08
3 Bl 99 80
A0y B 101.55
11 Mean 100.10|
12
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A B c D E j
1 4
2] Recorded length (L) measurements
3
Pecentage
4 No, L (cm) Absolute error (|AL|) |Relative error (ALIL)  |error(ALIL"100%)
5 1 99.80 0.30
] 2 100 05 005
§ 3 99.30 0.80
8 4 100.08 0.02
9 5 99.80 0.30
10 6 101.55 145
11 Mean 100.10 -
12
(b)
Figure 2.19

To calculate the mean absolute error of the measurements, click on cell Cl11,
then click on the formula bar and type =AVERAGE(C5:C10) and then press
enter (see Figure 20 (a)) . The mean absolute error of the measurements will
appear in cell C11 as shown in Figure 2:20 (b).

AVEKAGE - X « L AVERAGEICSEID)
A B S . D E
i i =i R
Z| Recorded length (L) measurements
3
Pecentage
4 No.  |L(em) Absolute error (|AL|)  |Relstive error (ALL)  error(ALL*100%)
I - 030 600257 027
¢ | 2 ~ 100.05 0.05 0.00047 0.047
71 3 89.%) 0.80 0.00802. 0.802
I I I [T LT
9 b 99,801 0.30 0.0029¢ 0.291
10 | 10155 145 00143 1431
e n 100.10|=AVERAGE(CS:C10) | 0.482
2
(a)
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1
2 Recorded length (L) measurements
3
| Pecentage
1 Ne, L (em) Absclute error (|AL|) |[Relative srror (AUL)  |error{aLiL" 100%)
5| 1 89.50 0.30
b 2 100.05 0.05
7 3 99.30 0.80
B 4 100 08 002
9 | 5 S8 R’D 030
10 | 6 10155 145
1 Mean 100.10 0.48
12
(b)
Figure 2.20

5. To calculate relative errors, click on cell D3, then click on the formula bar and
type =C5/B5 and then press enter (see Figure 21 (a)). The relative error for the
first measurement will appear in cell D5. Hover the mouse pointer on the lower
left corner of cell D5, the pointer changes inte a cross (+). Click and hold
then drag down to cell D10, then release the mouse button. Relative errors
for the remaining measurements will appear in cells D6-D10 as shown in
Figure 2.21 (b).

AVERAGE - X ¢ L | =QuES
LA Y c | D r
> AL
2 Recorded length (L) measursments
3
Pecentage
4 No. L (cm) Absolute error (|aL|) IRelative error (ALL)  |error{aliL"100%)
5| 1 & 80 0.301=C5B5
6 100.05 0.05
T % 9930 08
B | 4 100 08 002
P [ 5 99.80 0.3
[l 10" 5 101 55 145
11 Mean 100.10 0.48
121

(a)
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1]
z| Recorded length (L) measurements
3

Pecentage
4 Ne. L (em)  |Absolute error (|aL|) [Relstive error (ALL)  error{aliL*100%)
5 | 1 = B 0 30 0 00787
6 | 2 10005 0.05 0.00047.
7 3 53 30 0 B0 0 00B
8| B 100.08 0.02 0.00017
9 & o 80 0.30 000287
10 | B 101 55 145 0.01431
11 Mean 100.10 0.48 T
12
(b)
Figure 2.21

To calculate percentage errors, click on cell ES, then click on the formula bar
and type =D5*100 and then press enter (see Figure 22 (a)). The percentage error
for the first measurement will appear in cell ES. Hover the mouse pointer on the
lower left corner of cell ES, the pointer changes into a cross (+). Click and
hold, then drag down to cell E10, then release the mouse button. Percentage
errors for the remaining measurements will appear in cells E6-E10 as shown

in Figure 2.22 (b).

MVERAGE * > v & <05

LBl T e SN L8 £
1
F i Recorded length |L) measurements
3

Pecentage
4 No. L (cm) Absolute error (|AL|) |Relative error (ALL)  lerror(AL/L"100%)
5| 1 99.60 0.30 0.00297|=D5"100
o 2 100 05 005 0 0004/
7 a 99.30 0.80 0.00802
sl .2 100.08f o0z _0.00017
g 5 20 ) 0.30 000297
0 6 101 55 145 001431
1 Mean 100.10 0.48
2
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Finally, to calculate the mean percentage error of the measuremeé‘igﬁck on cell
E11, then click on the formula bar and type =AVERAGE(E5:E10) and then press
enter (see Figure 23 (a)). The mean percentage error of th ﬁ‘i?asuremcnts will

appear in cell E11 as shown in Figure 2.23 (b). é-j‘g
N\
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In Figure 2.23, it can be observed that the value of absolute error for the 6"
measurement (1.45) deviates significantly from the rest of the absolute errors.
This is an indication that the measurement is a possible outlier which may be
due different sources of error such as incorrect reading of instruments and faulty
instruments. Such a measurement should be discarded. Note, however, that
outliers do not always occur in measurements. After discarding the outlier, the
resulting error analysis is shown in Figure 2.24.

| A B ¢ D € A
1
2 Recorded length (L) measuremems
3
Pecentage
4 No. L {cmj) Absobute error ([ AL]) |Relatrve error (aLAL)  |error{alAL"900%)
5 1 939 80 D.0% 0 00006 0 006
b 2 100 05 0.24 0 00244 0244
r 3 949 30 0.5t 0. 00630 0510
L] 4 100 08 D.27 0.00274| 0774
9 b o3 80 0.0t 0 00006 0 006
10 Mean B 0.1 008
n
Figure 2.24

As it can be seen in Figure 2.24, the values of mean absolute error and mean
percentage error have decreased significantly. Therefore, the final measurement
of length is expressed as (99.81+0.21) cm.

2.4.8 Learning more about software tools

Scientific software usually come with documentation that enable software users to
learn more about the software and to refer to when they need to know how to use a
particular feature of the software. The documentation is the first place users go to when
in need of more information about a feature they want to use. This documentation is
usually integrated into the software, but in most cases, the same information can be
found on the Internet. Another source for learning about scientific software is books.
For example, there are numerous books on Python, Octave as well as MS Excel in the
market. Activity 2.5 will enable you to learn how to use software documentation.

B

Aim: To learn how to use software documentation (help system) for Octave:
learn what the Octave commands max, atan, pi and sqrt do

Materials: A computer running Octave




Procedure
1. Launch Octave.
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2. Type “help™ (without the quotes) at the prompt (see Figure 2.6) and read the
displayed text to learn how the Octave help system works.

. Type “help max”, press enter, and then read the displayed text.

. Type “help atan™, press enter, and then read the displayed text.

3
4
5. Type “help pi”, press enter, and then read the displayed text.
6

. Type “help sqrt”, press enter, and then read the displayed text.

Questions

1. Use the knowledge you gained in this activity to compute the period T of a

pendulum with length 0.25 m in Octave, where T =21 JZ +Use g =9.8 m/s’.
8

2. Whatdo the save and load commands do in Octave? Give examples of situations

in which they can be useful.

2.5 Conducting research
projects in Physics

In learning physics, performing hands-on
activities is important for transferring
the knowledge of different theories,
laws, and principles to novel real-world
problems faced in daily life situations.
Such hands-on activities are referred to
as physics projects or physics practical
investigations. They involve collecting
primary  data performing
laboratory experiments, using computer
simulations, and undertaking fieldworks
and surveys. Generally, a physics project
is a mini research work that involves
the systematic process of collecting,
analysing, and interpreting data in
order to increase our understanding of a

through

phenomena. That is, conducting a physics
project requires high competency in
scientific skills that are summed within
the scientific methods. Designing and
conducting a physics research project
involves following several stages such
as creating questions and predictions,
planning  investigations, conducting
the investigation, analysing data, and
communicating the results. Each of these
stages involves various steps as illustrated
by the flowchart in Figure 2.25.

2.5.1 Creating questions and
predictions

Any scientific endeavour starts with
clearly specified questions. Such

questions can be developed from a
theory, principle, or observation. These
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questions are important in defining the aim of the project work and, therefore, must be
precise and verifiable. They provide guidance throughout the process of project work
from designing experiments to interpreting and analysing results. Based on the project
question, the investigator must review the existing literature to establish a knowledge
gap and predict the outcomes of the investigation work.

" Creating questions and predictions

1. Make observation

2. State a research question

3. Review the literature

4. Formulate the hypothesis |

v

-P-]nnning the inveﬂiguliun

Re-formulate the 1. Write a study methodology
2. Design the experiment
& 3. Consider safety and ethical issues

Conducting the investigation

" Communicate the findings |

[Htpmr:pmjmmpunmdj

[I.Cmmmfaﬂ J
¢ ' share it with other physicists

2. Perform data collection

i

Analysing data T | o T B

1. Perform data analysifiag
Flﬁullsmlinagmemmt l 2. Evaluate the data

Results in agreement with
the hypothesis

with the hypothesis 3. Test hypotheL

Figure 2.25: Steps for conducting a physics research project

2.5.2 Planning the investigation

In this stage, the investigator must develop
and write a method for conducting the
project work. This involves designing a
controlled experiment and data analysis
tools. The investigator should carefully
plan  the experiments, considering
variables, controls, and measurement
techniques. The method must define
the experimental setup, selection of
appropriate instruments and equipment,
and establish protocols for data collection.

The investigator must also identify the
independent, dependent, and controlled
variables as well as the measurement
techniques in order to ensure that a valid
investigation procedure is developed.
Furthermore, the method must adhere to
ethical principles, ensuring the welfare
of human subjects, animal subjects, and
the environment. Documentation of
the experimental design is important to
ensure reproducibility and the ability to
build upon the research.

.i‘llnllllll



2.5.3 Conducting the investigation
Accurate and precise data collection is
central to any physics research project. In
this stage of the project, the investigator
must follow standardized protocols,
record measurements, and ensure data
integrity. Depending on the nature of the
research, data collection may involve
laboratory experiments, observations,
simulations, or theoretical calculations.
All data collection activities should go
along with all necessary safety measures
to protect both the investigator and the
environment.

2.5.4 Analysing data

Once datais collected, researchers employ
statistical analysis and mathematical
modelling techniques to analyse and
interpret the results. Data analysis may
involve fitting experimental data to
theoretical models, extracting trends and
patterns, and testing hypotheses. This
enables the investigator to evaluate the
project results and develop a conclusion
that can be communicated to the scientific
community or the publie.

2.5.5 Communicating the project
findings

Effective communication is an essential
aspect of conducting research in
physics. Upon completion of a practical
investigation, the investigator should
communicate the findings through writing
a concise project report. A physics project
report usually consists of several essential
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sections that provide a comprehensive
overview of the project and its findings.
However, the structure of the report may
vary depending on various factors such
as the requirements of the supervising
institution or instructor. Yet, there exists
some common sections that are found in
any good physics research project report.
[n the subsequent subsection, we discuss
the important parts of a good project report.

Sections of a project report

When writing a research project report,
the investigator must
ethical issues related to the project data
presentation and report writing. A good
physics research project report includes
the following;:

consider all

Title page: This includes the project

title, name of the investigator, date of

submission, name of the overseeing
institution, and some other relevant
information like the subject title and the
project’s supervisor.

Abstract: This is a concise summary of
the performed project. It briefly states
the background, objectives, methods, and
main findings of the project work. The
abstract 1s normally short and compact
providing enough information to give
readers a clear idea about the project.

Introduction:
background
for the project being reported. The
introduction should introduce the topic,
explain the motivation behind the project

This  part  provides
information and context
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work and clearly state the questions that
are answered by performing the project.
This section can also include relevant
theories, concepts, or previous work done
in the field.

Statement of the research problem:
This part of the project report clearly
and concisely describes the problem
that the investigator aspires to solve by
performing the reported project work. The
problem may be obtained from the direct
observation of various phenomenon or
from reviewing literature and theories.

Literature review: This section of the
research project report should briefly
explain the literature that has been probed
during the research project work. The
author should clearly explain the methods
and findings of the reviewed works and
show their relevance to the current project
work. Isack Newton said, “If I have seen
further, it is by standing on the shoulders
of the giants”. This means that knowledge
does not exist in a vacuum. Your work
will only have value if it is the same or
different from other scientist’s works.

Methodology: This part of the project
report describes the experimental setup
or theoretical approach used to investigate
the research question. It should include
sufficient details so that someone else can
easily replicate the reported study. For
experimental projects, the methodology
part should mention the equipment,
measurement techniques, and data

collection procedures. For theoretical
projects, the methodology should explain
the mathematical or computational methods
employed in conducting the project.

Results and discussions: In this section of
the report, the author should present the
project findings in a clear and organized
manner. The author can use tables, graphs,
charts, or other visualisation methods to
display data effectively. In addition to
presenting the results, the author should
discuss any trends, patterns, orrelationships
observed from the data. [t 1s important to
interpret the obtained results and explain
their significance in relation to the research
question. The author should also discuss
the implications of the project findings
and relate them to the existing theories or
concepts. Moreover, under this section, the
author should address any limitations or
sources of error in conducting the projects
work, and suggest ways to overcome them.
The obtained results may also be compared
to the results from previous studies or
alternative explanations.

Conclusion: Under this section, the author
should summarize the main points of the
conducted project and restate the key
findings of the project. Here, the author
should also emphasize how the obtained
results contribute to the existing knowledge
or understanding of the topic. The section
should also include a discussion of the
significance and potential applications of
the performed project work. The author
can also mention any recommendations
for further works.

B TR
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References: This section of a report
includes a list of all the knowledge sources
that have been cited in the report. The
author should follow a consistent citation
style as per the guidelines provided by the
instructor.

Appendices: Depending on the nature of the
research project work and if necessary, the
report may include additional information
that supports the project but is not
important in the main body of the report.
Such information may include the raw
data, calculations, derivations, or detailed
descriptions of experimental procedures.

BT A

Use ICT tools and internet sources to
search various physics research project
reports. Choose at least three reports
and study the essential sections of the
report. In your own words, summarise
each section of the chosen reports.

Sample of a physics project

Last year, your school installed solar panels
for providing electricity in the ¢lassrooms.
However, the students observed that the
panel installed on the roof of a Form V
classroom was more efficient than the
one installed on the roof of a Form VI
classroom. A technician claimed that the
reason fordifferent performances of these
solar panels was that, the Form VI class
roof is more elevated than the Form V

class roof. Therefore, the physics teacher
decided to task the students to carry out
a project for investigating the matter.

Scientific Investigation

| The students performed their project as
| described hereby:

Creating question and prediction

Observation: The students observed that
two solar panels of the
same type had different
efficiencies.

The students had a question,
why does the solar panel on
the Form V roofl perform
better than the one on the
Form VI roof.

Question:

Backgroundstudy: The students conducted
a comprehensive research
through reading scientific
articles, textbooks, and

online resources to gain a

solid understanding of the

underlying principles and
the existing knowledge
related to solar panels and

their efficiency.

From the literature review,
the students realise that
the panel efficiency could
be affected by
factors including the panel
angle with respect to the
ground, known as the tlt

Hypothesis:

several

angle. They formulated a
hypothesis that,

“The output power of the
solar panel varies with the
panel tilt angle.”
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Planning the investigation

Variables: The students identified solar panel output voltage as the dependent
variable and panel tilt angle as the independent variable. They also
identified other variables such as the amount of solar radiation and
surrounding temperature as the controlled variables.

Resources: The students established that they needed a small solar panel, the
angle measurement tools, a digital multimetre, and connecting
wires.

Experimental setup: They set an experiment such that they could vary the sunlight’s
angle of incidence by varying the position of the panel. They
then connected the multimetre to the output of the panel and
recorded the output voltage.

Conducting the investigation

To collect data, the students exposed the solar panel to sunlight at different tilt angles
(ranging from 0° to 90°) and measured the corresponding output voltage. For each angle,
they repeated the measurement three times. They recorded the collected data in Table 2.6.

Table 2.6: Solar panel voltage output art different panel tilt angles
SN | Tilt angle (0) Output Voltage (V) | Average Voltage (V) ErrorinV (AV)
1. 0 23 23 0.1

| 229
| _o 211 |
23.2 23.3 0.1

| & 234
| 23.3|
23.5 23.5 0.1
234
23.6
23.8 | 238 0.2
236
| | 24|
5 40 24 | 24.1 0.1
24.2 |
24.1 |

2
=)




SN Tilt angle (0) Output Voltage (V) | Average Voltage (V) ErrorinV (AV)
6. 50 23.6 23.7 0.2
239
23.7
y A 60 235 23.5 0.1
234
23.6
8. 70 23.3 23.5 0.1
P s
233
0. 80 23,1 23 0.1
229
23
Analysing data

To analyse their data, the students plotted a graph of the panel angle against its power
output as shown in Figure 2.26.

Variation of output voltage with the solar panel tilt
angle

g
g |
= | -
| 3p.g = -BE-10x" + 2607 - 2E-05x* + 0.0006x’ - 0.0104x" + 0.0866x +
4 R? = 0,98342
126
10 0 100 20 30 4 S0 60 0 80 90

Tilt angle (8)

Figure 2.26: The relationship between panel angle and its power output
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The students established a linear relationship between the solar panel angle and its
power output through the equation;

V= —-(8){10"")0“ —(wa"”)a-‘ —(2>< 10'"-‘)04 +0.00060° —0.01040° + 0.08660 + 23

where, V is the output voltage and # is the tilt angle of the solar panel. The graph
shows that at low tilt angles, the power output of the panel increases as the panel tilt
angle increases: At high tilt angles, the power decreases with the increase of tilt angles.
The maximum power output is obtained at the tilt angle of about 40°,

Conclusion

The students’ data showed that when the solar panel is parallel to the ground, its power
was minimum, however, it was maximum when the panel tilt angle was 40°. Hence,
they concluded that, the panels on Form V and Form VI classroom roofs have different
angles with respect to the ground, which make them to perform differently.

STz g

Observe any problem in your surroundings that ean be solved by applying physics
principles, and then design research questions and hypotheses.

Generally, designing and conducting a research project in physics requires careful
planning, systematic execution, adherence to ethical principles, and effective reporting
of the results. By performing research projects, physicists can contribute to the
advancement of knowledge in their field. Note that, physics research projects do not
only deepen the present understanding of the physical world but also have the potential
to drive technological advancements and address real-world challenges. By diligently
following the principles when conducting physics projects, aspiring physicists can
embark on impactful research project journeys and make meaningful contributions to
the field.

Suppose you are among the students who performed the solar panel project, write a
comprehensive report of this project.
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. You have been given an assignment to search for a legitimate or workable problem/

topic for your physics project. Describe any three ways you will use to find the
topic for your research.

2. What is the difference between research question and hypothesis?
3. Research is, by its nature, cyclical or helical. What does this statement mean?
4. With reasons, state whether or not the following statements can represent research
(a) Looking for a good physics equipment that is used for measuring temperature
in the laboratory.
(b) Verifying Coulomb’s law using different methods.
(c) Designing a solar powered irrigation system.
(d) Observing the properties of waves using a ripple tank.

(e) Devising a mechanism for recycling used batteries.

I. When Dr. D.G Osborne (the Head of Department of Physics of University of Dar
es Salaam in 1960’s) visited the then Mkwawa High School, he was asked by a
form six Physics student named Erasto Mpemba “If you take two beakers with
equal volumes of water one at 35° and the other at 100°, and put them into the
refrigerator, the one that started at 100° freezes first. Why?” This question raised
a laugh from some of the students in the class (Read the Mpemba Effect ,1969)

(a) What do you think was the hypothesis formulated by the students who laughed
on Mpemba's question?

(b) It was later communicated that Mpemba’s observation was correct
experimentally. Was the hypothesis in (i) accepted or rejected?
(c) Suppose it was rejected, formulate the new hypothesis.

2. ABCD company is studying the thermal properties of liquid X to be used in
cooling systems. They have obtained the following data from their experiments;

Table 2.6

Time (s) 0 | 120 | 240 | 360 | 480 | 600 | 720 | 840 | 960
Temperature (°C) | 85 | 80 | 75 | 71 | 68 | 63 | 60 | 57 | 55
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(a) Using software or otherwise, plot a graph of temperature against time
(b) Identify the independent and dependent variables
(c) Suggest the controlled variables in this experiment

(d) What can you conclude about the cooling rate of this liquid?

. The data shown in Table 2.7 were collected in a physical experiment. Use MS
Excel to visualise it and fit an appropriate trend curve to them.

Table 2.7

- iy

' Time (s) 0 |10 |20 [30 |40 50 160
| Temperatre (°C) | 173 | 1465 [130 | 1132|1095 | 1044 199.6

. Repeat Example 2.3 using other software tools. How do you cempare the tools
you have used with Python?

. The period of oscillation of a simple pendulum is 7= 21:-‘/-7—. The value of / is
8

20 cm known to 1 mm accuracy, and time for 100 oscillations of the pendulum is
found to be 90 s using a wrist watch of 1s resolution. What is the accuracy in the
determination of g?

. A student aimed to determine the volume of a glass block and recorded four
measurements for its length, width, and thickness, as shown in Table 2.8.

Table 2.8

Length (cm) 1 25.2 125.3 25.1 2 |
Breadth(em) 156 155  |154 [ 155 |
Thickmess(cm) (5.2 |51 |51 |52 |

Use any software tool to:

(a) perform error analysis on these measurements
(b) determine the uncertainty in the calculated value of volume of the block.
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Chapter

Motion in two dimensions

Three

Introduction

In your life, you have experienced many situations in which different objects
move. Physicists can describe one- and two-dimensional motion of such
objects. Motion in two dimension involves the movement of objects at angles
beyond horizontal or vertical. This type of motion is analysed using two
coordinate systems. In this chapter, you will learn about the basie tenets of
mechanics which include projectile motion, circular motion, and gravitation.
The competencies developed will enable you to apply the prineiples of motion
and gravitation in different contexts.

Objects moving without direction

> » © o —
Concept of motion in two 3.1 Equilibrant forces on a body
dimensions Equilibrant forces are those forces that produce

Motion in two dimensions is | Zero acceleration to an object on which they act
essentially the movements of an and therefore establishing equilibrium for that
object in a plane involving - two ~ ©bject. One of the simplest cases of a body in
perpendicular coordinates (along = €quilibrium is a book resting on a table as in
the vertical, y and horizontal, x =~ Figure 3.1. The forces acting on a book are its
axes). This concept is based on = Wweight, Wacting downwards, and the normal
Galileo’s realisation that an object reaction R that the table exerts upward on the

in motion can exhibit multiple, = book.
independent motions. For example,
the path of a projectile can combine
constant speed in the horizontal
direction with acceleration due to
gravity in the vertical direction.
Additionally, the motion of an object
in two dimensions can be described

in relation to other moving objects w
or reference frames. Figure 3.1: Forces on a book resting on a table
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Taking the upward direction to be
positive and the downward direction to
be negative, then the net external force on
the book is:

ZF.“-:=RN+(—’"3) (3. J'J'

Since there is no net motion vertically,
then ZFm =10,

Therefore, 0= R, —mg; hence R, =mg.

The analysis on the forces acting on the
book shows that the two forces ( R, and
mg ) add up to give zero, thus, the book is
in equilibrium.

“Wamplear)

A block of mass, m=100g is placed
on a rough inclined plane. The plane
makes an angle, 8=30° with the
horizontal as shown in Figure 3.2.
Determine the value of friction force
that is required to keep the block at rest.

R

N

Figure 3.2: Forces acting on a body resting on

a rough inclined plane

Solution

The free body diagram (Figure 3.3) for
the problem is;

X

Wcos@

Figure 3.3: Free body diagram for the
inclined plane

Net force along the x — axis;
> F =f+(-Wsin8)
ma_= f—Wsin@
Since the block is at rest then, a, =0.
Therefore, f=Wsin@ = mgsin@
f=0.1kgx9.8ms™ xsin30° =0.49N

Therefore, friction force which is

required to keep the block at rest is
0.49N.

Note that, since there is no acceleration
perpendicular to the plane, the component
R, and Wcos@ add up to zero.




A box weighing 8.0 N is supported by
two wires with tension TI and T3
(Figure 3.4). Find the tension in each

Figure 3.4: Box supported by two wires

Solution
The free body diagram for the problem,
Figure 3.5.

Figure 3.5: Free body diagram for the

supported two wires

Net force along the x —axis (horizontal)
Z F =Tcos@,+(—T cosb,)
ma_=T,c0s6, —T cosb,

Since the box does not accelerate,

a, =0,
Therefore, T,cos@, =T, cos6,, but
6, =60° and 6, =30°

Maotion in two dimension

L

Il

-1, =1.7321, (i)

Net force along the y-axis (vertical)

E F;_ =T;sin@, +Tsinf, + [-—W)

ma = Tz:‘;iné'2 - '1'"lsim€i1 -W

Since the box does not accelerate,
a, =0. Therefore,

mx0=Tsin6, +Tsinf —W
W =Tsin6, +T;sinf,

8 =T,sin30° + T sin60"
8=0.57, +0.866T, (ii)
Substituting equation (i) in equation
(ii) gives 8.0.=0.5T, +0.866x 1.73T,
and solving for 7, and 7';

8.0

F=———=40Nand T =69N
¥ 0.5+1.498 !

| 3.1.1 Motion of connected bodies

Connected bodies can move in vertical
direction, horizontal plane, and inclined
plane.

(a) Connected bodies in vertical motion
Consider two bodies of massesm, and
m, which are connected together using a
flexible and massless string. The string is
made to pass over a smooth pulley which
is fixed to the ceiling so that the two
bodies hang freely (Figure 3.6).
(i) If the two masses are equal, the
system will be at equilibrium i.e.
there will be no motion at all.

(ii)

If m <m,, then the system will
move in the direction of m, with an
acceleration a.
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(1) If m,<m, then the system will
move in the direction of m with an
acceleration a.

Consider case (i1) where m, <m,.

v
mg

Figure 3.6: Pulley system

The larger weight pulls on the lighter causing
the system to accelerate in one direction with
an acceleration a. Therefore, the motion of
the bodies can be expressed as,

(3.2)
(3.3)

IL-mg=ma

me—-T,=ma

Since the pulley system is smooth, T, =T,

then, adding equation (3.2) and (3.3) and

rearranging, gives
m, —m,

a= (3.4)

m, + m,

Substituting equation (3.4) into equation
(3.2) gives

( m,—m,
1,5\ m+m )°

AL 2/

(' m,—m, )
T'=mg+m g

m, +m,

m + m, + m,—m J

T =mg
m +m,

2mm,g

TI =
m '1"‘.&?‘.'2

Also, substituting equation (3.4) into (3.3)

gives, T, = 2mmg This means L=T=T.

m +m,
Therefore,
2 L .
7= T"hE (3.5)
m, +n,

Suppose the two bodies in Figure 3.6
have the masses m and m,of 3kg and
5kg respectively. Find the acceleration
of each mass and the tension in the
string.

Solution

) m,—m,
Recall equation, a=| — g
m, +m,

a =(M)x 908ms > =245ms™

3kg +5kg
Recall equation, 7 = 2m,m, g
m, +m;
T = 2x3kgx5kgx9.8ms - AN
3kg+5kg

Thus, the acceleration of each body is
2.45ms~and the tension in the string
is 36.75N.

(b) Connected bodies on horizontal
plane

Usually one body is pulled horizontally

by another, each linked by a tow-bar.

This is similar to the pulley but drawn out

in a line as in Figure 3.7.



Figure 3.7: Motion of connected bodies in
horizontal plane

Assuming no friction,
(3.6)

(3.7)

Form: F-T=ma
For m,: T=m,a
Adding equations (3.6) and (3.7) and
rearranging, gives

F
a= .
m +m,

Substituting value of @ into equation
(3.7), gives

m, F
m, +m,

T=

Consider a case whereby two connected

bodies are such that one is resting on a |
smooth table and the other is hanging |

through a smooth pulley that is fixed at
the edge of the table as in Figure 3.8.

'
>

s

Figure 3.8: Connected bodies

Note that, when a mass of any magnitude
m, is connected (Figure 3.8), the system
will accelerate in the direction of m.

Maotion in two dimensions

The acceleration of the system is

m +m,
and the tension of the string is
T= mm,

m +m,
Suppose the body of mass m, is resting on a
rough table and the other hanging through a
smooth pulley (Figure 3.8). If the motion
of the system is in the direction of m,,
then, it follows that,

mg-T=ma (3.8)

T— f=m,a, where f is the friction
force which always opposes the motion.

T—ﬂ*R=m2ﬁ but, R:m,zg

Thus,

T—pumg=ma (3.9)

Adding equation (3.8) and (3.9), and
rearranging, gives

= (m]—-y&m._,)g and T = "'lmz{]"'“x)n’-‘f

m, +m, T m,

where 4, is the coefficient of kinetic
friction and R is the normal reaction.

A car with a mass of 600 kg tows a
trailer with a mass of 250kg in a
straight line using a rigid tow-bar as
shown in Figure 3.9. The resistive
force on the car is 200N and the
resistive force on the trailer is 80 N.
If the forward thrust produced by the
engine of the car is 800 N, find:
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(a) The acceleration of the car; and
(b) The tension in the tow-bar.

Figure 3.9: A car towing a trailer

Solution
Let m, be the mass of a car and m, the
mass of a trailer. The accelerating force
on the car is given by:

F-T-f=ma (i)
The accelerating force on trailer is given
by:

T—-f,=ma (ii)
Adding equation (i) and (ii), and
rearranging gives

F_ﬁ_ﬂ

m, +m._,

,— 800N —200N 80N
~ 600kg+250kg

=0.612ms -

Substitute the values of a and f, in (ii),
T=ma+ f,

T=250kgx0.612.ms *+80N =233N

Therefore, acceleration and tension are
a=0.612ms " and 233 N respectively.

(c) Connected bodies on an inclined
plane

Consider two blocks of masses m, and

m,connected by an inextensible string

that passes over a smooth pulley as shown

in Figure 3.10.

r

Figure 3.10: Connected bodies on an
inclined plane

Suppose m,>m, when the system is
released. Mass m, will raise up the plane
and m,will fall vertically downwards.
The resultant forces can be shown by a
diagram (Figure 3.11).

""I g Mmgcos )

m,g

Figure 3.11: Forces acting on connected bodies

Net force along the plane:
Y F =T+(-Wsin8)
ma =T —mgsin@

Since there is no net motion perpendicular
to the plane, then
R, =mgcosf

Net force onm,
> F =W,-T
ma =mg—T

Since the two blocks move as a single
system, then they move with the same
acceleration. Therefore,

a=a =4da

X ¥




Thus, acceleration and tension are;

(m2 -m, sinﬂ]g

a=
m, +m,
e
and T = mm,g(1+sinf)
m, +m,

A 10 kg mass on a smooth 3(0° inclined
plane is connected to a 4 kg mass by a
light inextensible string passing over a
smooth pulley at the top of the plane
(Figure 3.12).

m, =4kg

Figure 3.12: Connected masses on
an inclined plane

When the bodies are released from rest,
the 10 kg mass moves down the plane.
Find:

(a) The acceleration of the system; and
(b) The tension in the string.

Solution

The free body diagram for m, and m,
is shown in Figure 3.13.

Figure 3.13: Forces acting on connected bodies

Maotion in two dimensions

Net force parallel to the plane

2 F =mgsin@-T
10kgx a_=10kg x9.8ms * xsin30°~T
10kgxa, =49 kgms™ —T (i)

Net force on m,
4kgxa =T-4kgXx 9.8ms™
4kgxa =T-39.2 kgms™ (ii)

But, a,=a =a (the acceleration of
the system). Solving for @ and 7 from
equation (i) and (ii) gives,

(a) a=0.7ms” (b) T=42N

Two equal masses connected by a string
passing over a frictionless pulley lie on
each side of a rough wedge. The wedge
faces make angles 6, =53°and 6, =47°
to the horizontal. Find the coefficient of
friction g for which the masses move

at constant velocity.

Solution

Since the masses are equal, the direction
of motion will be down the steeper slope.
The resultant force on the ascending
mass m in the direction of motion is

ZFI =mgsin® —T — umgcosé, (i)

H'In mg cos 6,

i' .
mgcos@, M8 ¢

Figure 3.14: Forces acting on connected bodies
on inclined rough surfaces
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The resultant force on the other mass m is
Y F,=T—mgsin®,— umgcos@, (ii)

Motion at constant velocity implies that
both forces vanish. Adding equation (i)

and (i), 3, F,= Y F,=0, thus,
0= mg(sin@, —sinﬂz}—ﬂmg(cnsﬂl +c059:).

Thus,

i sinf, —siné, q
= = an
cosf, +cosé,

_ sin53°—sin47°
c0s53°+cos47°
_0.799-0.731 _0.068

H= 0602+0682 1284

Therefore, the coefficient of friction, u
is 0.05.

0.05

(d) Mass ascending or descending in a lift
Consider a person of mass m standing in an
accelerating lift. The lift could accelerate
upwards (ascending) or downwards
(descending). Neote that, there are only
two forces acting on the person; the weight
downward and the upward reaction of the
floor (Figure 3.15).

R > mg mg > R
A
a a
R R
4 Y }
! !
mg mg
(a) (b)

Figure 3.15: Ascending and descending

mass in a lift

You are aware of your weight because the
ground (or whatever supports us) exerts
an upward push on us as a result of the
downward push our feet exert on the
ground, It is this upward push which makes
us feel the force of gravity. When a lift
suddenly starts moving upward, the push of
the floor on our feet increases and we feel
heavier. In fact, we judge our weight from
the upward push exerted on us by the floor.

During ascending (Figure 3.15 (a)),

R—mg =ma

R=m(g+a)
If our feet are completely unsupported we
experience weightlessness. Passengers
in a lift that has a continuous downward
acceleration equal to g would get no support
from the floor since both would be falling
with the same acceleration as the lift. There
is no upward push on them, therefore, no
sensation of weight is felt. The condition
is experienced when we jump off a wall
or dive into a swimming pool, as we are
then in free fall.

During descending (Figure 3.15 (b)),
mg—R=ma, R=m(g—a)

When a= g, R=0, thus, a person feels

weightlessness.

A person with a mass 100kg stands
in a lift. Find the force exerted by the
lift floor on the person when the lift is
moving:

(a) Upwards at 3ms ™ ; and

(b) Downwards at 4ms™.

Solution
(a) Consider the movement upwards,
R=mg +ma



R=100kgx9.8ms " +100kg X 3ms ™,
R=1280N

Therefore, reaction of the floor when
the lift ascends is 1280 N.

(b) Considerthe movementdownwards,
R=m(g—-a)

R=100kg x(9.8ms™ —4ms™)=580N

Therefore, reaction of the floor when
the lift descends is 580 N.

3.1.2 Conservation of linear
momentum

Consider two objects of masses m, and
m, that are involved in a collision as
shown in Figure 3.16.

(a) Before collision

(b) During collision

(6]

(c) After collision

L&)

Figure 3.16: Colliding objects

Maotion in two dimensions

If F,, istheforceon m, dueto m, and F,,
is the force on m, due to m, during the
collision and p is linear momentum; then,
applying Newton’s third law of motion
you get,

F,=-F, (3.10)
Since the two forces act at the same time
interval, then, according to Newton's

second law of motion, the force acting on
mass m, is

dp
F.=— 3.1
0= (3.11)
and the force acting on mass m, is
dp
F, =——2 (3.12)
21 d’

Substituting equations (3.11) and (3.12)
into equation (3.10), you get:

dp, = =dp,
dp,+dp,=0
m(v, —u)+m(v,—u,)=0

Rearranging the terms gives,
(3.13)

Equation (3.13) is called the law of
conservation of linear momentum. The law
states that, “Provided that no net external
forces act on a system, then, the total
momentum of the system before collision is
equal to the total momentum of the system
after collision”. The point to be noted is
that, individual momenta of various bodies
in the system may change, but their total
vector sum remains unchanged.

mi H1 + mu, =my, + m,v,

Impulsive forces
A collision is a relatively short-lived event
whereby two or more objects exert forces
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on each other. During collision, relatively
large forces are exerted on the colliding
objects. These forces are called impulsive
forces. An impulsive force is not a
constant force. It varies from zero (just
before collision), increases (o maximum
(during collision) and decreases to zero
(just after collision) (Figure. 3.17).

Foy

Figure 3.17: Variation of impulsive

force with time

Applying Newton’s second law of motion
to an object involved in collision:

F =d—p, hence Fdt = dp
dt
By definition Fdtis the impulse of the
force F acting for a duration dr. Thus,
impulse of the force is measured by the
total change of momentum (dp ). Kicking
a football and hitting a cricket-ball with a
bat are examples of impulse.

When considering systems where mass
changes while velocity remains constant,
for example, liquid emerging from a
hosepipe, hovering bird, etc., the following
relation can be obtained.

From Ap=A(mv), when velocity is
constant, Ap = vAm.

For a small change of momentum and
mass, Ap = dp, Am= dm and At = dt,
thus, change in momentum is given as:
dp = vdm.

Force due to change in mass is obtained
as follows;

F = ._{gg — pﬂr_!

dt dr

But, dm= pAdx, where A is the area, P
is the density and dxis the distance. It

follows that,

(3.14)

Fey pAdx
di
Since & — ;. thefl
dt
F = pAv’

Therefore, the force exerted by the
fluid is pAv*.

Aball of mass 2kg moving horizontally
to the right at a speed of 20m/s strikes
a wall and bounces back horizontally
at a speed of 20m/s. If the impact
lasted for 0.01 seconds, determine the
average force exerted by the ball on the
wall during collision.

Solution
P m£= m(v—u)
di [
. ng(—QDms" —20ms")

0.01s
F=-8000 kgms

The negative sign indicates a direction
in which force F acts. Therefore, the
average force exerted by the ball is
8000kgms™ or 8000 N.



Rain falls vertically onto a plane roof,
1.5 m square, which is inclined to the
horizontal at an angle of 30°. The rain
drops strike the roof with a vertical
velocity of 3ms™', and a volume of

2.5% 107 m* of water is collected from
the roof in one minute. Assuming that
the conditions are steady and that the
velocity of the raindrops after impact is
zero, calculate:

(a) The vertical force exerted on the
roof by the impact of the falling
rain; and

(b) The pressure normal to the roof
due to the impact of the rain.

(The density of water is 1000 kgm ).

Solution
From equation (3.14),
F — vd_m — "M_V

dt dt

where, 2y is the rate of change of volume

dt
of the water collected from the roof.
_ -2 3
F=3ms™ x1000kgm™ x RN

60s
=1.25N

Therefore, the vertical force exerted on
the roof is 1.25N .

(b) Pressure normal to the roof, P= —% :

Since the roof is inclined at an angle of
30° the force F, normal to the roof is

FN = Fcos@

F, =1.25N xcos30°
=1.25N x0.866=1.08N

Motion in two dimensions

1.08N

= AR i
{ Smxlsm o

Therefore, the pressure normal to the
roof is 0.48Nm™.

3.2 Collisions

When a body in motion interacts with
another body (either at rest or in motion),
a collision is said to have taken place.
When such acollision takes place, velocity
of bodies may change. The velocities
after the collision can be determined,
considering that, during the collision, the
law of conservation of linear momentum
and energy hold. Collision can be either
elastic or inelastic. In this part, you are
going to learn collisions that occur in one
dimension and two dimensions, and that
the colling bodies make contact during a
collision.

3.2.1 Elastic and inelastic collision
Elastic collision 1s a type of collision
in which the total kinetic energy of
the colliding bodies is conserved. This
means that the total kinetic energy and
the momentum of colliding bodies are
conserved.

Inelastic collision is a type of collision
whereby the kinetic energy of the colliding
bodies is not conserved but the momentum is
conserved. Kinetic energy is not conserved
because some of the mechanical energy is
lost in the collision. Energy is lost in form
of heat or is used in deformation of bodies.
When it happens that the two colliding
bodies stick to each other after collision, it
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1s referred to as perfect inelastic collision.
So, they move together with a common
velocity after the impact. Hence, equation
(3.13) becomes mu, +mu, =(m +m,)v
where v is the final velocity of the single
body after collision. In most cases, for
this to happen, the objects must stick
together and move with common velocity
as a single unit. For example, consider a
wooden block of mass M swinging from
fixed strings of length /. If a bullet of mass
m is fired horizontally at velocity « and
hits the block, it becomes embedded, then
the masses swing in a to-and-fro motion as
shown in Figure 3.18.

V77777447777777774

e

boeeenananald e .
E}h M+m,

L]
L] ]
Lescnom= L]

Figure 3.18: Ballistic pendulum

From conservation of linear momentum
mu+ M xX0=(m+ M)v, where v is the
common velocity of block and bullet after
collision, therefore,

miu
v=
m+M

(3.15)

Also from conservation of energy, total
kinetic energy after collision = total
potential energy at extreme point

%{m+ MW =(m+ M)gh (3.16)

Substituting equation (3.15) into (3.16)

we end up with

-

mu | 1 mu i
=2ph, then h=—
(M—l—m} . ZR(M‘H"]

I
cosf=1- Tl substituting the

valueof h; cos@=1- l- o ]
2el\ M +m

Bzcns{l—i( == }J (3.17)
2eI\ M+m

The angle @ is the angle of displacement
when the bullet hits the block.

g \bampesi)
|

A 10 g bullet is fired with a velocity of
300ms ' into a pendulum bob which
has a mass of 990 g. How high does the
pendulum bob with the bullet embedded
swing after the collision?

Solution
From the law of conservation of
momentum,

mu, +m,u, =(m +m,)v

0.01kg x300ms ™' = (0.01+0.99)kg x v
Therefore, v=3 ms™'

In conserving mechanical energy at
point A and B; K, +U,=K,+U, ,

where K, , K, and U,,U, are Kinetic
and potential energies respectively.



%(m‘ +mz)lr'2+0=0+[m| +rr:2]gh

_1y

A2
=23 M=0.46m

h = -
2x9.8ms™

Therefore, the pendulum bob will
swing at a height of 0.46m .

In practice, there is always some loss of
kinetic energy during collision. The “lost™
energy is converted to other forms of energy
such as heat energy, sound energy, light
energy, and energy of deformation. The
degree of loss of energy during collision
can be described by the coefficient of
restitution (e).

This coefficient depends on the elastic
properties and nature of the surfaces of
colliding objects. Therefore, it is possible
to classify a collision as elastic, inelastic, or
perfect inelastic according to the value of
e that is associated with it. The coefficient
of restitution e is defined as the ratio of
the relative velocity of separation to the
relative velocity of approach.

- relative velocity of separation _
relative velocity of approach

V, =V

€=
ul‘-uz

From Figure 3.16, #,—u,, v,—v are
relative velocities of approach and
separation respectively.

When e=1; such collision is said to be
perfectly elastic. This means the kinetic

Motion in two dimensions

energy of the system remains constant
(conserved). Thus, initial kinetic energy
is equal to final kinetic energy

1 2, 1 2 1 » )
5'"1"; +§'ﬂ!M£ :Efﬂﬂ’l‘ +§ﬂl-_,1’£ (318)

Which can be written as,

m (u,+v Nu,—v)=mv,+u)v,—u,)

Equation (3.13) can be written as,

m(u, —v,)=m,(v,—u,) (3.19)

Placing equation (3.19) into (3.18) gives
m](mI - vl)(ul - s |{1«'1 +u:jlml(ut =¥;)

Dividing both sides by m, (u,—v,) gives

U=, =v,—V (3.20)

Equation (3.20) shows that when the kinetic
energy of system of colliding objects is
conserved, the coefficient of restitution
(e) equals to 1. Thus, for perfectly elastic
collision in one dimension, the relative
velocity of approach before collision is
equal to relative velocity of recession
(separation) after collision. When e =0
the collision is said to be perfectly inelastic

s v,—V o
collision. Such that, 0 = ——-2; this is true

— =
only when V, =V,.

For inelastic collision, velocity of
separation is always less than velocity of
v,—V
approach, hence 2—'<1 or e<].

=,

This result shows that after a collision, the
colliding objects move with a common
velocity. In most cases, for this to happen,
the objects must stick together and move
as a single unit.

e e B
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Aball of mass 0.1kgmoving horizontally
ata speed of 5Sms™' collides head-on with
a ball of 0.3kg atrest. Assuming that the
collision is perfectly elastic, determine
the final velocities of the two balls.

Solution
From the law of conservation of linear

momentum mlul + H!zh‘z = Hll'l’l + mz l’z

But m =0.1kg, m, =0.3kg,

. 21
u, =5ms”', u, =0ms

0.1v, +0.3v, =0.5 (i)
. ca o Vo=V
For perfect elastic collision, 2—1 = |
u —u,
v,— Y, =5 (ii)

Solving equation (i) and (ii) gives,

v, = —2.5ms " and v, =2.5ms™".

It shows that the two balls move with the
same velocity in the opposite directions.
When collision occurs in two dimensions,
it is treated by considering horizontal and
vertical directions. Consider a particle
of mass m, colliding elastically with a
particle of mass m, which initially is at
rest. Let u, be the initial velocity of mass
m, , move along the x-direction. After the
collision, the two particles move with
velocities v, and v, making an angle
6, and 6, with the x-axis respectively
(Figure 3.19).

Example 3.11 — Before collision

After collision

y v sin Bl

A

u,

@""I

v, :ainl?2

Figure 3.19: Collision system

According to the law of conservation of
linear momentum, linear momentum in
x-direction is given by
mu, = myv,cos@, +my,cosd, (3.21)
For y-direction, since initially the
y-component of momentum is zero, then,
0= my sin@ +m,(-v,sinB,) (3.22)

The law requires that in an -elastic

collision, the total kinetic energy before
collision equals the total kinetic energy
after collision.

Thus, noting the initial conditions, u, = 0.

%m, ;= %m, v+ > m,v; (3.23)
The three equations (3.21), (3.22), and
(3.23) express the entire contents of the
conservation laws. The motion after
collision involves four unknowns v,, v,, 6,
and @,, while assuming that, the values
of m,,m,, u,, and u, are known. The four
unknown quantities cannot be determined
by only three equations. In order to find
their values, at least one quantity should
be known.

B I,

LERELIEL!



Aim: To determine the
coefficient of restitution

Materials: Tennis ball, ruler,
stopwatch, flat surface

Procedure

. Place the tennis ball at a certain
position above a smooth flat surface
(floor or table surface)

2. Adjust the vertical distance, h
between the surface and the bottom
of the tennis ball so that, 4= 100 cm.
(this is the initial drop height from
which the ball is released)

3. Hold the ball at the initial drop height
and release it from rest, allowing it
to fall freely onto the flat surface.
Observe the rebound of the ball
and measure the maximum rebound
height (&) reached by the ball after
the impact.

4. Measure and record the vertical
distance, /' travelled by the ball
during the rebound.

5. Repeat steps 3 and 4 three times to
obtain three data points.

6. Repeatstep at different initial drop
heights (/= 90 cm, 80 cm, 70 cm,
60 cmy and 50 cm)

7. Record your data in a tabular form

8. Plot a graph of the rebound
height (h’) against the initial
drop height (h).

Maotion in two dimensions

Questions

(a) What is the relationship between the
initial drop height and the rebound
height of the ball?

(b) How would you use the plotted

I

graph and the equation, ¢ = %

to determine the coefficient of
restitution of the tennis ball?

(c) How differently would you perform
the experiment to determine more
accurate value of the coefficient of
restitution, e?

bl n2)

A small spherical body slides with
veloeity v and without rolling on a
smooth horizontal table and collides with
an identical sphere which is initially at
rest on the table. After the collision, the
two spheres slide without rolling away
from the point of impact, the velocity of
the first sphere being in a direction of
30° to its previous velocity. Assuming
that energy is conserved, and that there
are no horizontal external forces acting,
calculate the speed and direction of travel
of the target sphere away from the point
of impact.

Solution
From Figure (3.19), considering the
horizontal direction,

mu, + mu, = my,cos BI +m,v, cca's.tii2

where m =my, u,=0,u=v and 6, =30°
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Thus, v=v ¢c0s30°+v, cos6,

=il

cos@, = — 2 (i)
‘l

3
-

Vertical direction,

0= v, sin30°— v, sin 6‘:

i v
sin@, = ?
el

(ii)
Squaring (i) and (ii), and adding, you
get, v: - vf +vi = v, vxﬁ (iii)

Since kinetic energy in an elastic
collision is conserved, then,

1, o1
— ]1’ =—!ﬂ.|'l’1 +—ﬂ‘l.,1?
2 a2

2

¥V

2

=vi—v (iv)

L )

Substituting equation (iv) into (ii1), and
simplifying;
NE)

v,=?vand v2=%

The speed of the target sphere is %

From equation (ii),

sinf, =

Therefore, the speed and direction
of the target sphere are Y and 60°
respectively.

3.2.2 Momentum of systems with
varying masses and velocity

There are numerous cases where
momentum changes are produced by
reaction or explosive forces. An example
is a bullet fired from a rifle; initially, the
total momentum of the bullet and rifle is
zero. From the principle of the conservation
of linear momentum, when the bullet is
fired, the total momentum of bullet and
rifle is still zero since no external force
has acted on them. The momentum of the
rifle is thus equal and opposite to that of
the bullet, resulting into reaction force. This
also applies to the systems in which both
mass and velocity change, for example, in
rocket and jet propulsion, sand on conveyor
belts, and hosepipes.

Consider a system whose mass and velocity
change as shown in Figure 3.20 (a).

| F v V V4 ﬂl’

m—Am

arr=t1 att=1+ At

art=0

(a) Rocket propulsion

Combustion chamber

- -'._:_-_.-'_"i'. —s Hot
Fuel e
Air — EF—1 i B - exhaust

uel | -
[ e =) " gases

Compressor

s

Turbine
(b) Jet engine

Figure 3.20: Systems of changing mass and
velocity




At initial time f, a system of mass m is
moving with a velocity v. At a later time
(r+ At), the mass is (m—Am), and 1t
moves with a speed (v+ Av). The ejected
mass Am moves with a speed u.

As change in mass, velocity, and time
become very small, then,
Am=dm, Av=dv and Ar=dt

From principle of conservation of linear
momentum,

total initial momentum = total final
momentum

mv =(m—dm)v+dv)+udm
mv = mv+ mdv— vdm— dmdv + udm

But the term dmdy is the product of two
small quantities and therefore, can be
neglected.

mv—niv= nld‘l' —vdm+ deﬂ‘

0= mdv+(u—v)dm

mdv =—(u—v)dm
The quantity (u—v) gives the relative
velocity of the ejected mass with respect
to the system denoted as V. Thus,

dm

dv=-v (3.24)

rrlm

The above equation can be applied in all
systems of changing mass.

(a) Rockets propulsion

One of the interesting illustrations where
the principle of conservation of linear
momentum is applied is that of rocket
propulsion. Here the rocket is propelled as a
reaction of the ejected gas produced during
the combustion of the fuel. In this case,
the mass of the rocket goes on changing
constantly as a result of ejection of gases

Motion in two dimen

formed during combustion of the fuel. The
mass of the rocket constantly decreases
as the gases get ejected, its acceleration
and velocity go on increasing all the time
(Figure 3.20 (a)).

The velocity of a rocket in outer space
(negligible gravitational pull of the earth)
can be obtained using equation (3.24).

[av= " 2 V] =, [inm]”

m

IHI
v. =v,+v In| —
f i rel

H’If

The thrust on a rocket is a recoil (reaction)
force exerted on the rocket by the exhaust
gases. The expression for thrust can be
obtained by using equation (3.24).

' Divide by dt throughout the equation to

get, m—=—vy @ (325)

dt el dt

The thrust on a rocket is —v

rel

dm s
— This is
the force that propels the rocket forward.

The negative sign in equations (3.24)
and (3.25) shows an increase in speed

oo AV :
(positive = ) corresponding to a decrease
t

; . dm
in rocket mass (negalwez ).

Note that, when the rocket is under the
influence of earth’s gravity, equation
(3.25) is modified to become

(3.26)

SIONS
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Rearranging equation (3.26),

dv _—v,_ dm dm
—=—"———p dv=—v_—=—gdt
dt  m dt & “'m &
j m, dm i
o ==L v e
m
v —v[.+1=m,ln[—’]—gr (3.27)
m,

Thus, final velocity is given by equation
(3.27), and acceleration is given by

This applies where the force of gravitation
is experienced.

(b) Jet propulsion

A jet engine uses the surrounding air for
its oxygen supply and so is unsuitable for
space travel. The compressor draws in air at
the front, compresses it, fuel is injected and
the mixture burns to produce hot exhaust
gases which escape at high speed from
the rear end of the engine. These cause
forward propulsion and drive the turbine
(Figure 3.20 (b)) which in turn rotates the
compressor and hence, the jet takes off.
Suppose air of mass m_enters the front
end of the jet with incoming velocity v
which then mixes with fuel of mass 7, in
the combustion chamber. The mixture of air
and fuel burn and the exhaust (burnt) gases
will be ejected with velocity v, through the
rear end of the jet.

The initial linear momentum P, of incoming
air is given by:

P=myv
¥ a

The final linear momentum P! of
outgoing burnt gases is given by;

P, =(mu +m",)1"u
The change in linear momentum is given
by dP= (mﬂ +m, ) V,—m.V,
The force F exerted by the burnt gases
equals to the rate of change of linear
dP .
momentum —, i.e.,
dt

Fe ("!u + m! )ltl B n-;u]r'

m m,
where —2« and —L are the rates at

! I
which air enters the jet and the fuel burns

respectively. The force exerted by the burnt
gases o the rear end of the jet (from left
to right) has the same magnitude as that
the rear end of the engine produces from
right to left. In turn, and with reference
to Newton's third law of motion, the rear
end of the jet produces the same force but
in opposite direction which makes the jet
engine to take off.

A jet aircraft is travelling at 225 ms™
in a horizontal flight. The engine takes
in air at a rate of 85kgs™' and burns fuel
at a rate of 3kgs™'. If the exhaust gases
are ejected at 650ms™' relative to the
aircraft; find the thrust of the jet engine.

Solution
Velocity of incoming air (velocity of




jet aircraft) v, =225ms "' and velocity
of outgoing burnt gases Vv, =650ms™".
The rate at which air enters the front

end of the jet, &=85kgs" and the
!

rate at which fuel burns, ffw:Bkgs".
!

Then, thrust on the jet engine is

obtained from;

m
F= m“+—‘:- V. — i v,
t t t

=88kgs ' x650ms ™' —(85kgs ' )x 225ms ™’
=38075 N

Therefore, thrust of the jet engine is
38075 N.

A rocket moving in free space has a
speed of 3.0x10°ms™ relative to the
earth. Its engines are turned on, and
fuel is ejected in a direction opposite
the rocket’s motion at a speed of
5.0x10°ms™' relative to the rocket.

(a) What is the speed of the rocket
relative to the earth once the
rocket’s mass is reduced to one-
half its mass before ignition?

(b) What is the thrust on the rocket if it
burns fuelat 0.77 kgs ™' ?

Solution

m
(a) v -V, =V, ln{m—}

i3

m.‘
vV, =V, + vm,ln -
m,

Maotion in two dimensions

v, =3x10" ms™ +5.0x10" ms™ |n[i]
0.5m
=6465.7 ms™'
Therefore, speed of the rocket relative

to the earth is 6466ms”.

(b) Thrust, F=v_, an
dt

F=50x10"ms" x0.77kgs " = 3850N

Therefore, the thrust on rocket is
3850N.

CWampieais)
Two fire fighters must apply a total
force of 600N to a steady hose that
is discharging water at 3600 litres/min.

Estimate the speed of the water as it
exits the nozzle.

Solution
F =1V d_m v = i = _F
rel df * Trel d_ﬂl Pdv
dt dt
600N

Vv

=10ms™'

“ = 1000kgm > x0.06m’s "

Therefore, the speed of water is

10ms ™",

- Exercise 3.1

I. A mass m =1lkg lies on a smooth
table and is attached by a string
and a frictionless pulley to a mass
m, =0.01kg hanging from the
edge of the table (Figure 3.21). The
system is released from rest.
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(a)

(b)

Calculate the distance the mass
m, moves across the table in the
first 10seconds.

How long will it take for the
mass m, to travel Im from its
initial position?

m

2 (a)

(b)

m,

Figure 3.21

Can a body be in equilibrium
when only one force acts on it?
Explain your answer.

A person standing in a lift
holds a spring balance with a
load of 5kg suspended from
it. What would be the reading
of the balance when the lift is
descending with an acceleration
of 3.8ms*?

3. A book of mass M rests on a long
table with a piece of paper of
mass m=0.IM in between. The

coefficient of friction between all
surfaces is 4 =0.1. The paper is
pulled with horizontal force P
(Figure 3.22).

(a)

What is the minimum value of
P required to cause any motion?

(b) With what force must the paper

Paper

be pulled in order to extract it
from between the book and the
table?

Book

4. (a)

Figure 3.22

Explain why the load on the rear
wheels of a motor car increases
when the vehicle is accelerates.

(b) Figure 3.23 shows a painter in

a crate which hangs alongside
a building. When the painter
who weighs 1000 N pulls on the
rope, the force that the painter
exerts on the floor of the crate
iS450N. If the crate weighs
250N, find the acceleration of
the system.

Figure 3.23

5. A box of mass 2kg lies on a

rough horizontal floor, coefficient
of friction is 0.2. A light string is
attached to the box in order to pull it



6.

across the floor. If the tension in the
string is 7', find the tension that must
be exceeded for motion to occur if
the string is

(a) horizontal

(b) 45° above the horizontal

(c) 45° below the horizontal

(a) A jetengine on a test bed takes
in 20 kg of air per second at a
velocity of 100ms™' and burns
0.8 kg of fuel per second. After
compression and heating, the
exhaust gases are ejected at
velocity of 500ms ' relative to
the air craft. Calculate the thrust
of the engine.

(b) A fire engine pumps water at
such a rate that the velocity
of water leaving the nozzle
inclined at angle 60°to the
horizontal is 15ms ', Calculate
the pressure exerted on the wall,
assuming the rebound of the
water is neglected and 1m’ of
water has a mass of 1000kg .

(c) A bullet is fired from a gun
with a horizontal velocity of
500ms™". The mass of the gun is
4kg and the mass of the bullet
is 50¢ . Find the initial speed
of recoil of the gun and the gain
in kinetic energy of the system.

7. (a) In perfectly inelastic collisions

between two objects, there are
events in which all of the original
Kinetic energy is transformed to
forms other than kinetic. Give
an example of such an event.

Maotion in two dimensions

(b) By using your own environment,
describe the applications of the
principle of conservation of
linear momentum in daily life
situations,

(c) A ball of mass m moving at
5ms ' collides with a ball of
mass 2kg which is at rest.
After collision, the first ball
acquired the velocity of 2ms '
at an angle of 50° relative to its
original direction. What is the
velocity of the second ball after
collision?

3.3 Projectile motion

When an ebject is thrown in air, its motion
is influenced entirely by gravity and
air resistance. The motion of the object

-~ is a mo dimensional motion because as

the object moves in air, it covers both
horizontal and vertical displacement. The
horizontal component does not have any
acceleration, hence constant magnitude.
The vertical component, however, has
acceleration equal to the acceleration
due to gravity, but, in opposite direction
and hence, its magnitude is different at
different points and is directed vertically
downwards. Therefore, projectile motion
is a two dimensional motion of an object
in air which is influenced entirely by
gravity and air resistance.

Examples of projectile motion include the
motion of a bomb released by a moving
plane, a thrown stone, a bullet fired from a
gun, a ball thrown in any direction, and an
athlete doing a high jump. In this section,
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you will learn the concept of projectile
motion, derivation of mathematical
relations, and applications of projectile
motion.

_ \Task3l

Use ICT tools and online sources
to demonstrate projectile motion of
different objects in various situations,

3.3.1 Motion of a projectile

Since a projectile moves horizontally as
well as vertically, two coordinates are
required to specify its position at any
time. Let us discuss the salient features of
projectile motion in which air resistance
is negligible.

Figure 3.24 shows a projectile projected
from the origin O with initial velocity u at
an angle @ with horizontal (x-axis). The
projectile rises to the maximum height (H)
at point B and then descends, and finally,
strikes the ground at point P.

. B /Trajectory

Y

H
7] ¥

O l&——— Range. ———>{p X

Figure 3.24: Motion of a projectile

The angle @ is called the angle of projection
and the horizontal distance Qp is called
the range of the projectile. Mathematical
analysis of the motion will help to define
important parameters of the motion. In
the analysis, x and y coordinates are
treated separately. The x-component of
acceleration due to gravity is zero and the
y-component is constant and its value is —g.

From Figure (3.24), vertical and horizontal
velocities, and displacements may be
obtained using equations of motion.

From first equation of motion,

v.=u_+a.lt
¥ ¥ ¥

v, =usinf— gr (3.28)
Also, v =ucos@-0xt
v =ucosé (3:29)

Therefore, equations (3.28) and (3.29)
show the velocities for wertical and
horizontal components respectively.

It should be noted that, the horizontal
component v, of velocity is constant
throughout the motion because there is
no horizontal aceeleration (i.e. a, =0).

Similarly, vertical and horizontal
displacements can be obtained using second
equation of motion;

1 .
s =ut+—(a )
¥ ¥ 2 ¥

s, = (usin@)t —%gr2 (3.30)
s, =(ucos@)r+ % x0x 1’
s, = (ucosO)t (3.31)

Therefore, equations (3.30) and (3.31) show
the vertical and horizontal displacements
respectively.

Likewise, vertical displacement s _can be
obtained from third equation of motion,

) 2

vVi=u +2as

y y y ¥

Bl sy

vi=u sin"@-2gs
3 . .l )
usin"@—v;

§ =— ——

2g




3.3.2 Parameters of projectile
motion

Projectile motion consists of various

parameters, which include: trajectory, time

of flight, maximum height, time to reach

maximum height, range, and velocity of

projectile at any point.

(a) Trajectory

Trajectory is the path traced by a projectile
from the point of projection O, to the
point of landing P, (Figure 3.24).

Trajectory equations
From equations (3.31) and (3.30),

A
s =(ucos@)r; t=—
' ucos@

1 .,
= in@)y——gt”
s, (usin@) 2g

4

. s 1 s )
§ =usinf e |l——g -
' (ucosﬂ] 2 [ucosﬂ}

{ 5 2
ST — .'b't tan@—— ,g . =
2ucos @

(3¢32)

—58
Lets =y, s =xand -5 =, &
A 2u’cos’ @

tanf = b

Equation (3.32) can be reduced to

1 gx
y=xtan@-— £

: 2
ST je., y=bx+ax"
2u cos @

This is the equation of parabola.
Thus, equation (3.32) is the trajectory
equation which is parabolic in nature.

(b) Time of flight

Time of flight is the total time taken
by a projectile from the instant when it
is projected to the time when it strikes

the point in a horizontal plane passing
through the point of projection, i.e., from
point O to P (Figure 3.24). From the
same figure, let B be the point where the
vertical component of velocity becomes
zero. Hence, at this point equation (3.28),
v =0
' usin@
8

O=usinf@—-gt ;=

This time ris the time taken by a projectile
to reach maximum height, i.e. from O to
B in (Figure 3.24). The total time taken
by a projectile to reach the point in a
horizontal plane passing through the point
of projection is double of this time t. Hence,
the total time of flight is given by

2usinf

8
This can alternatively be obtained by
considering that the total vertical distance
travelled by the particle is zero. Therefore,
from equation (3.30),

s. =0

y

T=2t% (3.33)

2usin@

g

0=(usin9)T—%gT3, T=

(c) Maximum height

Maximum height is the maximum vertical
distance attained by the projectile above
the point of projection. It is obtained
using the relation;

] y.J
v, =u, +2as,

At maximum height (point B)
(Figure 3.24), v =0 and 5 = H, thus,

u'sin’ @

0= (usin@)’ —2¢H, H =
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Note that, maximum height H__is

obtained when 8=90° and sin*@=1.

Thus,

.l
-

u

H =
(1 HLY 2g

(d) Horizontal range

Horizontal range R is the horizontal
distance covered by the projectile from
projection point O to the landing point P
(Figure 3.24). From equation (3.31),

s =(ucos@)r
At the point of landing, the time spent in
air by a projectile is T and the horizontal
distance is R. Therefore,

R=(ucosﬂ]T (3.34)

Substituting equation (3.33) in equation

(3.34) gives,

_ 2u’cosBsin@
8

R= ucosﬂ( SR ],

8
Using the trigonometric identity,
sin(A+ B)=sin Acos B+cos Asin B

2sinf@cos @ =sin 26 gives

_ u’sin26
g

R

(3.35)

Note that, the maximum horizontal range
is obtained when sin20=1 or 6=45°
and therefore,

-4

u

max

8

Hence, a projectile which is projected
making an angle 45° with the horizontal
has a maximum range.

(e) Velocity of a projectile at any point
The velocity v of a projectile at any point
along the trajectory is obtained by adding
the horizontal component and the vertical
component of its velocity (Figure 3.25).

3.
Vi=vi 4y
'y ¥

v=vi+v]
X ¥

v= \((ucosﬂ)"' +(usin9- gf):

On simplifying gives,

y= \/u: +g°t* = 2ugtsin®

The direction of a projectile at any point
is given by

=1 vr

o = lan =
Vv

!

C \amplesio)

Aball is thrown with a speed of 17ms™’

at a projection angle of 58° above the

horizontal. Assuming the point of return

of the ball is at the same horizontal level

as the point of projection, determine:

(a) time of flight:

(b) the range;

(¢) maximum height: and

(d) time taken to reach maximum
height.

Solution

(a) Time of flight, T = 2usin@

g

_2x17 ms ' % sin58"
9.8ms™’

/ s =29s

u’sin26

g

(b) Horizontal range, g =




_(17ms ") xsin(2x58°)

R= = - 265m
9.8ms™
(c) Maximum height, p = H'Zin'e
g

. (17ms™)’ xsin’s8°

- =10.6m
2x9.8ms

(d) Time to reach the maximum height,

e usin@
8
-1 : o
Therefore.r:”ms A8IA3S =158

-

9.8ms -

3.3.3 Special cases of projectile
motion

So far we have discussed a projectile
projected from the ground and the point of
striking the ground is on the same plane as
the projection point. There are other cases
where either projection point or striking
point is not on the ground, for example,
projectiles fired from a point above the
ground and those fired on aninclined plane.

(a) Projectiles fired from a point above
the ground

Projectiles fired from a point above the
ground may be horizontally or vertically
or at an angle 8 with the horizontal.

(1) Consideraprojectilefiredhorizontally
with velocity u at a height h above the
ground (Figure 3.25). The horizontal
velocity remains constant throughout
the projectile motion. The downward
velocity is zero at the time of firing

the projectile and keeps on increasing
uniformly with time till the projectile
hits the ground.

>

.................................

- = 5
—_Taaeaay

O >

Figure 3.25: Projection above the ground

For horizontal motion (6 =0°)

u =usin0°=0
u, =ucos0® =u

For vertical motion
v =-—gI, negative sign indicates
downward velocity.
From equation (3.30), the vertical
displacement s, from the point of

projection to point P (Figure 3.25), is
given by

s, =usin(0°)r - %grz

5 = _lgﬁ' negative sign indicates
A

downward displacement.

Time taken by a projectile to hit the
ground is obtained from the relation;

3 3
v =u+2as.
¥ ¥ ¥y

(~gt)" =(usin(0°))" ~ 2
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Time of flight is obtained from the

where u = usin(0°), v = usin(0°)— er . : .
( ) y ( J 8 vertical motion equation.

and s, =h -~
' 0= h+(usin@)t——gt” (3.36)
2h “
= Rearranging equation (3.36) and
5 solving gives,
f - 1 . b i l.' . 7 2
Therefore, time taken by a projectile y using+ \/u_ sin>0+2hg
1o hit the ground is given by; ¢ = ‘E 8
8

Since th sin’ @+ 2hg > usin@, then,
time taken by a projectile to reach the
ground is given by;

Horizontal distance from the point
of projection to the point where the
projectile hits the ground is given by:

s, = (ucosO)t _usin0+ Ju sin® 0+ 2hg
’2] ’Qr' g
§ = ucos(O")x —1, s =u i x=(ucosO)r,
8 ' 8
o 0 usin@+\/u’ sin’ 6+ 2gh
(ii) Consider a projectile fired from =K e

height h above the ground at an angle
@ with a velocity u (Figure 3.26).

4 u | A stone i1s thrown at an angle 45°
with the horizontal, from the top of
| ST .. a building 30m high with an initial
Z T velocity of 20ms™'. Calculate:
Z R
?‘ h (a) time of flight;
/‘F'
ﬁ l (b) horizontal distance at which the
[,,; 5 > g stone strikes the ground: and
Figure 3.26: Projection at an angle (c) velocity and direction with which
the stone strikes the ground.
Motion along the vertical;
v, =usinf— gr; Solution

1. (a) Using equation (3.36),
v=h+(usin@)r——gt"

2 ~30m =20ms "' X sin45°
Motion along horizontal

><r—l><£»'qu'zxr2
v =ucosf; x=(ucos@) 2




Solving fortgives r=4.3s ort=—1.4s
but time cannot be negative, hence, the
time of flight is 1 =4.3s.

(b) Horizontal distance, s = (ucos@)t.

s, =20ms ™' X cos45°x4.3s = 60.8m

(c) Velocity is given by the relation

(-
v=,Jv v,

V_=ucos 0

v.=20ms ' xcos45°=14.14ms"’

v, =usin@— gt
, =20ms™ xsin45°—~9.8ms™ x 4.3s

=-28ms"’

v= J(M. 14ms™’ )2 +(—-28 ms'l)2
=31.37ms™’

This is the magnitude of the velocity
with which the stone strikes the ground.

The direction o of the velocity is
calculated using the relation,

~28ms™
o= mn—'[ﬁ]=—63.21°

The direction with which the stone
strikes the ground is 63.21° below the
horizontal.

Motion in two dimensions

(b) Projectile on an inclined plane

Projectile motion on an inclined plane
is one of the various types of projectile
motion. The main distinguishing aspect
is that, points of projection and point of
striking the ground are not on the same
plane.

This type of motion can be discussed in terms
of a new pair of coordinates, with x-axis
along the incline and y-axis perpendicular
to the plane. Figure 3.27 shows a projectile
fired initially with velocity « at an angle 6
with the horizontal. The inclined plane is at
an angle o with the horizontal, therefore,
the firing angle with the inclined plane is
(6-a).

~

Figure 3.27: Projectile up an inclined plane

Important characterizing aspects of
projectile motion up an inclined plane
includes:

(i) Coordinate x along the inclined plane
and y perpendicular to the inclined
plane;

(i1) Angle of projection;

(iii) Range 5 measured along the incline
from point O to P;

(iv) Components of initial velocity
u, =ucos(@—e and u_=usin(6-a); and

(v) Components of acceleration

a =—gsineand a =-gcosa .
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When dealing with projectile motion on an
inclined plane, the common parameters of
interest as usual are time of flight, range
of flight, maximum range, and angle of
projection,

Time of flight can be derived from the
1 .
distance equation §, =u I+ Ea_‘,r‘.

Where 5 =0 at the time of flight.

Thus, O=u T+ %a‘_Tl. Substituting

expressions for 4, and @, gives,

_ 2usin(f-a)
gcoso

T

Consequently, the range of flight is found

from the relation, R =y T+la e

Substituting values for u_,a_and T,

Sirgint Q'
R= ucos(ﬂ—a}[——-'“sm{e a)]—

geosa

[ 1. }( 2u:~'.in{9—a)}!
—gsingt | ————
2 geosa

Simplifying equation (2.39),

(3.37)

w?

R= (sin(20-a)-sine)

2

geos
The range is maximum when,

sin(ZB—a’)=l, 1.e., 26—&:% or

nE-=
4 2

Therefore, maximum range,
2usin(@—a)
2Ccos

T=

A projectile is thrown from the base of
an incline of angle 30°. What should
be the angle of projection, as measured
from the horizontal direction so that
range on the incline is maximum?

Solution
From the relation

2
)
R=

o (sm(29—a)—sma)
The range is maximum when
sin(20-a)=1-520 = o +90°
_90°+30°

0=—=—; 0=060°
2

Therefore, the maximum angle of
projection is 60°.

sz

Collect different objects in your
environment, then use them to investigate
the relationship between the launch
velocity and range of a projectile.

3.3.4 Applications of projectile
motion

Projectile motion is widely applied in every
day life. Some applications are as follows.

In football, the amount of force a footballer
applies to the ball (how hard the individual
kicks) will determine the initial velocity
and how fast the ball will travel. The




angle at which the footballer kicks the ball
determines the height and distance travelled.
For example, if the ball is kicked at an angle
of 45° it will get the maximum range.
Projectile motion is very closely associated
with almost all types of sports involving
jumping or throwing of objects in air.

A soldier who has to target at a particular
location must calculate the velocity and
angle of throw for the bomb to hit the target.
In addition, projectile motion is applied
when using fire extinguishers. People who
have to extinguish fire at a long distance
position the water hose at a certain angle
in order to hit the fire.

Projectile motion is also used when food
packages are dropped from helicopters
or aeroplanes in times of disasters. The
distance from which the packages are
dropped is important so that these packages
may fall in appropriate locations.

1. (a) A bomb is released by a plane
flying horizontally and the other
one is released by a stationary
plane like a helicopter at the
same altitude and they reach the
ground at the same time. Why?

(b) Aball is projected horizontally
from the top of a building.
One second later another ball
is projected horizontally from
the same point with the same
velocity. At what point in the
motion will the balls be closest

Motion in two dimensions

to each other? Will the first ball
always be traveling faster than
the second ball? What will be
the time interval between them
when the balls hit the ground?
Can the horizontal projection
velocity of the second ball be
changed so that the balls arrive
at the ground at the same time?

2. (a) Does a rocket flight depict
projectile motion?

(b) Two projectiles are thrown with
the same magnitude of initial
velocity, one at an angle @ with
respect to the level ground and
the other at angle (90"— 9).
Both projectiles will strike the
ground at the same distance
from the projection point. Will
both projectiles be in the air for
the same time interval?

3. (a) What factors determine the span
of the jump for one who jumps
in a long jump?

(b) A projectile is fired at an angle
of 30° from the horizontal with
some initial speed. At what
other angle does firing of the
projectile results in the same
horizontal range if the initial
speed is the same in both cases?
Neglect air resistance

(c) The maximum range of a
projectile occurs when it is
launched at an angle of 45.0°
with the horizontal, if air
resistance is neglected. If air
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4. (a)

(b)

resistance is not neglected, will

the optimum angle be greater or

less than 45.0°? Explain.

What are the domestic

advantages of knowing about

projectile motion?

Draw a free-body diagram for

each of the following:

(i) A projectile in motion
in the presence of air
resistance;

(i1) A rocket leaving the

launch pad with its engines
operating; and

(111) An athlete running along a
horizontal track.

5. (a) Determine the two possible

(b)

6. (a)

(b)

angles of projection that
produce a range of 60m if the
initial velocity of projection is
30 ms™.

A man can just throw a stone to
a horizontal distance of 75m.
With what velocity does he
throw it and how long is it in
the air?

Describe how to throw a

projectile so that:

(1) Ithas zero speed at the top
of its trajectory; and

(i) It has non-zero speed at
the top of its trajectory.

A projectile is projected from the

foot of an incline of angle 30°

with a velocity 30 ms™. The

angle of projection as measured

from the horizontal is 60°. Find
its speed when the projectile is
parallel to the incline.

7. (a) Determine which of the

8.

(b)

(a)

following moving objects
obey the equations of projectile
motion.

(i) A ball is thrown in an
arbitrary direction.

(ii)) A jet airplane crosses
the sky with its engines
thrusting the plane
forward.

(1i1) A rocket leaves the launch
pad.

(1v) A rocket moving through
the sky after its engines
have failed.

(v) A stone is thrown under
water.

Two projectiles are thrown
with the same speed u, but at
different angles from the base of
an inclined surface of angle
“a”. The angle of projection
with the horizontal is @ for
one of the projectiles. If the
two projectiles reach the same
point on incline, determine the
ratio of times of flights for the
two projectiles.

Aball is held in a person’s hand.

(1) Identify all the external
forces acting on the ball
and the reaction to each.



(ii) If the ball is dropped, what
force is exerted on it while
it is falling? Identify the
reaction force in this case.
(Neglect air resistance.)

(b) A projectile 1s launched

9. (a)

with horizontal and vertical
velocity components «and v
respectively. Show that its
trajectory is a parabola and
that the maximum height and
the range (on level ground) are

H= L R= ouid respectively.

8 8
A body falls freely from rest

to the ground a distance h
below. In the last one second
of its flight it falls a distance —.
Find the value of h.

(b) A stone is thrown horizontally

10, (a)

(b)

with speed u from the edge
of a vertical cliff of height A.
The stone hits the ground at
a point which is a distance d
horizontally from the base of
the cliff. Show that 2hu’ = gd”.

A projectile is launched at some
angle to the horizontal with
some initial speed v, and air
resistance is negligible. Is the
projectile a freely falling body?
What is its acceleration in the
vertical direction? What is its
acceleration in the horizontal
direction?

A ball is projected with a
velocity v at an angle @ to the
horizontal. It passes through a

Maotion in two dimensions

vertical point y and horizontal

point x. If Ris the horizontal
range, prove that

tan9=-*}i[ R }
x{ R—x

3.4 Uniform circular motion
Objects move in circular path in a wide
variety of situations such as rotating
machine parts, a car rounding a curyve with
constant radius at constant speed. motion
of satellites and so on. So, it is important
to study this special class of motion in
details. Circular motion can be classified
into two types namely, uniform and non-
uniform motion. Uniform circular motion
describes the motion of a body that moves
in a circular path at a constant speed. There
are two necessary conditions for a body to
move in circular motion. Firstly, the body
must be given some initial velocity. The
velocity vector is always tangential to the
path of the object and perpendicular to the
radius of the circular path. Secondly, a force
which is always directed at right angle to
the velocity vector must act on the body
towards the centre. Moreover, in uniform
circular motion, the distance (radius) from
the axis of rotation remains constant all the
time. Through the end of this section, you
will be able to explain and apply angular
displacement, angular velocity, and angular
acceleration of uniform circular motion.

3.4.1 Concept of uniform circular
motion

In uniform circular motion, the speed
of the object remains constant but its
direction is constantly changing.
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For this to happen, the force must not act | and sweeps out an angle @ about the
along the direction of motion, but towards | center O (Figure 3.29).

the centre (Figure 3.28).
v

-

(Y Object

.

) i B ) ) Figure 3.29: A body moving along a circular path
Figure 3.28: Forces in uniform circular motion

From Figure 3,29, the angular
displacement (in radians) is given by

- arclengthAB _ /

Though the force F does not act along
v, but it has a component Fcos@ along

vector v . This component will change the A (3.38)
speed; consequently, for uniform circular lengthOB  r

motion, Fcos@=0. Since F#0, then,

cos@ =0, hence, 8 =90°. (b) Angular velocity

. : The angular velocity (@ ), of an object
Therefore, the force F* acting on an object | moving in circular path is defined as the

in_uniform circular motion is always | e of change of angular displacement of
perpendicular to velocity v. This force is | he object.

directed towards the centre of the circle,

hence, it is called centripetal force ( F_ ). The ®=— pyt. lim— = a6 =0 (3.39)
force will produce a centripetal aceeleration. Ar a0 AL di

where @ is called instantaneous
angular velocity; it is measured in
radians per second (rads™). If the object
makes a complete trip around the circle,
its angular displacement is 2a radians
and the time taken for the trip is called
period (7). Therefore, equation (3.39)

There are some parameters regarding
circular motion that need to be well
described. Such terms include angular
displacement, angular velocity, and
centripetal aceeleration.

(a) Angular displacement

Angular displacement (@) is the angle
turned through by an object moving along mz_n_ Hence, equation (3.39) can be
a circular path of radius r. It is measured r
in units of radians (rad). Let the object

) A el o [}
move from point A to point B in time ¢ —X—=m or dl =rodt
P P r (3.40)

can be expressed in terms of period T as,

expressed in terms of equation (3.38) as,




Consider a body that is moving with a
uniform linear velocity (v ) on a circular
path of radius r having a centre at O as
shown in Figure 3.29.

Linear velocity,

*=ﬂ; dl = vdt (3.41)
dt
Comparing equations (3.40) and (3.41),
you get
V=re (3.42)

Equation (3.42) shows a fundamental
relationship between v and ®.

(¢) Centripetal acceleration
Centripetal acceleration (a_ ) is the
acceleration of the body moving around
a circle and it is always directed along
the radius towards the centre of the circle.
This acceleration is also known as radial
or normal acceleration.

Consider a body moving on a circular path
of radius r such that it passes from point
A to B through P with constant speed v
(Figure 3.30).

vsin@

Figure 3.30: Acceleration of a body in
circular path

The horizontal acceleration a,_ of the

Maotion in two dimensions

body along x-direction is given by,
v, v, —V
al DS PR ) Ax .
! !
It then follows that, acceleration along

x-direction is zero. i.e.,

B veos@ —vecos@ .
t

0.

X

The vertical acceleration a of the body
along y-direction is given by

v_-.' vﬁ_\' i v.-l._\
ﬂ"l —_———
: ! 5
e vsin@ —(-vsin@)
’ 1
2vsiné
a —

(3.43)

¥

t
If 1 is the time taken by the body to move
from A to B; then,

2 arclength AB _ 20r . Therefore,
f f

20r
r=—
v

(3.44)

Substituting equation (3.44) into (3.43);

g, mt R (3.43)
Y ¢ 8

If A and B are considered to be coincident
at P, then @tends to approach zero and that

lim % = |, so that from equation (3.45);
Af—=0

a = Z_ and itis directed along PO acting
*

towards the centre. Hence,

l’:

-
An object of mass, m moving in a circular
path of radius » with a constant speed v has
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a centripetal force F. whose magnitude is
given by F_ =ma_. Hence,

my”-

F =

[ 4

%
Centripetal force is a net force due to
combined effects of inertia from Newton’s
first law of motion. When a body is moving
in a circular path and the centripetal force
vanishes, the body would leave the circular
path and move with tangential acceleration.
Tangential acceleration is the rate of change
of linear velocity and lies along the velocity

: 2 = dv :
line and is given by g, =?. where v is
!

the varying velocity (Figure 3.31). When
the linear velocity is constant, its tangential
acceleration is zero.

Figure 3.31: Tangential and vadial acceleration

. dv do #N
Since — = r—, itimplies that, a =ar
dt dt

where o is the angular acceleration.

. 2 2
The resultant acceleration a, =./a; +a_

L8

3.4.2 Motion in a horizontal circle
Consider an object of mass m tied to one
end of a string and whirled in a circular
path on a horizontal plane as shown in
Figure 3.32.

‘I

m

Figure 3.32: Motion in a horizontal circle

There are two forces acting on the object;
its weight (W =mg ) and the tensionT .
The weight has no component towards
the centre O of the circle. Therefore, the
only force acting on the object directing it
towards the centre is the tension. Hence,
the tension will provide the necessary
centripetal force to keep the object in

circular path. It follows that;
mv’ |
T=ma=—- (3.46)
r
A special case of motion in a horizontal

. circle is that of a conical pendulum.

Suppose a small object of mass m is tied
to a string AB of length / and then whirled
in a horizontal circle of radius r, with B
fixed directly above the centre O of the
circle as shown in Figure 3.33.

V14774

mg

Figure 3.33: Conical pendulum




If the speed is constant, the string turns at a
constant angle @ to the vertical. Hence, the
only unbalanced force directed towards
the centre O of the circle i1s 7sin6. The
horizontal component of tension provides

the centripetal force expressed as,

2 ml’:
TSlne —
r

(3.47)

where T is the tension on the string.

The vertical forces, (mg) and Tcos@
counter balance each other and produce
zero acceleration. That is,

TcosO = mg (3.48)

dividing equation (3.47) by (3.48) gives

-

L4 - 5. 3
tan@=— but v" =@ r" thus,
rg

tan@ = —
8
Also,

o . . ;
@ =—, implies that,
T
n

T=2x|—
gtanf

where T'is the period.

From Figure 3.33, r=1Isinf, thus,

T =2 ’fcosﬂ
8

which is the period of revolution of
conical pendulum.

A 500 g stone attached to a string
is whirled in a horizontal circle at a
constant speed of 10.0 ms™'. The length

of the string is 1.0 m. Neglecting the

effects of gravity, find:

(a) The centripetal acceleration of the
stone; and

(b) The centripetal force acting on the
stone.

Solution
(a) The centripetal acceleration is
given by
v

a =—

“or
(l'(]ms")2

=100ms™
‘ Im

2
(b) The centripetal force F = Licd
r

F.=0.5kg x100ms ™ =50N

Therefore, centripetal acceleration

and force acting on the stone are
100ms * and 50N respectively.

A rubber stopper 13g is attached to a
0.93m string. The stopper is swung
in a horizontal circle, making 10
revolutions in 31.4 seconds. Find the
tension in the string.

Solution :

Using the relation T = MV \where

=
v=wr, v=2xn f)r
Then, T =47"f*mr,
4’ x10°

—x0.013kg x0.93m =0.048N
(31.4s)

T

Therefore, tension in the string is

0.048N.
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A small mass of 1kg is attached to the
lower end of a string 1m long whose
upper end is fixed. The mass is made
to rotate in a horizontal circle of radius
0.6m . If the circular speed of the mass
is constant, find:

(a) Tension F, in the string; and

(b) The period of motion.

Solution
(a) Consider vertical forces.

mg
cos@

Fcos@=mg; F =

From figure 3.33,

o =7 _in) ~om)
/ Im

=0.8

oo lkex98ms? oo

(b) Using the relation

lcos@
o087 =2 (LM Oy g
g 98ms

Therefore, tension in the string and
period of the motion are 12.25N and
1.8s respectively.

T=2%

3.4.3 Motion in a vertical circle

In linear vertical motion, the speed of
the body may be constant throughout of
the motion. But, if a body of mass mis
whirled in a vertical circle by a string with
constant speed, the tension in the string
changes with position of the body along the
circular path. On the other hand, the speed

as well as the direction of the body may
constantly change. Earth’s gravitational
force is constantly either speeding up the
object as it falls or slowing it down as it
rises, resulting in non-uniform motion,

Consider a block of mass m whirled at
the end of the string in a vertical circle of
radius rsuch that it moves from A to B
through E and C as shown in Figure 3.34.
As the body moves from Ato E,it loses
potential energy and gains kinetic energy.

A @

*mgcosf

» mg
mgsin@

Figure 3.34: Motion in vertical circle

So, from the principle of conservation of
mechanical energy: the total energy E, at

A is equal to the total energy E, atE, that

" 1 3 | 3
1s, mg(2r)+ Enw; = mg(r)*i-Emv;..

Thus,

vi. = 2gr+vi
Similarly, the velocity at C and B
can be attained using the principle of
conservation of mechanical energy.
Suppose the block is at an arbitrary point

D. The resultant force Fyon the block

is such that; F, =T, —mgcos@ but,
2
mv;
FR = D .
r



Then,

D

my

: T, —mgcosé

-

my,
T, 2+ mgcos@
r

(3.49)

Equation (3.49) can be used to obtain
tension at any point on the circle.

At point A: @=180°, cosf=—1, then,

-

my - ;
T, =—=*—mg (minimum tension).
r

At point B: 0 =90°, cos@ =0, then,

mv’ : ,
T,=—*% the weight has no horizontal
r

component towards the centre.

At point C:0=0°, cos@ =1, then,

my’.
T.=—%+mg hence maximum
r

tension.

In order for an object to successfully
complete the circle (loop the loop) in a
vertical motion, it must have a minimum
(critical) velocity v_ at the top of the
circle. This velocity is required to avoid
sagging of the string. Therefore, the
velocity corresponds to the lowest value
of the tension.

Since the lowest possible value of 7'is 0,

2
= e g =0, Thus, critical

r

min
velocity v_ is the minimum velocity with

which a body passes at the highest position

so that it just completes the loop. i.e.,

.

Maotion in two dimensions

A body of 50gis whirled in a vertical
circle of radius 60cm . Determine the
maximum and the minimum tensions
in the string when its velocity at
horizontal position is 8ms™.

Solution
Maximum tension 7, is obtained when
the particle is at the bottom of the circle,

1 =ﬂ+mg (i)

max
r

From energy conservation,

v, =/Vi +2gr, where v, and v, are the

velocities at the bottom and horizontal
position respectively, and ris the radius
of the circle.

p.= ‘/(8 ms“')2 +2%9.8ms ™ x0.6m
=8.7ms"'

Substituting the value of v, in equation (1),

 005kgx(8.7ms”)
i 0.6m
= 6.SN

+0.05kg x9.8ms ™’

Minimum tension 7T is obtained when

the particle is at the top of the circle,

Ir. =—~L—mg (ii)
r

v, = 1/"’:2. —2gr where v, is the velocity

at the top position

v = J(Bms"]1 -2%x9.8ms ™’ x0.6m

=7.2ms™
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[}.USIcg:n:(?r'.st'F)2 ks S img?
= P —0.05kg x 9.8 ms

=3.8N

Therefore, the maximum and the
minimum tensions in the string are 6.8 N
and 3.8N respectively.

3.4.4 Vehicles on a level and banked

curved road

When a vehicle turns in a circular path,
it behaves differently when on flat and
banked road. The centripetal and frictional
forces acting on the vehicle determine
the maximum safety velocity the vehicle
can travel. On flat surface, cars must
rely only on friction to prevent skidding.
During rainy season, friction is reduced,
hence, the turning force becomes smaller.
Therefore, banked curves were introduced
to prevent skidding. With banked curves,
the normal force provides a component
of force directing a vehicle towards the
centre of the curve. Hence, it reduces the

vehicle’s dependency on friction only to
safely navigate a curve.

(a) A car on a level rough curved road
Consider a car making a turn (Figure 3.35.)
The portion of the turn can be approximated
by an arc of a circle of radius r. If the car
makes the turn at a constant speed v ; then
during that turn, the car goes through a
uniform circular motion.

mg
Figure 3.35: A car taking a turnon a

rough level road

The necessary centripetal force is provided
by the frictional force between the tyres
of the car and the road. If R, and R, are
normal reactions of the road of the inner
and outer pairs of wheels respectively, then,
f, and f, are frictional forces between
tyres and the road. Let & be the height of
the centre of gravity G, above the ground

v (road), a is distance between the car
. wheels and r is radius of the circular path.

Vertical forces;

R +R,=mg (3.50)
Horizontal forces:
fi+f, =2 (3.51)
r
Taking moments of force about G;
a a

h+ f h+ — |==R,

fik [+ R [ 2] SR
a

(-ﬁ"‘f:)h:E(Rz_Rl) (3.52)

Substituting equations (3.50) and (3.51)
into (3.52) gives,

2mvih
=mg-2
- mg—2R




g
R =m[3—?) (3.53)

Substituting equation (3.52) into (3.50)
gives,

(3.54)

2 ar

The maximum speed v, at which the
vehicle can take the curve without toppling
is obtained by setting R, = 0. Since m# 0,

't (3.55)

Alternatively,

h+ =

2
mv;

L]
r
-
-

my’
UR + UR, = —r- =umg

v = \/urg, since [ = umg

A smooth road offers no friction to the
wheels of the vehicle. Therefore, the
vehicle taking a corner on such a road
will skid outwards away from the road.
For this reason, most of the roads are
banked at the corners so that the car will
not depend on friction only.

(b) A car on a banked rough curved
road

In banked road the outer edge is raised to
a certain angle & making a curve above
the level of the inner edge. Consider a car
moving in a circular curved road above
the level of the inner edge as shown in
Figure 3.36. Let v__ be the maximum
speed of the car before it skids.

Figure 3.36: A car on a rough banked road

Horizontal forces, Rsin@+ fcos@ = ma
where R=R +R, and f=f +f,. But

S =uR

R(sinB+ f1c0sB) = ——mss (3.56)
Vertical forces,

Rcos@ = fsin@+ mg

R(cos@ — usin@) = mg (3.57)

dividing equation (3.56) by (3.57) gives,

B rg(tan@+ i)
s |- utan@

(3.58)

Equation (3.58) gives the expression
for the maximum possible speed of the
car before it skids to the outside of the
curve (up the banking). For the minimum
possible speed of the vehicle before
skidding, the direction of frictional forces,
f, and f, in Figure 3.36 will be reversed.
By similar procedures as above, the final

rg(tan@ — u)
1+ utan@

result will be v =J
min
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(¢) A car on a banked smooth curved
road

A smooth surface offers no friction, but

when such a surface is inclined, it can

provide the necessary centripetal force

for a vehicle to successfully take a corner

(Figure 3.37).

R® Rcos® &,

¢ mg

Figure 3.37: A car on banked smooth road

Vertical forces,
Rcosf = mg

Horizontal forces,

. mv
Rsin@=——
"

(3.60)

Dividing equation (3.60) by (3.59) gives,

v =4/rgtan@. This is the maximum

speed a car can take a corner in a smooth
banked road without skidding off.

A car is moving at 30kmh™ in a circle
of radius 60m. Find the minimum
value of p_for the car to make the turn
without skidding.

(3.59)%

Solution

2

From the equation gy = L
r8

but: r=60m: g=9.8ms"

3
p= 0x10 ms ' =83ms™’
3600
(8.3ms™)’
U = _=0.12
Y A0mx9.8ms

—Erample32s) =

A car whose wheels are 1.4 m apart
laterally and whose centre of gravity is
0.5 m above the ground moves round
a curve of radius 60 m. Assuming no
slipping of the wheels on the road, find
the highest speed at which the car can
round the curve without overturning.

Selution
Using the equation,

ary
2h
_‘ji.4m><60m><9.8ms_z

=
.

2x0.5m
=28.69ms™

Therefore, the maximum speed is
28.69ms ™.

(d) A cyclist on a curved rough level road
A cyclist (such as of motor cycle) taking a
corner on a curved rough level road must
bend inwards towards the centre of the
curved road so as to create the friction
force between the tyres and the road (or
ground) which is required in order to
provide the necessary centripetal force
(Figure 3.38).




[ =

Figure 3.38: Cyclist taking a corner

By principle of moments,

z clockwise moments = Z anticlockwise moments

Thus, fh=Ra.Where f is the frictional
force, Ris the normal reaction,ais the
distance between R and mg, and h is
the height of the centre of gravity.

,
my”

;. —==tanf
mgr

S

Hence, — =
R

=|a

F
d g=—=tané
and U =

Therefore,
v_=4/rgtan®

This is the maximum speed a cyclist
can move along a curved rough level
road. However, for a smooth level road
(tan@ =0) the cyclist will have velocity
of zero and thus skid outward from the
road or at rest without bending. It should
be noted that the speed limit shown

by road symbols are based on these

principles.

A highway road designed for an
average speed of 72kmh™" has a turn
of radius 50 m. To what angle must the
road be banked so that cars travelling at
72kmh™" may not overturn.

Solution )
Using the relation tan@ = L , but
r8
3
v= ?23:(13 ms™', r=50m, g=9.8ms™"
{2
o=tan| = |,
\ 8
f 2
20ms ™
f=tan"' ( ) -
50mx9.8ms™
\

6 = tan *(0.8163)=39°

Therefore, the road should be banked
at 39°.

3.4.5 Applications of circular motion

There are several applications of circular
motion in daily life; these include the
following:

(a) Rotating fluids

When a liquid in a container is stirred, the
centre of the liquid surface forms a hollow.
The surface of the liquid will be defined
by how the centripetal acceleration
changes with radius. A parabolic surface
of the liquid may be used in liquid mirror
telescopes. The most common liquid
used is mercury (or low melting alloys of
gallium). In these telescopes, the liquid
and its container are rotated at a constant
speed around a vertical axis, which
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causes the surface of the liquid to assume
a “paraboloidal™ shape regardless of the
container’s shape.

(b) Centrifugal pump

The main part of a centrifugal pump is
the impeller which has a series of curved
vanes fitted inside the shroud plates. When
a fluid (e.g. water) enters the pump along
or near the rotating axis, it is accelerated
by the pump impeller. The fluid particles
then accelerate radially outward into a
volute chamber (casting) from where it
exits (Figure 3.39).

(c) Centrifuge

Volute
casting N

Impeller

Suction eye

Figure 3.39: Centrifugal pump

A centrifuge is a device that is used for separating mixtures. It can be used to separate
sugar crystals from molasses, cream from milk, bee wax from honey, and constituents

of blood and urine samples.

The centrifuge works using the sedimentation principle. The sample of liquid mixture is
spanned at relatively high speed, creating a strong centripetal force on the liquid and its
content. This force will make denser particle to accelerate outward in the radial direction.
When the centrifuge is settled, the heavier (denser) particles settle to the bottom while
lighter (less dense) particles rise to the top (Figure 3.40).

Path length

Position during X
centrifugation ez';'-::-,

Position -

at rest

Axis of rotation

Figure 3.40: Schematic diagram of a centrifuge
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Give explanation for each of the
following observations:

(a) Ifthereis anet force on a particle
in uniform circular motion, why
does the particle’s linear speed
not change?

(b) As a car rounds a banked
circular curve at constant speed,
several forces are acting on
it: for example, air resistance
towards the rear, friction from
the pavement in the forward
direction, gravity, and the
normal force from the tilted
road surface. In what direction
does the net force point?

Imagine you are a driver on an icy
road. You approach a curve that has
the banking angle calculated for
90 kph. Your passenger suggests
you slow down below 90 kph, just
to be on the safe side, but you say
that you should maintain your speed
at 90 kph.
(a) Who is correct, you or your
passenger?
(b) What would happen if you were
to slow down (or speed up)?
(c) Would your passenger’s
suggestion be a good one on
an unbanked road?

Consider a 1 kg brick being whirled
in a vertical circle at the end of 1 m

rope,

(a) What critical velocity must the
brick achieve in order to pass
safely through the top of its
circular path?

Maotion in two dimensions

(b) What would be the critical
velocity of the brick if it were to
be whirled on the moon where
the acceleration due to gravity
is onesixth that on the earth?

. A 500 g stone attached at the end

of a I m long string is whirled in a
vertical circle whose centre is 10 m
above the ground. The breaking
tension of the string is 100 N. If
the string breaks, determine:

(a) The position of the Stone in a
circle where the string is most
likely to break: and

(b) The horizontal distance where
the stone will strike the ground.

. A body of mass 8 kg is moving in

a horizontal circle of radius 3 m
with a constant speed of 10 ms™'.
Determine:

(a) The angular velocity; and

(b) The centripetal force.

. A car is supposed to move safely

around the smooth corner of 200 m
radius with the speed of 60 kmh™'.
Find the banking angle for the car
to move safely?

. A mass of 1.5 kg is attached to a

lower end of a string of 2 m whose
upper end is fixed to a rigid support.
The mass is then made to move in
a horizontal circle of radius 0.8 m.
If the circular speed of the mass is
constant determine:

(a) The tension in the string; and
(b) The period of the motion.

. A curve in a road has radius of

60 m. The angle of the bank of
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the road is 47°. If the coefficient
of static friction between tyres and
road is 0.8.Find the maximum and
minimum speed a car can move
without skidding.
A hemispherical bowl of radius R is
rotating about its axis of symmetry
which is kept vertical. A small block
is kept in the bowl and rotates with
it without slipping. If the surface of
the bowl is smooth and the angle
made by the radius through the block
with the vertical is @, show that the
angular speed of the bowl is given
gcos6

z
A simple pendulum is suspended
from the ceiling of a car taking a
turn of radius 10 m at a speed of
36 kmh™'. Find the angle made by
the string of the pendulum with the
vertical if this angle does not change
during the turn.

by,

A ball of mass 0.3kg is tied to one
end of a string 0.8m long and
rotated in a vertical circle. At what
speed of the ball will the tension
in the string be zero at the highest
point of the cirele? What will be the
tension at the lowest position?

Prove that the velocity v with which a
body must be projected at the lowest
part of a loop apparatus of radius R
in the vertical plane so that it passes
at the highest position with minimum

velocity, is given by v=/5gR.

3.5 Gravitation

Gravitation refers to the force of attraction
that exists between any two bodies that
have mass. It is a universal force affecting
the largest and the smallest objects and all
forms of matter. Gravitation governs the
motion of astronomical bodies. It keeps the
moon in orbit around the earth and keeps
the earth and the other planets of the solar
system in orbit around the sun. On a larger
scale, it governs the motion of stars and
slows the outward expansion of the entire
universe because of the inward attraction of
galaxies to other galaxies. An understanding
of the law of universal gravitation has
allowed scientists to send spacecraft on
impressively aceurate journeys to other
parts of our selar system. Such description
of planetary motion provides astronomical
data which are important test of the validity
of the law.

Typically, the term gravitation refers to the
force in general, and the term gravity refers
to the earth’s gravitational pull. There
are several laws governing gravitation
and planetary motion. Therefore, in this
section, you will learn laws of gravitation
specifically, the Newton’s law of universal
gravitation and Kepler’s laws of planetary
motion. You will also learn how to derive
the relationships existing between the
laws, determine gravitational potential of
a body, and applications of the laws.

3.5.1 Kepler’s Laws of Planetary Motion
A general study of planetary motion played a
big role in the development of Physics. This
began by the earliest scientists, basically
the Greek astronomers, who attempted to




study and explain the movement of the
sun and other planets. They assumed that
the earth was the centre of the universe
while the moon, stars and other planets
are revolving around it in complex orbits.

In the 15" century, Copernicus suggested
that the sun was at rest at the centre of
universe and so the earth was a planet
rotating on its own axis while at the same
time moving around the sun. Also, other
planets had similar motions.

The controversy over these theories
stimulated different astronomers to
obtain more accurate observational data.
Then, Tycho Brahe obtained good data on
planetary motion, His data were analysed
and compiled by Johannes Kepler, who was
Brahe's assistant, and found three important
regularities with regard to planetary
motions. These regularities are known as
Kepler’s laws of planetary motion.

(a) Kepler’s First Law

The law states that “Planets revolve
around the sun in elliptical orbits with
the sun as one focus”. This is known
as the law of orbits or ellipses and the
phenomenon is shown in Figure 3.41.

Aphelion
(slowest
motion)

Perihelion
(fastest motion)

Planet

Perihelion

distance distance

Figure 3.41: Orbit of a planet

Withelliptical orbits, a planetis sometimes
closer to the sun than it is at other times.
The point at which it is closest is called
perihelion, and the point at which a planet
is furthest is called aphelion.

(b) Kepler’s Second Law

The law states that, “An imaginary line
[from the planet to the sun sweeps out
equal areas in equal amounts of time”,
Kepler’s second law basically says that
the planet’s speed is not constant. It moves
with lowest speed at aphelion and highest
speed at perihelion. The law allows an
astronomer to calculate the orbital speed
of a planet at any point (Figure 3.42).
This law is sometimes called law of equal
areas. The area swept A, B, and C in time
intervals f are equal.

Planet
4

Figure 3.42: Equal areas over equal times

(¢) Kepler’s Third Law

The law states that, “The square of the
period of revolution of a planet in its
orbit is directly proportional to the cube
of the average distance from the sun to
the planet.” Sometimes this law is known
as the law of periods.

T?ec r*, thus, T2 =kr', where k is the
constant of proportionality.

If T, and 5 is the period and orbital

- radius of planet A and 7, and r, for




planet B, then

#)-()

T, and T, are periods of two planets,
and r, are average distances of the planets
from the sun respectively. This law holds
for all space bodies. For example, the moon
moving around the earth and all other
satellites of the earth.

3.5.2 Newton’s Law of Universal
Gravitation

Newton pointed out that everybody in
the universe attracts every other body. He
proposed the law of universal gravitation
which states that, “The force of attraction
between two bodies in the universe is
directly proportional to the product of their
masses and inversely proportional to the
square of distance between their centres".
Note that, the force of gravitation always
acts along the line joining the centres of
the two bodies.

Consider two bodies of masses m, and

m, separated by distance r between
their centres as in Figure 3.43.

= r .
| >

Figure 3.43: Mutual gravitation force

According to Newton's law of gravitation

Foecmm, (3.61)
|

Foc— (3.62)
r

Combining equations (3.61) and (3.62)
gives,

mm,
F=k—32

(3.63)

y )

r

where a constant & is called universal
gravitational constant,

G=6.67x10" Nm’kg™.

Re-writing equation (3.63), gives

F=G2Z2, (3.64)

r

Kepler’s Third Law and Newton’s Law
of Universal Gravitation

Kepler’s third law of planetary motion
can be derived from Newton's law of
universal gravitation. In order to show
this relationship, an approximation of
circular orbits of planets must be used.
Consider a planet of mass m, revolving
around the sun of mass M _ in a circular
orbit of radius R as in Figure 3.44.

‘!

Figure 3.44: Planetary orbit around the sun

Since the mass of the sun is much
larger than that of a planet, it is correct
(for circular orbits) to assume the sun's
position at the centre of the circular
orbit. Therefore, the centripetal force

T R EEEEEEIEIRI=.,

!i-anh.l



on the planet is provided by the sun's
gravitational pull given by,
_Mm,
R R

2
IHPV

2T
But y=@R and m=? , then,

_4n’R°
GM

T2

-

4 ,
The term ——— 1s constant, hence

—\Enampledzo)
Two masses of 800kg and 600kg are
at a distance of 0.25m apart. Calculate
the magnitude of gravitation force of
attraction between them.

Solution

mlmz
2

.
_ 6.67x107" Nm’kg * x800kg x 600kg
(0.25m)’

F=G

F=5.12x10"N

Cample3ay

Assuming the orbit of the earth about the
sun to be circular (itis actually slightly
elliptical) with radius 1.5%10" m, find
the mass of the sun. The earth revolves
around the sun in 3.12x 10" seconds.

Solution

For the earth to revolve around the
sun, it requires a centripetal force. This
centripetal force is provided by the
gravitational pull of the sun. Therefore,

Maotion in two dimensions

cenn'ipetalfome(ﬁ ) =

gravitational force(F; ]

m 1’2 m.m u!r
[ — G I!'-, 5 _) m e
r re G

2
but v=wr and m=?n, then

2.3
_Anr
e 3

G

m

4n* % (1.5%10" m)’
(3.12x107s) x6.67x 10" Nm*kg ™

m =
¥

=2.0x10" kg

Therefore, mass of the sun is about
2.0x10% kg.

There is a point along the line joining the
centres of the earth and the moon where
an object of mass m, does not experience
a force of gravity due to the earth and
the moon. Determine the position of an
object with respect to the earth (Mass of

the earth, m_=6.0x10™ kg, mass of the
moon m_=3.35x%10"kg. earth-moon
distance R=3.8%10"m)

Solution

Let x be the distance from point of zero
gravitational force to the centre of the
earth as illustrated in Figure 3.45.

m
f’ Er z f’" .
| X »| «—R—x—>»
E. R >

Figure 3.45: Gravitational force
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The net gravitational force on mass m,
Y F=F +(=F)but, Y F=0,

Gmm  Gm m

hence F, =F ;

X (R-x)
1
m )
Solving for x gives, x=(R—-x)| —=
m, )

(=]

6.0x10* kg )
3.35x10% kg )

x=(3.8><10”m—x)(

=3.54x10"m

The position of an object with respect
to the earth is, x=3.54x10"m.

3.5.3 Acceleration due to gravity (g)

Consider an object of mass m placed on
a uniform spherical earth of mass m_and
radius r, as shown in Figure 3.46.

¢

m

Figure 3.46: A body placed on the surface of
the earth

The gravitational force of attraction on
mass m is obtained from Newton’s law of
£ 2 m.m
gravitation F = G——.
r
The attractive force which the earth exerts

on the object is the weight of that object.

m.m

r

[

F=mg=G

Therefore,

(3.65)

The mass of the earth can be calculated
from equation 3.65,

G
and the density of the earth

m_gr’[ 3
p: - [

(3.66)

]. since the earth is

V. G \4xr
sphere, therefore,
3¢
= 3.67)
4nr G ¢

Equation (3.65) provides the value of g
on the surface of the earth. Experiments
show that g varies from place to place on
the surface of the earth as well as with
altitude.

(a) Variation of g with altitude
Suppose that an object of mass m is at a
height & above the surface of the earth
(Figure 3.47).

Figure 3.47: Value of g above the earth’s surface




Assume the earth to be a uniform sphere
of radius r, and mass m,, then the value
of g at point P is

¢ =G—% (3.68)
R-

Dividing equation (3.68) by (3.65), gives
,_ 8T
&%

L 2 .
Therefore, g’ e — since gr’ is constant.
R’ j

If the object is at height close to the surface
of the earth, then

’ gr,

i _ g
4 (!:_+h)2 h i
1+ —
T

3

=)
§=g| e—
e

By Binomial expansion and neglecting

the higher powers of i

;
2 2h
g =5{1——}
rf

(b) Variation of g with depth

Consider a body of mass m placed at a
depth d below the surface of the earth as
shown in Figure 3.48.

(3.69)

Figure 3.48: Variation of g with depth

The value of acceleration due to gravity
on mass m at a depth d is given by,

m’

gH:G -

; (3.70
R )

Where m’ is the effective mass of the
earth that exerts gravitational force on
mass m given by,

m = p[%xﬁ‘"}

(3.71)

R’ o a4
hence, m’ =-—m . Substituting into
3

equation (3.52), gives,

- [Gm JR Gm
g'= =< |—, but < =g,
., J% r
Therefore,
g"=LR (3.72)
=

e

. g . ”
since - is constant, then g”e<R, then

R=r —d, and equation (3.72) can be
written as,

W d
rl'

The acceleration due to gravity decreases
with increase in depth. If d=r , then
g =0. Therefore, at the centre of the earth
an object feels weightless. Equations
(3.69) and (3.72) can be presented
graphically as shown in Figure 3.49.

(3.73)
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gt
At the earth’s surface
g -------- I
A | .
2" \Q."'?‘ : Outside
]

r
e

Figure 3.49: Variation of g inside and outside
the earth's surface

(c) Variation of g with latitude

A latitude of a place is the angle which the
line joining the place to the centre of the
earth makes with the equatorial plane. As
the earth spins on its axis, different places
on the surface experience different speed
with respect to the earth’s axis of rotation.
The variation of speed means that there is
variation of force of gravity and therefore
variation on the acceleration due to
gravity. The effect of earth’s rotation on
the acceleration is shown in Figure 3.50.

Figure 3.50: Effect of earth’s rotation on the

value of g

Suppose the weight of a body is W ,
part of this weight is used to provide
the centripetal force F. on the object.

Therefore, at point P the measured
weight is W (the apparent weight). The
relationship between W and W, is given
as W?= F'1 "‘qu —2W, F cos@.

(mg'y =[mm"r}: +(mg)’ —2(mg X mew'ricos@ (3.74)

Substitute r=rcosf and simplifying
equation (3.74) gives,

P -

)

) ( @'r’cos’@ 2m’rcos’d
g=g| I+—F——
8 &

The quantity

®'rcos’d
p 1s very small

8
such that, it can be ignored, hence,

, 2m°rcos’0 _
g'=g|l-———| , by expanding
8

and ignoring higher terms,

, @’rcos’d
=8| 1———
8

b | -

g’ =g-w'rcos’d (3.75)
The value of g increases from the equator
to the poles. At the equator,8=0°
g=g --cwzrr and at poles, 8 =90°¢" = g.

[ eumpled]

A body weighing 72N on the surface
of the earth, moves to a height half the
value of the radius of the earth. What is
its new weight?

Solution

Using the relation,

m.m :
= (i)
=

[

W=G




mm

(= ¢

- (r +h)’ (ii)

dividing equation (ii) by (i) gives

L 7IN=32N
r+—r)t
(r 5 @)

Hence, the weight at height, & is 32N,

—ample 1.30)

At what height from the surface of earth
will the value of g be reduced by 36%
from the value at the surface? (Radius
of earth r, =6400km ).

Wi=

Solution

From equation g’ = g(l—%],
-

The change in g, 8—8 _2h

g r’
036x6.4x10°m
- 2

Hence, the value of g will be 36%
at a height of 1.15%10°m above the
earth’s surface.

C \bamiedar)

What is the acceleration due to gravity
on a surface of a planet that has a radius
one third that of the earth and the same

average density?

h =1.15x10"m

Solution
ml"
2

Using g =G —= and for the planet,

Maotion in two dimensions

g_nz[iJ (ﬂ] (i)
g E m

Since two planets have same density,

m, (5] "
m o \r, W
substituting (ii) into (i) gives,

I EA T
8,=8 r . utrp——g, us,

|
8,,=§£

Therefore, taking ¢=9.8ms™ gives,
g,=3.3ms".

3.5.4 Gravitational field and field
strength

Gravitational field is defined as the region
around a body where another massive
object will experience gravitational force
of attraction. The concept of field shows
that a body due to its mass “modifies™ the
space around it such that another object
(also due to its mass) when brought near the
first object, experiences the “modifications”™
in form of force of gravity. Therefore, the
gravitational field of one object will not
act as a force of gravity on itself. The
gravitational force on a body is exerted
by the gravitational field created by other
massive bodies. This means that if a very
small massive object (called test mass) is
placed at a point in space and experiences
a gravitational force; then, there is a
gravitational field at that point.
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Gravitational field strength ( g ) at a point
is therefore defined as the gravitational
force ( F ) experienced by unit mass of

==

o e i
a test mass at the point, i.e., g =—. In Sl
m

units, in which the unit of force is 1N,
and the unit of mass is | kg, the unit of
gravitational field strength is one newton
per kilogram 1Nkg' or Ims~. Hence,
gravitational field strength at a point is
equal to the acceleration due to gravity that
a unit test mass would experience when
placed at that point.

(a) Gravitational potential and
potential energy

Gravitational Potential (V) at a point
in the gravitational field is numerically
equal to the amount of work done (W) in
bringing a unit mass from infinity to that
point. Consider a body of mass m placed
outside the earth at point P at a distance
r from the centre of the earth. Suppose
that the body is moved from point A, a
distance r, to a distance r,; at point B by
force of gravity as shown in Figure 3.51.

ilnﬁnity point

TA
dr

—”fa
o

M

[

Figure 3.51: Gravitational potential at a point

The total work done per unit mass
when a body is moved from A to B by
gravilalional force is

=V, = F —L dr,
'[ Wom
M
substituting F, =G Land integrating,
gives,
[
V.=-GM | ———
’ '{rn ra] (R

In calculations of gravitational potential,
a reference point is always chosen at
infinity. The potential at infinity is taken
to be zero. Hence

V,==6G ‘.f'
&
Therefore, the expression for the potential
at a given point is,
M
V,==G -
The negative sign in the equation for
potential signifies that the object at
infinity would fall towards the earth but
work is required to move objects from the
earth to infinity.
Gravitational potential energy (U)
at a point in the gravitational field is
numerically equal to the work done in
bringing the body from infinity to that

point. That is,

(3.77)

(3.78)

U,=w,, (3.79)
From equation (3.78) and (3.79),
M m

U,=W=mV, hence, U, =-G
Hence, gravitational potential enerrgy is
a property of a system of two bodies of
masses M_ and mnot of a single body.
The negative sign shows that objects will
have more potential energy as they move
away from the earth.




(b) Relationship between gravitational -

Eampies iy
field strength and gravitational

potential Calculate the distance from the earth to

The gravitational field strength on the = 'he point where the gravitational field

due to the earth and the moon cancel

'al‘th“‘ f.\ 3 3 b _GMr
= SSHILAcE IS gtvon DY 8 = 2 out. Given that earth-moon distance is

' 3.8 10*m and the mass of the earth is

Wwitations: i s ;
The gravitational potential on earth R1 Guee that of the mbon:

4

5
dividing the two equations and solving

for g gives,

surface is given by V =-G
Solution

Let x be the distance from the earth
where the resultant gravitational field

4 :
g=—— (3.80) | strength cancels out. Suppose a unit
‘e mass m is put at this point (Figure 3.52).
For small changes,
dv Earth
g=—— (3.81) Moon
dr
Thus, the gravitational field strength (g) '7" M
is also called the negative gravitational ¢
potential gradient. $ 3.8x10°m—x !

—X e >
| 5 '

| e—— 38%10'm —'

Calculate the gravitational intensity on Figure 3.52: Distance between the earth
the surface of Mars assuming it to be

a uniform sphere of mass 6.4x 10 kg
and radius of 3.375x10°m. Use

and moon

Gravitational field strength cancel out

G=6.67x10" Nm’kg* at g, =g,
Solution M M
G—=G ey L
M X" (3.8x10°=x)"m
8= G—z
,
6.67x10" Nmkg > x6.4x10%kg = M.=81M, solving for x gives,
(3.375%10°m)’ ¥=342x10'm
=0.375Nkg™

Therefore, the gravitational field

The gravitational intensity on the strength will cancel out at 3.42x10°m
away from the earth.

surface of Mars is 0.375Nkg™".
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(¢) Motion of satellites

A satellite is a body that revolves around another
larger body (planet) in space. There are two
types of satellites. These are natural satellites
and artificial satellites. A natural satellite is a
celestial body that revolves around a planet. It is
called natural satellite because it is not man-made.
For example, the moon is a natural satellite of the
planet earth while Titania and Aerial are natural
satellites of Uranus.

On the other hand, artificial satellites are man-made
satellites that orbit the earth for communication
or other purposes. For example, the International
Space Station (ISS), Skylab, sputnik (1 and 2) and
Telstar. Artificial satellites orbiting the earth are
now quite common and many. They are called
earth satellites.

(i) Launching of a satellite

To understand the principle of launching a satellite,
consider a ball projected horizontally from a point
above the earth’s surface (Figure 3.53).

Point of
projection

Part of ellipse

Hyperbola ,"
v>2gr/

1 I
[
i

p \ Circle '
Parabola \ \/— :
| v=/gr &

LY

-
-
-

Ellipse
J2gr >v>er

Figure 3.53: Launching of a satellite

If gravity did not act on the ball, then
it would follow a straight line path
shown by the solid line. But there
is gravity so that the ball follows a
parabolic path and hits the surface of
the earth. If the horizontal velocity
is increased, the ball will travel a
greater horizontal distance before
hitting the surface of the earth. As
a result, the horizontal range of
the ball also increases. Finally, a
stage is reached when the horizontal
velocity is large enough that the
ball's path follows the curvature
of the earth. This is the launching
velocity which places the ball (or
any other body) in a circular orbit
around the earth. Further increase
in velocity results in the other orbits

as shown.

Thus, the object in the circular orbit

 may be regarded as falling but as it

falls, its path is concentric with the
earth’s spherical surface so that the
object maintains a fixed distance
from the centre of the earth. The
velocity required to put the object in
its orbit is called the orbital velocity.

(ii) Orbital velocity of a satellite
Orbital velocity is the velocity
required to put a satellite into a
given circular orbit around the
earth. Consider that a satellite of
mass m_ is put into a circular orbit
around the earth. Suppose m, and R
are the mass of the earth and radius
of the orbit respectively as shown
in Figure 3.54, whereR=r,+h, r,
is radius of the earth.

LELLLL



Tt mm—-=

Figure 3.54: Satellite into circular orbit arouned
the earth

The centripetal force on the satellite is
provided by the gravitational force of
attraction between the satellite and the

earth. It then follows that,

2
myv-

= L 3.82
Vv R ( )

where v is the orbital velocity and R is the |

orbital radius of satellite.

From equation (3.82) it can be realised
that, orbital velocity of a satellite is
independent of its mass and decreases as
the height increases.

When a satellite revolves close to the
earth’s surface, the height becomes very
small as compared to radius of the earth,
such that » +h=r. Then, the orbital

velocity can be approximated to:

_Yon.

= =8, , since Gm_ = gr’
’

‘!

v=1/9.8ms > x6.4%10°m =8x10" ms”

Thus, the orbital velocity of a satellite
close to the earth is about 8 x10°ms ™.

Maotion in two dimensions

(iii) Period of a satellite (T)
This is the time taken by a satellite to
complete one revolution. Consider a
satellite of mass m_ put into a circular
orbit of radius R at height i above the
earth’s surface (Figure 3.54).

The period of the satellite is given by

7= Circumference of theorbit _ 22R
orbital velocity v
Substituting v = JG:" and R=r+h
gives
+h)'
T =op [LOL (3.83)
Gm,

T is the period of a satellite at a distance
h from the earth’s surface. The period of
the satellite depends on the distance from
the earth’s surface. The greater the height
above the earth’s surface, the greater the
period of revolution.

For Satellite close to the earth, i.e.,

3

r >>h, it follows that, T =2n e
¢ Gm

3
Hence, the period of revolution of the
satellite revolving very close to earth’s
surface is about 85 minutes.

A satellite takes 24 hours to revolve
on its orbit around the earth. Find the

height above the earth at which the
satellite should be placed.

Solution

From: 7=2x (r,-i-a‘l)'; h=1g[£] =g
qu.- V 2r ;
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The total energy of the satellite is the sum

Ee ‘1]9 Siine ( 6.4x10°m x 24 x 3600 s ] of kinetic energy and potential energy.
' 2n

ET=K+U, E =G mm. mm

~64x10°'m=3.6x10"m TTU2r k) rth

ThllS. the satellite should be placed ";'n]]

at 3.6x10"m high above the earth’s E,=- 2r +h) (3.86)
surface so that it revolves with the

perod et L \Bampledds) ]

(iv) Energy of satellites A geostationary satellite orbits the earth
A satellite revolving around the earth has ~ at the height of nearly 36000 km from

both kinetic energy (K) and potential energy ~ the surface of the earth.-What is the

(U). Thus, the total mechanical energy of =~ Potential due to earth’s gravity at the

the satellite is the sum of its kinetic energy site of the satellite? Take radius of the

and potential energy (Figure 3.51). earth r =6400km, mass of the earth
m, =6x10"kg.

Consider a satellite of mass m_ revolving

the earth in circular orbit at a height A Solution
above the surface of the earth as shown  ConsiderFigure 3.55 with a geostationary
in Figure 3.55. satellite.

my: _ mm m.m,

' Satellite

From =G—*, mV'=G .
R R" R |

multiplying by % both sides gives, y Satellite
'i."/ orbit
lm‘pg _gMmm. : .
2 2R ] :
but, %m‘v: =K.,and R=r+h '
K =Gl (3.84) T
2( L+ h) Figure 3.55: A geostationary satellite orbit
The potential energy U = work done (m,V') o . .
where Vis the gravitational potential. But, ~ The gravitational potential at a height
¢ h above the earth’s surface is given by;
V=——"" and R=r+h, m
R V:—GR',wherc R=r +h,
Therefore, v 6:67x10" Nm’kg ™ x6x 10™ kg
U=-G ”'e”:; (3.85) (6.4x10°m+3.6x10" m)
r+

(3

—m——————_




=-9.4x10°Jkg"

Potential due to earth’s gravity at the
site of the satellite is —9.4x10° Jkg ™.

(v) Parking orbit

The orbit in which a satellite revolving
around the earth has period equal to the
period of rotation of the earth is called the
parking orbit. The satellites placed in parking
orbit are called geostationary satellites or
synchronous satellites. Since geostationary
satellites move with the same period as that
of the earth, they appear on the same position
above the surface of the earth all the time
as they move. These satellites are coplanar
with the equator and move from west to east
as the earth; this is the reason why they are
called synchronous satellites.

Since the period of revolution is known,
we can calculate velocity in the parking

orbit. From v= G"l" 2
4 R

T
2n

also v= ’ﬂ, R= G’?"
R v

Equating equations (3.87) and (3.88) gives

R (3.87)

(3.88)

= 2aGm,
T

but, GM, = gr*

f 21[3:';

(3.89)

!.. 1’ =

T
Substituting the values r =6.4x10°m,
2=98ms”, T=24x60x60s gives
velocity of parking orbit 3.08kms™'.

The height of the parking orbit can be
calculated using the relation, R= ;—T-
T
Since, R=r +h, then, h= E_,-
2 °
_ (3.08x10"'ms™")x (24 % 3600s ) B

2n

h

6.4x10°m

h=3.6x10"m

Therefore, the parking orbit should be at
3.6x 10" m high above the earth’s surface.

(vi) Escape velocity

Suppose a ball is thrown into air; it rises
up to a certain height and then falls back.
[f it is thrown with a large velocity, it rises
to a higher height and falls back again.
If a body is projected vertically upwards
with sufficient velocity to allow it to move
infinitely away from the earth, then, the
body never returns and this velocity is
called escape velocity. Therefore, escape
velocity is defined as the minimum velocity
with which a body may be projected such
that it escapes from the earth’s influence of
gravitational force completely.

Suppose the escape velocity of a body is
v, then, its kinetic energy at the point of
projection is given by K =%mv§..

The work done to remove the body from
the surface of the earth is obtained by
conserving mechanical energy of the
body at the earth’s surface and at infinity.

That is,

%mvi . [ _Gmm ] -0

r

3
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|

Gmm
=MV = -

rl"

Therefore,

PGm
Ve = - s or Ve = ,‘2‘;;;:_

Substituting the values
G =6.67x10" Nm’kg~, m, =6.0x10"kg

and r, =6.4x10"m gives, v, =11200ms™".

Therefore, in order for the body to escape
from the influence of earth’s gravitational
field, it should be projected with the
velocity greater or equal to 11.2kms .

If the body is at a height / from the surface
of the earth, then its escape velocity is
given by

(d) Uses of artificial satellites

When a satellite is to be placed in orbit,
it is first carried to a desired height by a
rocket. The satellite then turns into the
required orbit. The earth’s satellites have
several uses including; learning about
the atmosphere near the earth, weather
forecasting, and studying radiations from
the sun and outer space. Also, they are
used in receiving and transmitting radio
and television signals, and visualization
of the actual shape and dimensions of the
earth, research, and security purposes.

B o S

Imagine the farmers in your area are
complaining that pests have attacked
their farms endangering the flourishment
of the crops. The district agricultural
officer has recommended some pesticide
for spraying all the attacked farms.
However, the farmers are complaining
about the hard task of spraying the
large farms. Luckily, in your studies,
you have learnt about rockets and their
related principles. Use your knowledge
to construct a water rocket that can
simplify the task of spraying the large
farms with the recommended pesticides.

l. A student wrote, “The reason an
apple falls downward to meet the
earth instead of the earth falling
upward to meet the apple is that the
earth is much more massive than the
apple and therefore, exerts a much
greater pull than the apple does.” Is
this explanation correct? If not, what
is the correct one?

=

In discussions on satellites by
laymen, one often hears questions
such as “What keeps the satellite
moving in its orbit?” and *What
keeps the satellite up?” How do you
answer these questions? Are your
answers also applicable to the moon?

w

“Astronauts in satellites orbiting
around the earth are weightless
because the earth’s gravity is so




weak up there that it is negligible”. Is
the statement true or false? Explain.

. An object of mass M is broken into
two pieces. What should be their
masses if the force of gravitation
between them is to be minimum?

. Explain the following:

(a) Since the moon is constantly
attracted toward the earth by the
gravitational interaction, why
does it not crash into the earth?

(b) Which takes more fuel, a voyage
from the earth to the moon or
from the moon to the earth?

. Calculate the percentage decrease in
weight of a body when taken 32 km
below the surface of the earth.

. Deduce Newton'’s law of universal

gravitation from Kepler’s laws of
planetary motion.

. Two masses 800 kg and 600 kg are
at a distance 0.25 m apart. Calculate
the magnitude of the gravitational
field intensity at a point a distance
0.2 m from the 800 kg mass and
0.15m from the 600kg mass.
Given G =6.67x107"' Nm’kg™

. What is the change in gravitational
potential energy of a body with a
mass of 10 kg when taken to a height
of r, from the earth?

10. Gravitatuonal potential at a point

2500 km from the surface of the
earth-is —1.5x10’ Jkg'. Find
the gravitational field strength
at this point (Radius of the earth,
r, =6400km ).

. Discuss the following:
(a) The importance of the artificial

13.

14.

15.

16.

17.
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satellites and their uses with
regard to the planet earth:

(b) A person sitting in an artificial
satellite that is moving around the
earth feels weightlessness: and

(c) Is it possible for a pendulum to
vibrate (oscillate) in an artificial
satellite?

. Given that the mass of the moon

is 7.5x10%kg with a mean
radius of 1.75x10°m and the
universal gravitational constant,
G=6.67x10" Nm’kg ™.
Determine the escape velocity from
the moon.

Assume the radius of the earth to be

6400 km. A body with a mass of

40 kgis moved to a height of 100 km

above the surface of the earth.

(a) Determine the weight of this
body at this new position.

(b) What causes the acceleration
due to gravity to vary over the
earth’s surface?

If the acceleration of free fall at
the earth’s surface is 9.8ms™ and
the radius of the earth is 6400 km,
calculate the mass of the earth.
(G=6.67x10"" Nm°kg ).

The gravitational force on a mass of
1 kg at the earth’s surface is 10 N.
Assuming the Earth is a sphere of
radius R , calculate the gravitational
force on a satellite of mass 100 kg
in a circular orbit of radius 2R.

What is the amount of energy needed
to launch a satellite of mass 2000 kg
from the earth’s surface in a parking
orbit? (Neglect air resistance).

A satellite is revolving in the
parking orbit around the earth. If it




Physics for Advanced Secondary Schools

18.

19.

-=i.'~;i¢_m exercise

L.

2

is suddenly stopped and allowed to
fall freely on to the earth, find the
speed with which it hits the surface
of the earth.

If two uniform spheres each with
mass M and radius R, touch one
another, show that the magnitude of
their gravitational force of attraction

-

1S G{E] )
2R

According to Newton’s law of
universal gravitation, gravitational
force is a mutual force. Why then
only objects “fall” towards the earth
and not the earth “falling” towards
other objects in its vicinity?

As arocket is fired from a launching
pad, its speed and acceleration
increase with time as its engines
continue to operate. Explain why
this occurs even though the thrust
of the engines remains constant.

(a) Explain how to determine
equilibrant forces of a body
resting on a horizontal and
inclined plane.

(b) A mass rests on an inclined
plane of angle 6=30°, the
coefficient of static friction
is u =0.6. Draw a diagram
showing all the forces acting
on the mass and explain their
origin. Calculate their values if
the mass is m=5kg and verify
that under these conditions the
mass will not slide.

J

(c) A mass m is held at rest on an
inclined plane, whose slope is
o , by means of a horizontal force
F (Figure 3.56). If the coefficient
of static friction is 4,. show
that the maximum force F_
allowed before the body starts
to move up the plane is given

_ mg(sina+u cosa)

as Fm = .
COSO — M SInex

X

a [

Figure 3.56

3. Aparticle is projected from a point

O and has an initial velocity u at
an angle of 8 above the horizontal.
In the vertical plane of projection, it
takes @ and b as the horizontal and
vertical axes respectively and O as
the origin. Show that the equation
of the trajectory when the particle
passes through these points (a,b) 1S

ga*(1+tan”0) - 2u’atan 0 + 2u’h=0.

An experiment is performed
to determine the value of the
gravitational acceleration g on earth.
Two equal masses M hang at rest
from the ends of a string on each side
of a frictionless pulley (Figure 3.57).
A mass m=0.01M is placed on the
right-hand side. After the heavier
side has moved down by h=1Im,




the small mass m i1s removed. The
system continues to move for the
next lIs, covering a distance of
H =0.312m. Find the value of g
from these data.

[m]
M

Figure 3.57

. A bullet with a mass of 4g is
horizontally fired at a speed of
600ms™" into a ballistic pendulum
with a mass of 1kg and a thickness
of 25cm . The bullet goes through
the pendulum and leaves it with a
speed 100ms™'. Find the magnitude
of the constant force that slows down
the bullet inside the pendulum and
the vertical height through which the
pendulum rises.

. A hose ejects water at a speed of
0.2ms ™" through a hole of area
0.01lm’. If the water strikes a wall
normally, calculate the force on the
wall assuming the velocity of the
water normally to the wall is zero
after collision.

7. A body is thrown horizontally with

a velocity of 5ms™' from a tower

Maotion in two dimensions

of 40m high. Determine the time
of flight and the horizontal distance
from the base of a tower to where
the body strikes the ground.

. Two automobiles of equal masses

approach an intersection. One vehicle
is travelling with velocity 13ms™'
towards the east and the other is
travelling north with a speed of v.
Neither driver sees the other. The
vehicles collide at the intersection
and stick together, leaving parallel
skid marks of an angle of 55° north
east. The speed limit for both roads
is S6kmh™', and the driver of the
northward moving vehicle claims
he was within the speed limit when
collision occurred. Is he telling the
truth? Give reasons.

. A 30kg shell at rest, burst and splits

into three pieces of equal masses. The
first piece flies off vertically with a
velocity of 20ms™', the second piece
flies off horizontally with a velocity
of 35ms™". Determine the velocity
and direction of the third piece.

10. (a) A space craft’s dry mass is

75000kg and the effective
exhaust gas velocity of its main
engineis 3100ms™". How much
propellant must be carried if the
propulsion system is to produce
a total velocity of 700ms™" ?

(b) A large rocket with an exhaust
speed of 3000ms™' develops a
thrust of 2.4 x 10'N.
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(1) How much mass is being
blasted out of the rocket
exhaust per second?

(i1)) What is the maximum
speed the rocket can attain
if it starts from rest in a
force-free environment
with v_ =3.00kms ' and

if 90.0% of its initial mass
is fuel and oxidizer?

11. (a) Aballisreleased from a vertical
distance of /2. On striking a level
floor, it bounces back to height
h,. Show that the coefficient of

restitution between the ball and
h

)

the floor is given by e= |—.

h

1

(b) A 2 kg ball moving horizontally
at a speed of 10 ms™' strikes a
vertical wall and bounces back
with the same speed at an angle

of 45° above the horizontal.
Determine the average force
exerted on the wall by the ball

if the impact lasted.

(c¢) Figure 3.58 shows a fixed pulley
carrying a string which has a mass
of 4kg attached at one end and
a light pulley A attached at the
other. Another string passes over
apulley A and carries a mass of
3 kgatone end and a mass of 1 kg
at the other end. Find:

(1) The acceleration of pulley
A,

(ii) The acceleration of the
kg, 3kg and4kg masses:
and

(111) The tensions in the strings.

Figure 3.58

12. (a) Explain how you would use a

balloon to demonstrate the
mechanism_responsible for
rocket propulsion.

(b) Can a rocket move forward

by pushing the air backward?
Explain your answer.

(¢) You are standing perfectly

13. (a)

still and then you take a step
forward. Before the step,
your momentum was Zzero,
but afterwards you have some
momentum. Is the conservation
of momentum violated in this
case?

A body that is thrown upwards
to move under the control of
gravity only describes parabolic
path. What are the quantities
that remain constant during the
flight?

(b) A bullet is fired towards the sea

from the top of a tall building
98 m high built on the beach
with the velocity of 49ms™
and at an angle of 30° to the



horizontal. Determine the
distance from the bottom of the

building to where the bullet hits
the water.

14. Two inclined planes of angles 30° and

15.

16.

60° are placed touching each other
at the base as shown in Figure 3.59.
A projectile is projected at right angle
with a speed of 103ms™ from point
P and hits the other incline at point
@ normally. Calculate the time of

flight.

Figure 3.59

An object is projected so that it just
clears two obstacles, each 25 m high,
which are situated 160 m from each
other; if the time of passing between
the obstacles is 2.5 s . Caleulate the
full range of projection and the initial
velocity of the object.

(a) A projectile is fired on level
ground. Show that for a given
range and initial velocity
the projection angle has two
possible values, which are
symmetrically spaced, each
side of 45°.

(b) A projectile projected from a
point on a horizontal plane
reaches a greatest height h

17

18.

19.

20.

21
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above the plane and has a

horizontal range R . If R=2h,

find the angle of projection.
A particle is projected vertically
upwards with a velocity u, after an
interval of time 7. Another particle
is projected upwards from the same
point and with the same initial
velocity. Prove that the particles will

2 298

meet at the height [M—L}

8¢

A passenger in a car rounding a

sharp curve feels *thrown™ toward

the outside of the curve.

(a) What causes this to happen? Is
the person really thrown away
from the center of the curve?

(b) Make a free-body diagram of
the person.

If two planets have the same mass,

will they necessarily produce the

same gravitational pull on 1.0 kg
objects that are

(a) at their surfaces?

(b) the same center-to-center
distance from both planets (but
above their surfaces)? Explain.

“If a rock is acted upon by a
gravitational force F from the earth
when it is at a distance d above the
surface of our planet, it will be acted

upon by a force %if it is raised to

2d ". Is the statement true or false?
Explain

A child is sitting 1.50 m from the
centre of a highly polished wooden,




22.

23.
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and rotating disc. The coefficient
of static friction between the disc
and the child is0.30. What is the
maximum tangential speed that the
child can have before slipping off
the disc?
An object of mass m is resting on
top of a hemispherical mound of ice
whose radius of curvature is R. The
object is given a small push and start
sliding down the mound. Show that
the object will lose contact with the
surface of ice at a vertical height of
2R

=
The radius r of a rotating room
is4.50m and the speed v of a
child standing against the wall
is 12.0ms”'. Find the minimum
value of coefficient of static friction
required to keep the child pinned
against the wall,

24. Determine the angle at which a

cyclist should bend to the vertical
when he moves a circular path
of 64.6 m in circumference for a
duration of 10 seconds only.

. Arod of 20 cm length pivoted on one

end is made to rotate in a horizontal
plane with a constant angular speed.
A ball of mass m is suspended by a
string of 20 cmlength from the other
end of the rod. If the string makes an
angle of 30°with the vertical, find
the angular speed of the rod.

26. Calculate the gravitational field

21,

28.

strength and gravitational potential
at the surface of the moon given that
mass of the moon,
m=7.34x10" kg, radius of the
moon, R=1.74x10°m and the
gravitational constant

G=6.67x10" Nm’kg .

A satellite with a mass of 1000 kg
moves in a circular orbit with a
radius of 7000 km round the earth.
Calculate the total energy required
to place the satellite in the orbit
from the earth’s surface, assuming
it to be at rest initially. (Take radius
of the earth, r =6.37x10°m and
g=98ms™).

(a) A rocket is launched vertically
from the surface of the earth
with an initial velocity v,. Show
that its velocity v at a height &

2gh

where R is the radius of the earth

and g is the acceleration due to
gravity.

. . 2 r
isgivenby v = v, —

(b) The International Space Station
(ISS) makes 15.65 revolutions
per day in its orbit around the
earth. Assuming a circular orbit,
how high is this satellite above
the surface of the earth?




Rotation of rigid bodies

Introduction

Rotational motion is a common phenomenon observed in different moving

rigid bodies. Examples of these are the motions of whirled buckets, Digital

Video Discs (DVDs), wheels, circular saws, and ceiling fan blades. Each of
these examples involves a body that rotates about an axis that is stationary in
some inertial frame of reference. In this chapter, you will learn about the basic
tenets of rotational motion which include centre of mass, moment of inertia,
torque, the kinetic energy of a rotating rigid body, and angular momentum.
The competencies developed will enable you to apply the principles related to
rotation of rigid bodies in different contexts.

Engineering without rotational motion

4.1 Centre of mass

A rigid body is the one which does not
deform easily under the action of an
applied force. A centre of mass of a rigid
body or a system of particles refers to a
point at which the whole mass of a body
or a system of particles is assumed to be
concentrated. That is, the motion of centre
of mass represents the motion of entire
body. You can replace the mass of a body
by a mass of a single particle placed at the
centre of mass of that body. Therefore, the
centre of mass of any object is the average
position of all the particles of mass that
make up the object. Hence, the centre of
mass of regular shape objects (such as
rod, disc, cylinder, and sphere) is at its
geometrical centre of the object. For an
irregular object, its centre of mass depends

> a2 9

| on the shape and mass distribution of its
| particles.

Consider an irregular object of mass M
consisting of a large number of particles,
each having mass m, , m,, m,, ... m_rolating
about an axis OP (Figure 4.1).

Figure 4.1: Rigid body with axis of rotation OP

Each particle experiences an external force,
F=maF,=ma. F,=ma,...F=ma.
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The total force experienced by the body is mE 4 m7,

i ‘1—
m, +m, (%.0)
F=ma+ma+ma+..+ma (4.1) -

where, =X +¥ and ;, =X, + Y,

Equation (4.1) can be expressed in terms of

the second derivative of displacement as, t
"i:
e ¥ -
Z F = F(”I;'rt + "ﬂ-l"r'n " ’"1"'.! + "-+ nf".t") jl "
{_ X,
/ | N\

=[>":m.]a...,, (4.2)
i=|

Where a_ is the acceleration of the

cm

centre of mass.

5

. d x
Since,a = d—* and
i I__,

" Figure 4.2: Twwo particle system
mx +mx,+mx, +..+mx = ijxi,

The positon of the centre of mass depends

then equation (4.2) reduces to, upon the shape, size, and distribution of

8 mass of the body. In addition, the centre of

Em,-l} mass of a body may lie within or outside

X = (4.3) | the body. When an external force is applied

me " at the centre of mass, only linear motion is

i=1 produced (no rotation motion). The motion

Similarly, of the centre of mass is the motion of the
" whole body.

= wy | IR

Z"'s Two bodies of masses 0.8 kg and

1.2 kg are located at (1,-2) and(-3,4)

For the two dimensional plane figures, | respectively. Find the coordinates of the
the coordinate of the centre of mass is at centre of mass of the system.,

(x,,,¥,,)and its distance from the origin is
Solution
ro= ’tfm F yfm (4.5) From equation (4.3) and (4.4),
) mx, +m,x,

For two connected particles of mass m, e —

g go - b m +m,
and m, with position vector 7 and r, L
respectively (Figure 4.2), the centre of _ 0.8 kgx1+1.2kgx(-3) —_14
mass is given by 0.8kg+1.2kg '




and
MY +tMmY,
i m, +m,
_0.8kgx(=2)+1.2 kgx4_l 6
0.8 kg+1.2 kg ‘

The coordinates of the centre of mass
of the system are (—1.4, 1.6).

~ bampled2)

Two bodies of 100 g and 300 g have

positon vectors 20 +5]+1 3k and

—6i +4) -2k respectively. Find:

(a) Position vector of the centre of
mass: and

(b) Distance of the centre of mass
from the origin.

Solution
Form equation (4.5) and (4.6)

- r4m,r,
(a) P, =il 2 |
ml+mI |
100 g(2i 45 +13k) + 300 g(—6i +4 ] =2k)
100 g+300 g
& 1Ta. Te

r =—4i+—j+—k
om 4 4

- 2 2 2
(®) 7, =[x, + Y 2 Y

= \/(—4)’ +[%} +[%]h =6.09 units

The total mass M of a rigid body can be
expressed in terms of the individual mass

of the particles as Z"'.-' Therefore, from
=1
equation (4.3), the centre of mass of a

Rotation of rieid bodies

rigid body can be expressed as,

e 4.7)

» — =1

’:'m M
The centre of mass in the xyz directions
can be expressed as,
: E}ml.\'l zlmh\'l and & ;l‘l‘l’lzf (4.8)
X =£ 5 = A= T, = b
(] M = M M

-
-

Since the rigid body is a continuous
distribution of particles (not discrete
particles), equation (4.8) can be expressed as,

wm

= ﬁ J.r dm, y = -':!—I vdm and

(4.9)

4 |
zr'm = HJ < dm
In general, the centre of mass of a rigid
body of continuous mass M can be
expressed as,

| _
r.=—|\rd 4.10
=g [ rdm (4.10)

CEampless )

Find the centre of mass of uniform rod
of length L, along its length.

Solution

Consider a uniform rod with a small
element dm of length dx at a distance
x from the fixed point.

The mass dm can be expressed in

. M
terms of mass density as, dm= de.

Therefore, from equation (4.10), the
centre of mass of the rod is,

e i rae
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‘ Exercise 4.1

Explain where the centre of mass of

a two particle system lies when one
particle is more massive than the
other.

2. Does the centre of mass of a rigid
body always lie within the body?
Give examples to support your
answers.

2

What is the difference between
centre of mass and centre of gravity?

4. Under what consideration does the
centre of mass coincide with the
centre of gravity?

5. Prove that the centre of mass of
(a) two-particle system divides the

line joining the particles by the
inverse ratios of the masses.
(b) semi-circular hoop of radius R

is given by —.
n

4.2
Moment of inertia of a rigid body is a
measure of how difficult it is to change the

Moment of inertia

state of rotational motion of a rigid body.
That is to say, how difficult it is either to
cause a body to rotate when at rest, to stop it
when rotating, or to increase or decrease its
angular velocity. The moment of inertia of a
body depends on mass, axis of rotation, and
mass distribution from the axis of rotation
of the bady. This implies that a single body
will have different values of moment of
inertia about different axes of rotation.
Hence, the moment of inertia of a body is
not unique.

This is the reason why it is much easier to
rotate a uniform meter rod about its centre
(where its moment of inertia is small) than
rotating it at one-end (where its moment
of inertia is large). The moment of inertia
of a rigid body can be deduced from the
kinetic energy of the body.

Suppose a rigid body of mass M is rotating
with an angular velocity @ about an axis
through O perpendicular to the plane of
the figure (Figure 4.3).

Figure 4.3: Rigid body with several particles

Consider a particle at point A, with mass
m,, which is at a distance r from O.
The velocity at A is v, = r@, where @
is the same for all particles of the rigid
body. The rotational kinetic energy of the
particle at A is

- (4.11)

1 2 l 2..1
—my =§m|r, 0]
i

The total kinetic energy of the body is
the sum of the kinetic energies of all its
particles.

|
K.E= _ercu +2mrm +.. +—mr ‘0’

L]

-

or




iri'r.r..zm2 (4.12)

Factoring out the constant values in
equation (4.12) the kinetic energy is

K.E= %mlzmﬁ (4.13)

i=]

The quantity zlrn,q: = m]rlz +4wrr}Jr']2 +..t m"r:
is called the moment of inertia denoted
by I. Therefore, the moment of inertia is
the sum of the product of the mass of each
particle of a rigid body and the square of its
distance from the axis of rotation. That is,

n
1= mr’=mr’+mr]+..+mr’ (4.14)
i=1

The SI unit of moment of inertia is kgm”.
Therefore, from equations (4.13) and (4.14),
rotational kinetic energy can be expressed
in terms of moment of inertia / as.

K,E:E;m-’- (4.15)

Note that, mass is an intrinsic property
of an object, whereas moment of inertia
depends on the physical arrangement of
that mass and the choice of rotational
axis.

4.2.1 Moment of inertia of a
rotating uniform rod

The moment of inertia of a rotating uniform

rod (e.g. metre rule) can be determined

from its axis of rotation passing either at

the centre or at its end.

Rotation of rieid bodies

(a) Moment of inertia of a uniform
rod rotating about an axis through
its centre

Consider a uniform rod AB of mass

M, with length L rotating about an axis

PQ passing through the centre of the

rod. Then, consider a small length dx

counting for the small mass dm located

a distance x from the axis PQ as shown

in Figure 4.4.

Al + [dm |B

| L >

Figure 4.4: Uniform rod with axis of rotation

at its centre

The mass of the small element dm is given
by

dm = ﬂa’x (4.16)
L

Comparing equations (4.14) and (4.16),

the moment of inertia of the element

about an axis PQ passing through the

centre of the rod is given as,

a =2 24
L

(4.17)
The total moment of inertia / of the
whole rod is the sum of the moment of
inertia d/ of the small mass elements dm
from A to Band can be achieved by
integrating equation (4.17), that is,

Mok,
I=TI:{LX dx (4.18)
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From equation (4.18), the total moment
of inertia [/ for a uniform rod about an
axis through its centre is

I=—MP

4.19
T (4.19)

(b) Moment of inertia of a uniform rod
rotating about an axis passing at
one end

Consider a uniform rod AB of mass M

and length Lrotating about an axis PQ

passing at one end of the rod. Then,
consider a small length dx counting for

the small mass dm located a distance x

from the axis PQ (Figure 4.5).

P
Do
17} g —
A — B
} T l
. L 1'
Q

Figure 4.5: Uniform rod with rotation axis at

one end

The mass of the small element is
drr:z—%dr, thus, from equation (4.14)

the moment of inertia of the element about
an axis PQ passing at one end of the rod

is, dI = -A—’f-xzdr.
L

Hence, the total moment of inertia of the
rod rotating about an axis PQ passing at
one end of the rod is

ML,
I=TL X~ dx (4.20)

Simplifying equation (4.20), the total
moment of inertia 7 for a uniform rod

about an axis at one end of the rod is

=2 p

3 (4.21)

4.2.2 Moment of inertia of a ring
rotating about an axis through
its centre

Consider a uniform ring of mass M and

radius r rotating about an axis PQ passing

through its centre O, perpendicular to the

plane of the ring (Figure 4.6).

+P

Figure 4.6: Uniform ring with rotation axis

through its centre

From equation (4.14), the moment of
inertia of small elements A.B,C of mass
m, .My, My, located a distance r from the
centre of the ring is given as,

2 _ 2 _ 2
=mr, I"—mzr , and f‘. =myr.

Thus, the moment of inertia of the whole
ring about an axis PQ through its centre
O 1s given by

I=mr*+mr’ +mr’ +..+mr’ (4.22)
Equation (4.22) can be written as,
I=(m+m+m+.+m)r' =M (423)

where, m, +m, +m,+...+m =M which




1s the mass of the uniform ring. Therefore,
the total moment of inertia of a uniform
ring about an axis through its centre is
given as,

I1=Mr? (4.24)

4.2.3 Moment of inertia of a disc
rotating about an axis through
its centre

Consider a uniform disc of mass M and a
radius r rotating about an axis PQ passing
through its centre O, perpendicular to the
plane of the disc. Now consider a small
ring element of mass dm and thickness
dx at a distance x, rotating about an axis
PQ through the centre O, as shown in
Figure 4.7.

Figure 4.7: Uniform disc with rotation axis

through its centre

From equation (4.14), the moment of inertia
of the small mass element dm, can be given
as x’dm . Thus, the total moment of inertia
of the disc about an axis through its centre
can be expressed as,

s J"f dm (4.25)
0

Since dm 1is the fraction of the total
mass M of the disc, then, the mass and
area for both the disc and the ring can be
expressed as,

dm M

4.26)
n A (4.26)

But, in equation (4.26) the area A of the
disc is r® and the area dAof the ring
is 27xdx, then, equation (4.26) can be
written as,

P ﬂ JA = erxiir

A re

M (4.27)

Therefore, from equations (4.25) and
(4.27), the total moment of inertia / of
the whole disc about an axis through its
centre is

I=g-ﬂ-1—4- ':.r"d.r

[ (4.28)

| Integrating and simplifying equation (4.28),
" the total moment of inertia / of the whole
disc about an axis through its centre is

|

I= EMrz (4.29)

C \ampledd )

If a flywheel of mass 30 kg and diameter
Im is rotating at 300 revolutions per
minute about an axis through its centre,
what is the kinetic energy of the flywheel?

Solution

Using equation (4.15) for the kinetic
energy (K.E) of a rotating rigid body
and equation (4.29) for moment of
inertia of flywheel (disc), then,
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Then, from equation (4.29), the

K.E=lfm2=l>< lmrz W’ moment of inertia d/ of the
2 2 N2 disc |
isc is
' x[ : mrz]x(ZJrf)z : 2 30
==X| — , dl =—(dm)a* 4.
2 2 2( ) (4.30)
where @ =27 f Since dm 1is the fraction of the
2 total mass M of the disc, then
5 [ 300 rev/s ’ .
30 kg x (0.5 m)* x 4n X[T) the mass and volume for both
K.E= 4 the sphere and the dise can be
=1850.6 J expressed as,
Therefore, the kinetic energy of the flywheel dm M 4.31)
about an axis through its centre is 1850.6 J. dv VvV ]

The volume V of the sphere is

4.2.4 Moment of inertia of a sphere iﬂ—,ﬁ and the volume dV of the
The moment of inertia of a solid sphere (e.g. ball
bearing) and hollow sphere (e.g. football) rotating

about an axis through its centre can be derived as |V and 4V into equation (4.31),
follows: . dmcan be expressed as,

dise is dV = ma’dy. Substituting

3IMa’

3

(a) Moment of inertia of a solid sphere rotating dm = Edv =
about an axis through its centre

Consider a solid sphere of mass M and radius r

rotating about an axis PQ passing through its centre

0. Now consider an elemental disc of radius @ and =~ Substituting the value of dm

dy (4.32)

From Figure 4.8, a’ =r" =y’

small mass dm of thickness dy at a distance vy and a into equation (4.30), the
from the centre O of the solid sphere (Figure 4.8). moment of inertia dI of the disc
p can be obtained by,
J}l @® )
N am(r -y
— di = | : ) dy (4.33)
- 8r
r
x Thus, the moment of inertia of
/ the solid sphere about an axis
= through its centre is obtained

by intergrating equation (4.33)

Figure 4.8: Solid sphere with rotation axis through its as follows:
centre

R IR,




i I'w"fd’(r2 - }'3)2
= '[" 8r'

Integrating equation (4.34),

[ . 27y ¥
l=?|ir y- 3 'I'?:|-r (435)

dy (4.34)

Simplifying equation (4.35), the total
moment of inertia/ of the solid sphere
about an axis through its centre is

1‘=3Mr3
5

C Wampleds )

The mass of a solid sphere increases
by 1% . What will be the percentage
increase in the moment of inertia about
its axis of symmetry?

(4.36)

Solution

Differentiating the moment of inertia
I of a solid sphere about the axis of
symmetry i.e., equation (4.36), with

2
respect to M then, dI =§r2dM'

The fractional changes in / isthe ratio
of dl to that of / which gives

dl _dM

I M
But the percentage increase in the
moment of inertia 7 about axis of
symmetry is

dl dM

—%=—%=1%
I M

Therefore, since the percentage increase
in the mass of the sphere is 1%, it
follows that the percentage change in
the moment of inertia is also 1%.

Rotation i i'!'__;'.lrl'I .-’I-‘u'."g.flj'l' LY

(b) Moment of inertia of a hollow
thin sphere

Consider a hollow sphere of mass M
and radius rrotating about an axis PQ
passing through its centre O . Now consider
an elemental ring of radius « and small
mass ¢dm, of thickness dy, at a distance y
from the centre O of the hollow sphere
(Figure 4.9). P

A

e

Figure 4.9: Hollow sphere with rotation axis at

its centre

Then, from equation (4.24), the moment
of inertia, dI of the ring is

dl =(dm)a’ (4.37)

Since dm is the fraction of the total mass
M of the ring, then, the mass and area
for both the sphere and the ring can be
expressed as,

dm M

dA A
From Figure 4.9, the area A of the sphere
is A=4nr’ and the surface area dA of the
ring is dA=2rady=2nradf (consider
dy to be very small such that dy = rd@).
Substituting A, dA, and a into equation

(4.38), dm can be expressed as,

- dv=ﬂd9

(4.38)

dm= (4.39)

2

- 2r
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Since a=rcos@ (Figure 4.9), then, from
equations (4.37) and (4.39) the moment of
inertia, / of the ring can be expressed as

Mr’

I== j?_,,coszecosede

2

Mr?
2

Integrating and simplifying equation
(4.40), the total moment of inertia, / of
the hollow sphere about an axis through
its centre is

;l’=§Mr2 (4.41)

=

J'i(l —sin’ 9)(:0:-‘.9(1’6 (4.40)

Now, suppose the solid and hollow sphere
have the same mass and radius, then the
ratio of the moment of inertia of solid
sphere 1.e., equation (4.36) to that of the
hollow sphere i.e., equation (4.41) is given

as ’.mh'd - g’."mﬂ'ml' ' lha{ 1S Inh‘id < !hrlﬂ'rm' .

From the definition of moment of inertia,
this implies that, solid sphere rotates much
easier than hollow one. This is beacuse
mass distribution in solid sphere is closer to
the axis of rotation than in hollow sphere.

4.2.5 Moment of inertia of a cylinder
The moment of inertia of a solid cylinder
(e.g.. circular iron rod) and hollow cylinder
(e.g.. hosepipe) rotating about an axis
through its centre can be derived as follows:

(a) Moment of inertia of a solid cylinder
rotating about an axis through its
centre

Consider a solid cylinder of mass, M

and radius, r rotating about an axis PQ

passing through its centre.

Let the cylinder be divided into small
discs of masses m,,m,,..m, each with
radius r (Figure 4.10).

m,m, m,

Ay FATEN

Figure 4.10: Solid circular cylinder with
rotation axis at its cenire

From equation (4.29), the moments of
inertia of the small discs of mass m,, m,,
and m,, located a distance r from the

M | [
centre of the disc, is givenby I = Emlr',

| . .
l.= -z—mzr', and [, = —z-m_‘r“.

Thus, the total moment of inertia of the
solid eylinder about an axis PQ through
its centre is the sum of moments of inertia
of such small discs for the whole solid

| : :
| eylinder given as,

1 » I_ -n 1 - [ -
I=—mir +—=myr~+—nmyr +..4+—mr° (4.42)
> - g 2

-

Equation (4.42) can be written as,

I= (ml +m,+m+...+m }lr3 = l My (4.43)
F g f L 2 2

where, m, +m, +m, +...+m_ = M which is

the mass of the solid cylinder. Therefore, the

total moment of inertia of a solid cylinder
about an axis through its centre is given as

I=—Mr- (4.44)

Note that, the formula of the moment of
inertia of a solid cylinder about an axis
through its centre, equation (4.44), is
similar to that of a disc, equation (4.29).




(b) Moment of inertia of a thin hollow
cylinder rotating about an axis
through its centre

Consider a thin hollow cylinder of mass,
M and radius, r rotating about an axis
PQ passing through its centre. Let the
cylinder be divided into small rings of
masses, m, (mm,,....m )each with radius
r (Figure 4.11).

m.

r

e} () 120
L\ \J

Figure 4.11: Hollow circular cyvlinder with

rotation axis ar its centre

From equation (4.24), the moments of
inertia of a small rings of mass m, ; located
atadistance r from the centre of the rings
is given by,

lL=mr’
[ i

Thus, the total moment of inertia of a
thin hollow cylinder about an axis PQ
through its centre is the sum of moments
of inertia of the small rings for the whole
solid cylinder, hence,

I=mr* +mr’ +ma’ +o+mr’ (4.45)

Equation (4.45) can be written as,

1'=(m]+.r1r12+a'ﬂ_‘+...+mﬂ)r2 = Mr° (4.46)

where, m, +m, +m,+...+m, =M which
is the mass of a thin hollow cylinder.
Therefore, the total moment of inertia of
thin hollow cylinder about an axis through
its centre is given as,

(4.47)

Rotation of rieid bodies

Note that, the formula of the moment of
inertia of a thin hollow cylinder about an
axis through its centre, equation (4.47) is
similar to that of a ring, equation (4.24).

Now, suppose the solid and thin hollow
cylinder have the same mass and radius,
then, the ratio of the moment of inertia of
solid cylinder (equation (4.44)) to thatof a
thin hollow cylinder (equation (4.47)), is

g 1 .
given as ’mfu.‘ — E I.!'mHtm" that 15, Imﬁn' < Iﬁuﬂnu' .

From the definition of moment of inertia,
this implies that solid cylinder rotates much
easier than hollow one. The reason is that
mass distribution in solid cylinder is closer to
the axis of rotation than in hollow cylinder.

I\ sk )

Search the Internet, and explore other
methods that can be used to determine
the moment of inertia of;

(a) Uniform rod at the end and at the
centre of mass

(b) Ring rotating about an axis through
Its centre

(c) Disc rotating about an axis through
its centre

(d) Solid sphere rotating about an axis
through its centre

(e) Hollow sphere rotating about an axis
through its centre

(f) Solid cylinder rotating about an axis
through its centre

(g) Hollow cylinder rotating about an
axis through its centre
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l Exercise 4.2

1.

Must a rotating object have a non-
zero moment of inertia? Explain.
Explain why changing the axis of
rotation of an object changes its
moment of inertia.

Experienced cooks can tell whether an
egg is raw or hard boiled by rolling it
down a slope (and taking care to catch
itat the bottom). How is this possible?
Which type of egg should reach the
bottom of the slope first?

Can you think of a body that has
the same moment of inertia for all
possible axes? If so, give an example,
and if not, explain why this is not
possible. Can you think of a body
that has the same moment of inertia
for all axes passing through a certain
point? If so, give an example and
indicate where the point is located.
Calculate the moment of inertia of a
uniform rod of mass 60 g and length
20 cm about an axis perpendicular
to its length through

(a) its centre

(b) one end

Find the moment of inertia of a rod

4 cm in diameter and 2 m long,

weighing 8 kg about an axis

(a) perpendicular to the rod and
passing through its centre

(b) perpendicular to the rod and
passing through one end

(¢) longitudinal axis through the
centre of the rod

Four particles of masses 4 kg,
2 kg, 3kg, and 5 kg are fixed at

the four corners A, B, C, and D

respectively, of a square of each side

I m. Calculate the moment of inertia

of the system about:

(a) an axis passing through the point
of intersection of the diagonal
and perpendicular to the plane
of the square;

(b) the side AB; and

(c) the diagonal BD.

8. Calculate the moment of inertia of
a circular disc of diameter 40 cm,
thickness 7 ¢cm, and uniform density
9 gem ™, about a transverse axis
through the centre of the disc.

9. Assume the earth is a uniform
homogenous sphere of radius
6.37%10°cm  and density
5.45 gem™. Calculate its moment
of inertia about the axis of rotation.

4.3 Axis theorem of rotating bodies

The axes theorems of rotating bodies include
the parallel axis theorem and perpendicular
axis theorem. These theorems are useful for
determining the moment of inertia about
axis given that, the moment of inertia about
other axes are known.

4.3.1 The parallel axis theorem

The moment of inertia of rigid bodies
with simple geometry (high symmetry)
is relatively easy to calculate provided
that the rotational axis coincides with
an axis of symmetry. The calculation of
moment of inertia about an arbitrary axis
can be cumbersome. Rigid bodies may
have infinitely many moments of inertia
because there are infinitely many axes
about which they rotate. Fortunately, the




use of an important theorem, called the
parallel axis theorem, often simplifies the
calculation.

The parallel axis theorem states that,
“The moment of inertia I of a rigid body
about any axiy is given by the sum of the
moment of inertia 1. about a parallel axis
passing through its centre of mass and the
product of its mass M and the square of
the perpendicular distance between the
two parallel axesd "ie., =1 +Md’.

To prove the parallel axis theorem,
consider a rigid body of mass M rotating
about an axis y located at a distance d
from the centre of mass G . Then, consider
a particle of mass m, at a distance x from
a centre of mass G (Figure 4.12).

Axis through
/centre of mass

y Rotational
axis

Figure 4.12: Irregular rigid body with rotation
axis at its centre

The moment of inertia df of a particle
of mass my, a distance x from the axis of
rotation is given as

dl = m(d+ ;1:]1 (4.48)

Then, the moment of inertia 7 of the
whole rigid body is then given as,

I = i””.- (d+x) = zﬂ:mj(dz +2xd +x3)
=1 i=1

Rotation of rieid bodies

I= dzimi+2dirn;x+imi.rz (4.49)

=1 =] i=l

From equation (4.49), z m, = M is the total
=l "

mass of the rigid body and Zm}.x’ =1 is
=1

the moment of inertia of the rigid body

about an axis through its centre of mass G.

Eml_x: MXx, where X is the average
i=1

distance from the centre of mass G to the
axis of rotation y, which 1s zero, since
the axis is at the centre. Taking these
considerations, the moment of inertia 7 of
arigid body about any axis is expressed as,

I =1 +Md’ (4.50)

Applications of the parallel axis theorem

Parallel axis theorem is used to determine
moment of inertia of homogeneous rigid
bodies with different geometries, for
example, cylindrical shell, uniform rod,
uniform solid sphere, hollow cylinder,
and rectangular plate.

For a uniform rod of mass M and length
L. (Figure 4.4) the moment of inertia
about an axis through one end is

I=1,+Md*, where d=§

12 2

For a solid sphere of mass M and radius
r, the moment of inertia about an axis
tangent to the surface is

2
5

I=LML2+M[£J =%1‘|rﬂ',2

I=1_+ Md*= Mr1+Mr2=§Mr1.
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For a uniform solid cylinder of mass M and
radius r, the moment of inertia about an
axis on the surface parallel to its length is

[= I('. +Md* =% Mr® + My’ = %Mr:

—bxampleds ]

(a) Consider a uniform ring of mass
200 g and radius 5 cm. Find the
moment of inertia of the ring about
an axis passing through its edge
and perpendicular to the plane of
the ring.

(b) A part of a car mechanical linkage
(Figure 4.13(b)) has a mass of 3.6kg.
Its moment of inertia /7 about an
axis through point P, 0.15 m from
its centre of mass is 7 =0.132 kgm”.
What is the moment of inertia /.
about a parallel axis through the
centre of mass?

Solution
(a) Consider a sketch diagram shown in
figure 4.13 (a).

(a) (b)
|1
)
[
/ of mass
Axis through through P
the edge

Figure 4.13: (a) Moment of inertia of a ring
about its edge,
(b) A car mechanical linkage part

Using the parallel axis theorem,
equation (4.50) and the moment of
inertia I_ of a ring about its centre
equation (4.24), the moment of inertia
I of a ring of radius r rotating about
its edge can be expressed as,

J!’=Ir-!-Mr2 = Mr’ + Mr* =2Mr’

I=2x(200%107"kg) % (5%107 m)*
=1x10""kgm’

where d =r and I. =Mr’

Therefore, the moment of inertia of
the ring rotating about its edge is
1107 kgm’,

(b) The target variable /. is obtained
by using the parallel axis theorem
equation (4.50).

Rearranging the
equation,

I.=I-md’

md® =3.6 kg x0.15° m’
=0.081kgm’

I.=0.132 kgm® - 0.08 1kgm’
=0.051 kgm*

4.3.2 Perpendicular axis theorem

The moment of inertia of a planar object
about an axis perpendicular to the plane
intersected by two perpendicular axes can
be determined using the perpendicular axis
theorem.

The theorem states that, “The moment
of inertia of a plane body about an axis



perpendicular to its plane is given by
the sum of the moments of inertia about
any two mutually perpendicular axes in
the plane intersecting the first axis”. i.e.,
I =1+ 1. Unlike the parallel axis
theorem, the perpendicular axis theorem
works for planar (two dimensional) bodies
only.

Consider a planar body of mass M rotating
about z-axis, then, consider a particle P, of
mass m, at a distance r, from a centre O,
of the planar body (Figure 4.14).

..."
.

w

Figure 4.14: Planar rigid body with a rotating

axis at ity centre

The distance r of the particle m situated at
P(x, y)from a point O, can be expressed as,
r* =x*+ y’. Then, the moment of inertia
of the particle at P(x, y) about z-axis is
mr’ = m{x: + yz).

The moment of inertia of the whole planar
body about z-axis is equal to the sum of
the moment of all particles of mass m, at
a distance r. and can be expressed as,

n n
2 _ 2. <2
I: = me’;' _sz(xa +Jf )
i=1 =1
n M
2 2
I.' = Z"II'II' +Zmiyl'
=1 =]

(4.51)
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]
el -
where Zm,,x; =1 _is the moment of
i= '

inertia of the whole body about y-axis and
n
2 m _vf =1 _is the moment of inertia of the

whole planar body about x-axis. Therefore,
the moment of inertia about z-axis can be
expressed as,

I.=1+1

“Neampiedr )

The moment of inertia of a uniform
circular disc of mass M and radius
R about an axis passing through its
centre and perpendicular to its plane

(4.52)

is %MRE. Find the moment of inertia

of the disc about;

(1) any diameter

(ii) anaxis passing through a point on the
edge of the disc and perpendicular
to the disc

(i11) a tangent in the plane of the disc

Solution
The plane of the disc is the x-y plane as
shown in Figures 4.15.

y

(3]
-

(a) (b)
Figure 4.14: Moment of inertia of the disc

(i) Using perpendicular axis theorem

(Figure (a)):
I.=1+1
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now, I =1_= IEMRE from the

symmetry, I, =1,

2r, =l MR®, thus, I.=1 =1MR2
2 T 4
(11) Using parallel axis theorem (Figure (b)),

I =1 +Md*, thus

l,,=1.+M(CD)'=I_+MR’

! =—l-:‘|.4'.o'i?2 -r-M’ﬁ'z=3}-1‘|rﬂ5&‘2
2 2

(ii1) Using parallel axis theorem (Figure (c))

I,.=I +MR’ =%MR3+ MR’ = %MRZ

Applications of the perpendicular axis
theorem

The perpendicular axis theorem can be
used to determine the moment of inertia
of a lamina (e.g., a thin planar layer)
rotating about an axis perpendicular to
the plane. It is also used to determine the
moment of inertia of a disc rotating about
an axis along its diameter.

(i) Moment of inertia of a lamina rotating
about an axis perpendicular to the plane

Consider a lamina of mass M with
dimension xX y . rotating about axis OY,
passing through its centre O perpendicular
to the plane (Figure 4.16). The moment of
inertia about this axis can be determined
using the perpendicular axis theorem as
follows:

Y Z
NEN0.
da
"4 #cﬁ}
y| < bl o dm X
a

/ |

7 q

Figure 4.16: Lamina with a rotating

¥

axis at is centre

dm,
rotating at a distance «, from the axis
OY. The moment of inertia dI of dm a
distance a rotating about axis QY can be

Consider a small mass element

expressed as,

dl, = a*dm (4.53)

Since, dm 1is the fraction of the total mass
M of the lamina, then, the mass and area
for both the lamina and the small element
dm can be expressed as,

dm M

dA A

But, the area A of the lamina is xy and
the area dA of dm is vda, then, equation
(4.54) can be expressed as,

(4.54)

dm = E.:J’A = ﬂda
A X

(4.55)

Then, from equation (4.53), the total
moment of inertia, / of the lamina rotating
about axis QY can be expressed as,

i

=£1‘: (4.56)

M pal2 Ma’
= 3—_[ ada=2 = 3
¥ 0 12

X 3x
1]




The integral part in equation (4.56) is
multiplied by 2 to account for the second
half of lamina, as the integral is carried
for half part of the lamina.

Similarly, the moment of inertia, /_ of
the lamina rotating about axis OX can be
expressed as,

M .

=—y

X 12

Using perpendicular axis theorem, the
moment of inertia /. of the lamina rotating
about axis OZ can be expressed as,

I,=1+1

(4.57)

1, =2 (+y) (4.58)

(ii) Moment of inertia of a disc rotating
about an axis along the diameter

Consider a disc of mass M rotating about
x—axis or y—axis along the diameter of
the disc (Figure 4.17). The moment of
inertia of the disc about these axes can be
determined using the perpendicular axis
theorem.

>

’1:

-

Figure 4.17: A disc with rotating axis along its
diamerer

Since x-axis and y-axis are along the
diameter of the disc, the moment of inertia
I, of the disc about x-axis is equal to

Rotation i i'!'._;'.lrl'I .-’I-‘r."a.l’ls'n"\

moment of inertia / of the disc about
y-axis . That is,

I=1 =1 (4.59)
In addition, from equation (4.29), the
moment of inertia /_of the disc of radius
r about an axis through its centre and
perpendicular to its plane ( z-axis ) is

I

I = EMH (4.60)

Using perpendicular axis theorem i.e.,
equations (4.52) and (4.59), the moment
of the inertia /_ of the disc about an axis
through its centre and perpendicular to its
plane ( z-axis ) can be expressed as,

I=I+1 =28kl =21 (4.6])

Therefore, from equation (4.61), the
moment of the inertia /_ or I of the disc
about an axis along its diameter ( x-axis
or y -axis) is,

Mr’ (4.62)

1. A uniform disc has a mass of 4 kg
and a radius of 2 m. Calculate the
moment of inertia about an axis
perpendicular to its plane
(a) through its centre
(b) through a point of its

circumference

2. Aring has aradius of 20 cm and a
mass of 100 g. Calculate the moment
of inertia about an axis,

(a) perpendicular to its plane
through its centre

(b) perpendicular to its plane
passing through a point on its
circumference
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(c) inits plane passing through the
centre

3. The moment of inertia of a solid
sphere of mass 2.5 kg is 4 kgm’.
Find its moment of inertia about a
parallel axis at a distance of (0.2 m
from its centre.

4. A thin sheet of aluminium of mass
0.025 kg has alength of 0.25 m and
width of 0.1 m. Find its moment of
inertia
(a) about an axis perpendicular to

the width and passing through
the centre of mass m in its plane

(b) about an axis parallel to the
length and passing through the
centre of mass m in its plane

(¢) about a perpendicular axis to
the plane passing through the
centre of mass

5. Calculate the moment of inertia of
thin circular disc of radius 50 cm
and mass 2 kg about an axis along
the diameter of the disc.

4.4 Radius of gyration of a rotating
rigid body

Consider a solid disc of radius r and

a total mass M which is uniformly

distributed across the area of the disc

(Figure 4.18a). The moment of inertia [

of the disc about an axis passing through

A

its centre O is !:%Mrt

Suppose the mass M of the disc is shifted
to concentrate at a distance k from the
axis of rotation (Figure 4.17b), so that the

resulting thin-walled disc has the same
moment of inertia as that of the solid disc.
The radius & at which the moment of
inertia of the solid disc is the same as that
of the thin-walled disc is called radius of
gyration of the disc.
Radius of gyration
=

(a)

(b)
Figure 4.18: (a) A solid disc, and
(b) a thin-walled disc

In general, the radius of gyration k of
a rigid rotating body is defined as the
distance from the axis of rotation to a
point where the moment of inertia / of
the body remains unchanged if the mass
of the body is assumed to be concentrated
at that point. That is,

k= (4.63)

M

If mass M of the body is assumed to be
concentrated at a point with a distance k
from the axis of rotation, the moment of
inertia, by definition is,

L

I=Mk*= Zm:}: = mi rf (4.64)
=1

=l
[f the body of mass M is made of n
particles each of mass m, then M =mn

M . : .
and m =— . Therefore, from equations
n

(4.64) and (4.63), k can be expressed as,

o

n

B Jrf +rl 4l (4.65)
n




Thus, k represents the root mean square
distance and is some kind of an average
effective distance of the particles from
the axis of rotation. Therefore, the radius
of gyration of a body about a particular
axis of rotation is equal to the root mean
square distance of its particles from the
axis of rotation.

Campleds)

(a) Deduce the radius of gyration k of
a rigid body of mass M rotating
about various axes as follows:

(1) Auniform rod with axis passing
at its centre;

(i1) Auniform rod with axis passing
at one-end;

(111) A uniform ring of radius r with
axis passing through its centre
perpendicular to its plane;

(iv) A uniform disc of radius r with
axis passing through its centre
perpendicular to its plane; and

(v) Asolid sphere of radius r with
axis through its centre.

(b) The radius of gyration of a hollow
sphere of mass M and radius R about
a certain axis is R. Find the distance
of the axis from the centre of the
sphere.

Solution

(a) (1)Using equations (4.63) and (4.19)
the radius of gyration of a uniform
rod with axis of rotation through its
centre can be expressed as,

12

(11) Using equations (4.63) and (4.21),
the radius of gyration of a uniform
rod with axis of rotation through one-

Rotation of rieid bodies

end can be expressed as, k = LJ;

(111)Using equations (4.63) and (4.24),
the radius of gyration of a ring with
axis of passing through its centre
perpendicular to its plane is, k = r.

(vi) Using equations (4.63) and (4.29),
the radius of gyration of a disc with
axis of rotation passing through its
centre perpendicular to its plane can

be expressed as, k = r \/%

(v) Using equations (4.63) and (4.36), the
radius of gyrationof a solid sphere of
radius r withaxis through its centre

can be expressed as, k = r\/%-

(b) Let x be the distance of the axis
from the centre of the sphere (see
Figure 4.19). From the parallel axis
theorem:

A
X
1
Grx

B Y
Figure 4.19: Radius of gyration of a disc

I, =1, +Mx"
Thus, Mk*= % MR? + Mx*

Given k = R, then

RI=ER3+x1; x=£
3 V3

Therefore, the distance of the axis from

the centre of the sphere is i

V3
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4.4.1 Compound pendulum

The radius of gyration of a rigid body
can be determined by finding the period
of rotation about an axis which is at a
distance h from the centre of mass of
the rigid body. Consider a rigid body
suspended from a fixed peg and oscillating
about a fixed axis O. Suppose h is the
distance OG where G is the centre of
mass and @ is the angle made by OG with
the vertical at an instant (Figure 4.20).
The equilibrium state of the compound
pendulum corresponds to the case in
which the centre of mass lies vertically
below the pivot point. ie., 8=0°.

Centre of mass

Pivot point

Figure 4,.20: Oscillation of rigid body

The torque on the body (compound
pendulum) is then [, where «is the

and

angular acceleration given by

-

dt
the opposing torque when € is small is
equal to mgh. Since the perpendicular
distance from G to vertical through O
is hsin@, and sin@ =@ when the angle is

small, then /o =-mghf. Hence,

_—mgh
I

[t is clear, by analogy with our previous
solutions of SHM equations, that the

o

angular frequency of small amplitude
oscillations of a compound pendulum is

given by @ = ‘m[gh . So, the period of

oscillation 7'is given by,

T= 2—”:21: :
0] mgh

Therefore, for a compound pendulum
(such as a rod, disc, and lamina), the
period T is given by,

T=2r L4
Mgh

where, / is the rotational inertia about
the axis of suspension, and M is the
mass of compound pendulum. Using the
parallel axis theorem, 7 is given as,

I=M(h" +k%) (4.67)
where k is radius of gyration.

(4.66)

4.4.2 A solid sphere and cylinder

For a torsional motion of a solid sphere or
cylinder, the period 7 can be expressed as,

'.F=24?fr\/I
|

where Cis the torsional constant of the wire
material and / is the moment of inertia of a
solid cylinder or sphere about vertical axis
through its centre. For a rolling motion of
a solid sphere and a cylinder on an inclined
plane, the period 7 can be expressed as,

(4.68)

rr+k’
2gh

T =2n

(4.69)

where 7 is the height of the inclined
plane, ris the radius of the rolling object
and k is the radius of gyration.
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Aim: To determine acceleration due to gravity by using compound pendulum

Materials: Retort stand, bar pendulum, perforated metre rule, stopwatch, metre
scale

Procedure
I. Fix a metre rule provided on a knife edge so that it balances horizontally and mark
its centre of mass, G .

2. Suspend the perforated metre rule using the last hole from the centre of the metre
rule on an optical pin fixed on the retort stand so that it is free to swing in a vertical
plane.

3. Measure the distance /& from the point of suspension to the centre of mass G of
the metre rule.

4. Allow the metre rule to swing in the vertical plane with the small angle of deflection
(approximately less than 10°).

5. Record the time ¢ for 10 complete oscillations.

6. Repeat steps 2, 3, and 4 using four other holes and in each case, determine the
time, r and hence, find the periodic time, T .

7. Tabulate your results as shown in the following table.

'Holes |Height | Time (t) for 10|Period| g el s
h(cm) | oscillations (s) | 7(s) IT (s7) T h(s’cm)  h (em”)

I.\l —: :
2"" I_" |
3n| f | T [ T - ! |
4|h |
5Ih

Questions

(a) Using any software or otherwise, plot a graph of T *h againsth” .
(b) From the graph in part (a), determine the value of acceleration due to gravity given

that: T2h = 41(& +h).
8
(c) (i) Use the graph and equation in (b) to determine the value of k.
(11) What is the physical significance of k?
(d) How can you apply the knowledge gained from this activity in your daily life?

Engaging in this activity allows you to acquire expertise in utilising compound
pendulums in physics and real-world engineering applications.
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lunmu

Calculate the radius of gyration
about a tangent of a hollow sphere
of radius 0.5 m parallel to the axis
through its centre.

2. A flywheel consists of a solid disc
30 cm in diameter and 2.5 cm thick
and two projecting hubs 10 cm in
diameter and 7.5 cm long. If the
flywheel is made of material with
density 8000 kgm *, find the radius
of gyration about the axis of rotation.

fad

Small blocks, each of mass m,
are clamped at the ends and at the
centre of a light rigid rod of length L.
Compute the radius of gyration of the
system about an axis perpendicular
to the rod and passing through a point
one-quarter of the length from one
end. Neglect the moment of inertia
of the rod.

4. What is the radius of gyration of a
slender rod of mass 90 g and length
120 cm about an axis perpendicular
to its length and passing through
20 cm from one end?

4.5 Torque

When loosening or tightening a bolt or a
screw, a twisting force is required to turn
the serew about its axis of rotation. The
twisting force required to turn the screw
is called torque or moment of force.
Torque, therefore, is the force required

to rotate an object about an axis of
rotation. The effect of torques resembles
the translational force which is used to
push or pull objects, but torque rotates
or twists an object when applied. Thus, it
can be said that torque is a turning force
or twisting force. In general, torque is
defined as the product of force applied and
the perpendicular distance from the point
where force is applied. Torque is a vector
quantity and its direction is determined by
the right-hand rule and is perpendicular
to both linear force and radius (distance
from the axis of rotation). That is,

—

rxF (4.70)

Its SI unit is newton-metre denoted as

Nm. The magnitude of 7 is Frsin@
where @ is the angle between F and .

From equation (4.70), the rotation effects
depend on the distance from the point of
application of force and the magnitude
and direction in which the force is applied
called the line of action of the force. This
can well be explained when shutting or
opening a door.

Consider an open door with hinges at
point PCQ (Figure 4.21). It is evident
that turning the door from point A with
larger distance from the hinge (axis of
rotation) is easier than point B, which
is closer to the hinge. Likewise, turning
becomes easier when the line of action of
the force is applied perpendicular to the
door at A than when applied parallel to
the door at that point.




I.‘.. q

Figure 4.21: Hinged door with points of action

of force

4.5.1 Expression for torque of

a rotating rigid body
Consider a rigid body rotating about an axis |
PO with an angular velocity @, in which |
every particle of the body rotates with the
same angular velocity (Figure 4.22).

ii'.---

Lo
- - - -

T

oo
vP
Figure 4.22: Rotation and torgue

Let particles A and B with masses ™, and
m, rotate with angular velocity, @.Also, |

Rotation a5 ri '._;'.'rn'l .-’I-‘r.l'a,.flu':' 5

let the line of action of applied force be
perpendicular to the position vectors
of the particles. Then, from Newton’s
second law of motion, the net force acting
on A can be expressed as,

F, =ma =mnro (4.71)

dow . ;
where o = S is the angular acceleration

which is the rate of change of @. Thus,
using equation (4.70), the moment
of force (torque) on particle A can be
expressed as,

TA=FAX”|=’"1’13“ (4.72)
Similarly, for particle B, the force can be
expressed as,

F,=ma, =m,r,a (4.73)
Hence, the moment of force (torque) on
particle B is

T, =F,xXn,= mzr;a (4.74)

Finally, the total moment of the force for the
whole body about an axis PO is equal to:
=T, +T,+..+7T,

= mlrfa +m,rlo+ m‘rfa +.tmria
- - + 2 nn

which simplifies to,

T= (mtrf +myr Fmr) 4 A mr )a (4.75)

But, mn™+myry +myry +..Amr =1

is the moment of inertia of the body about
axis through O.

From equation (4.75), the moment of
force (torque) of the whole body about an
axis through O can be expressed as,

dw
t=la=1—
dt

(4.76)
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Masses m, =0.20 kg and m, =0.25 kg
are suspended (Figure 4.23) from a
light cord that passes over a wheel of
radius 0.15m and moment of inertia
0.12 kgm®. Initially, the two masses
are held at the same horizontal level.
Assuming that the wheel rotates freely
about its axis, calculate the speed of
each mass and the angular velocity of
the wheel when the vertical distance
between the masses is 0.3 m.

m
@
Tl A ATZ
mE v ymg

Figure 4.23: Connected masses passing over

a wheel

Solution

Since the torque 7.is developed on the
wheel, then, tension T, # T,. Thus,

I-mg=ma (i)
m,g—T, =m,a (ii)
Adding equations (i) and (ii), it follows
that;

mg—mg+T —-T,=ma+ma

(mz—ml)g—(T,—T)=(m2+m])a (iii)

2 I

but, 7=Tr = lax, where T=T2—TI

Since, £ _ , . then,
r
=12 (iv)
"

Substituting equation (iv) into (iii),
(m2 - ml]g— Ii:= (m2 +ml)ﬂ
r

(mz_ml)g

a=
I
5 +m +m,
g 2

(0.25-0.20) kg x 9.8 ms
a=
[0.1 2 kgm’

3 }+(o.20+ 0.25) kg

=0.085 ms™

From the third equation of motion,
v’ =u’ + 2as, where s is distance moved
by each mass and u=0ms™". Therefore,

v=1/2x0.085 ms > x0.15 m
=0.16 ms™".

Therefore, the speed of each mass is
0.16 ms™.

The angular velocity @ of the wheel is
given by,

_v_0.16ms"
“r 015m
=1.07 rads™

Therefore, the angular velocity of the
wheel is 1.07 rads ™.



4.5.2 Work done by torque 4.5.3 Work-energy in rotating

Consider a force F applied tangentially objects

to a wheel of radius rand allowed to | Consider a rigid body of moment of
rotate about its centre O through an angle | inertia 7 displaced a small angle d6 from
6 (Figure 4.24). Ato B (Figure 4.25).

Figure 4.25: Rigid body with a small

Figure 4.24: A wheel with tangentially applied )
displacement

force

The work done dW by a torquetin
turning the object through a small angular
on turning the wheel at an angle @ | displacement d@ from A to B is given
(subtended by an arc AB ) about anaxis O | by,

The work done W by the force F

is W = (Force) x (arcdistance AB). The arc | JW = 1d@ (4.78)
e J |
distance AB is equal to r@. Therefore, W Using equation (4.76). the work done
can be expressed as, - dW in (4.78) can be expressed as,
W=Fx10, Frxo=19 Wl dW=![£Jdm=!wdw (4.79)
dt ‘

Example-l.ll The total work done Win turning the

Calculate the work done by a torque of wheel from initial ﬂ]i to final ﬂﬂgl.llﬂ.l'
6 Nm if it rotates a wheel through four | velocity @, can be expressed as,

revolutions. w, @,
W =j lodo=1["wdo

Solution
1 2 7
Work done, - W= 2 lo, - —;— lw’ (4.80)
W=1x60=6 Nmx(4revx2n) -
From equation (4.15), the total work done
=150.8Joules

W in equation (4.80) can be written as,

Therefore, the work done by the torque
is 150.8 Joules. W =AK.E (4.81)

redational
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Therefore, equation (4.81) is the
rotational work-energy theorem which
states that, “The work done in rotating a
rigid body corresponds to the change in
its rotational kinetic energy".

4.5.4 Determination of the moment
of inertia of a flywheel

The moment of inertia of a flywheel about
a horizontal axle can be determined when
one end of string is attached to a mass M
and the other end is passed through a hole
in the flywheel, and winding the string
round the axle (Figure 4.26).

The mass M reaches reference level (e.g.,
the ground) when the string is completely
unwound from the axle. The number of
revolutions n, made by the wheel from
when M is released up to when it strikes
the ground (when the string is released
from the axle) is recorded. The flywheel
will perform additional rotations after
the string is released from the axle. The
additional number of revolution n, made
by the flywheel and the time ¢ taken from
when the string is released from the axle
until it comes to rest, are also recorded in
reference to a mark on the wheel.

Figure 4.26: Flywheel with axle as its axis of
rotation

Aim:

Materials:

To determine the moment
of inertia of a flywheel

Circular disc (wooden
or metallic disc) for the
flywheel. sturdy string or
rope, known masses (e.g.,
stones, metal weights,
bags filled with sand),
measuring tape or ruler,
stopwatch or timer

Procedure

L.

Construct the flywheel using the
circular disc. Attach a string or rope
securely to the axis of rotation of the
flywheel.

Measure the radius (r) of the flywheel
using a measuring tape. Measure the
length (L) of the string or rope.
Ensure the flywheel is initially at
rest (initial angular velocity w =0)
and record the initial position of the
flywheel.

Attach a known mass (m) to the free
end of the string. Allow the mass
to hang vertically so that it exerts
torque to the flywheel. Calculate the
torque exerted by the mass using the
equation, T=mxgxr.

Release the mass and simultaneously
start the stopwatch or timer.
Measure the time taken for at least
one complete rotation. The time is
equivalent to a period, 7.

Determine the final angular velocity
of the flywheel, w, = 2_11'. Compute

. w
the angular acceleration, a = e




7. Repeat the experiment with different
masses to exert a torque. Record the
corresponding times for completing
one rotation.

8. Calculate the moment of inertia for
each trial and fill in the table of data.

Questions

(a) How does varying the mass attached
to the string affect the torque applied
to the flywheel?

(b) Why is it essential to measure the
time taken for a specific number of
rotations?

(¢) How does the acceleration of the
flywheel change as torque is applied?

(d) How is the obtained moment of
inertia compare to the theoretical
values? How can you improve the
accuracy of your measurement?

(e) What other experimental approach
can you use to determine the moment
of inertia of a flywheel?

(f) How do the skills gained in this
activity help you to carry on your
daily activities?

This actvity helps you te gain practical
experience in measuring the moment
of inertia of rotating objects using basic
materials and methods.

Now, when M is released, the loss in
potential energy of M is equal to the gain
in kinetic energy of M plus gain in kinetic
energy of flywheel and work done against
friction. That is,

Mgh = % Mrw’ +£!a;l2 +nf  (4.82)

Rotation of rieid bodies

where h is the distance M has fallen,
r is the radius of the axle, @ is the
angular velocity, / is the moment of
inertia of the wheel, and f is the energy
per turn expended against friction. Since
the energy of rotation of the flywheel
when the mass M reaches the ground
equals to the work done against friction

. : | o’
in n, revolutions, then, f=—

"I

equation (4.82) can be expressed as,

”l

Mgh=EMrw +Elw (l'l'—} (483)

Since the angular velocity of the wheel
when M reaches the ground is @ , and the
final angular velocity of the wheel is zero
after a time ¢, the average angular velocity

.Jw "27n
i§ —=
2 t

L. Thus, the angular velocity

drn,

@ is given by @ = . Using @ and

the magnitude of the other quantities in
equation (4.83), the moment of inertia /
of the flywheel can be determined.

Angle turned through during the n™
time
Suppose 6, and 6, are the angular
displacements turned through by a rigid
body at times f,=n and 1,=n-1,
respectively. From, @ = +ar; where
o is the angular acceleration, @ and
 are initial and final angular velocity
respectively.

_de

= E; do =@ di -t-(ar]dr: integrating

within limits,
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[“d6=w,[" di+a[" tdr resuls to: q=fr _2NX05x107 m
8, =1 n=| } 5 X ]0-4 kgm2

Of 2 2
Gz—ﬂlzwu(n—{n—l))+§(n —(n-1) ) =30 racdi 2
0,-6,=6 , this is the angle turned

: e Therefore, the angular acceleration
through during the n™ time

of the flywheel is 20 rads™.

(b) Since the radius of the flywheel is

9"=w”+%~(2n—-l} or r=%=#=0.$x10€m
and the length pulled off the axle
s=1m. Using circular motion, the
motion of the flywheel' when 1.0 m
This is the angle turned through by a body of the thread has been pulled off the
axle can be expressed as,

6 :w"(n—n+ l]-i-%(n:—nz-l-lrl— I)

I
) =@, +a(n=2)

during the n" time.
0 =@’ +200=0"+2a| >
| \Exampled.1l/ e % r
Aflywheel withaxle 1.0 cm indiameter , . Im
is mounted on frictionless bearings @, =0+2x20 rads ™ X 05x10°m rad
and set in motion by applying a steady |
tension of 2.0 N to a thin thread wound 0, = 89.44 rads™’
tightly round the axle. The moment of
inertia of the system about its axis of Now, when the constant retarding
rotation is 5.0 10~ kgm*®. Calculate: couple brings the flywheel to rest in one
(a) The angular acceleration of the complete turn, then, the circular motion
flywheel when 1.0 mof the thread equation is 0=+ 2’8" which gives
has been pulled off the axle: and )
i

its angular acceleration o', as ¢’ = S

Therefore, the constant retarding couple
which is required to bring the flywheel
to rest in one complete turn is

(b) The constant retarding couple which
must be applied to bring the flywheel
to rest in-one complete turn when
tension in the thread have been
removed.

v=la" ==] o,
Solution &
(a) From definition, the torque of P i (39,441-34;]5“)"
the flywheel can be expressed as T'=-5x10"" kgm" x
2% 2nrad
t=1Iloe= Fr. Thus, the angular
=-0.32 Nm

acceleration 1s,

. IETITRIIII




4.5.5 Kinetic energy of rolling
objects

When an object such as a cylinder or ball
rolls down a plane, the object is rotating
as well as moving down the plane.
Therefore, it has both rotational motion
and translational motion.

Consider a uniform cylinder of radius
rand mass M rolling without slipping
down an inclined plane of an angle 6 at
a height h above the horizontal plane
(Figure 4.27).

Figure 4.27: Cylinder with axis of rotation
along the inclined plane

At any instant, the line of contact AB
with the plane is at rest, and therefore, AB
can be considered as the axis of rotation
at the surface of the cylinder. Then, from
equation (4.15), kinetic energy of the
cylinder about an axis of rotation AB can
be expressed as,

1
KE=—I &

=18 (4.84)

Using the parallel axis theorem from
equation (4.50), the moment of inertia
I, about the surface of the cylinder can
be expressed in terms of the moment of
inertia [, about the centre of the cylinder

as I,,=1,+Mr’.

Therefore, equation (4.84) can be expressed
as,

] 2 1 2
KE=—1,"+= My (4.85)

| 5 % ) o =
where Elﬁw‘ is the rational kinetic

| . N
energy and EMv' is translational kinetic

energy. Therefore, for rolling objects
along an incline, the total kinetic energy is
the sum of the rotational and translational
Kinetic energy.

4.5.6 Conservation of mechanical
energy in rolling objects

When an objeet is rolling about an

incline (Figure 4.27), its total mechanical

energy (E) is the sum of the potential

(P.E= Mgh) and kinetic energy (K.E).

Then, Ecan be expressed as,
E=PE+K.E

E= Mghﬂ-[% Io + % Mv* ] (4.86)

The principle of conservation of mechanical
energy requires E of the system to remain
unchanged (conserved) if no external force
(such as friction) is applied to the rolling
object. Therefore, the conservation of
mechanical energy in a rolling object at
any instant can be expressed as,

Mgh+ ( % fﬁmz + % My’ J = constant (4.87)

C\ampiediz)

Determine the velocity at the bottom of
a rigid body of mass M rolling from
the top of the inclined plane of length /
elevated at an angle 6.
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Solution

When a rigid body rolls from the top
of the incline, its mechanical energy
(potential and kinetic) at any instant
is conserved. As soon as it begins the
rolling, part of its potential energy (U) is
converted into kinetic energy (K.E). Its
mechanical energy is purely potential at
the top and purely kinetic at the bottom
of the incline. Then, the conservation
of energy for rolling objects equation
(4.87), can be expressed as,

Mgh+0=0+[%!mz+%Mv3] (i)

Since the inclined plane is of length /,
elevated at an angle @ (Figure 4.27),
then, from trigonometry, h=/[sin@,
and (i) can be expressed as,

l 4 1 ) '
Mgl' nf=—I1w +— My~ (i)
S1 2 2 ¥

Using @ = Y into (ii) and simplifying,

r
the velocity of the rolling body at
the bottom of an incline plane can be
expressed as,

2¢lsinf@ = 2¢h

/ l+I

Mr’ Mr?

T I—

1+ (iii)

which can be expressed as,
_ | 28h
"FNI*C (iv)

:
where C=— is a coefficient (less
Mr-

than or equal to 1) depending on the
shape of the body. For example, for a

disc Czé, solid cylinder C=-12—and

solid sphere, c=§. Substituting the

value of C in (iv) for different objects,
one can compare their respective
velocities at the bottom and therefore,
determine which object will reach the
bottom of the incline first.

Cerampled.13)

Determine the order in which a solid
sphere, disc, and solid cylinder arrive
at the bottom of an incline if all were
released at the same time to roll at an
inclined plane elevated at an angle 6.

Solution

Using the € for solid sphere, disc, and
solid cylinder in Example 4.12, equation
(iv), their respective velocities are

fi0 o
Y fiere = 73}".‘ Y Ve = 53}1 and
i4
vcyh'mfcr = 5311

Therefore, the sphere arrives at the
bottom first followed by both disc and
the solid cylinder as they have same
value of C. An alternative approach
is to use acceleration where, an object
with larger value of linear acceleration
a will finish first.

C\ample 414)
Consider a solid cylinder of mass M and
radius R which is made to roll down a
plane without slipping. Find the speed of
its centre of mass at the moment when
the cylinder reaches the bottom of an
inclined plane (Figure 4.29).



Figure 4.26: A solid cvlinder rolling down the
plane without slipping

Solution
Using the moment of inertia of a solid

cylinder (I=%MRE) about an axis

. W, .
through its centre, @ = R in equation

(4.87), the conservation of energy of
a rolling object at the bottom can be
expressed as,

Mgh +0'={}+%1’&J'2 +%le

1 R BRI (T
Mgh"—’le-* +EMV =EM'I»’ “’}

Then, from (i), the speed V is

4
v=_|—gh (ii)
3 £
Therefore, equation (i1) is the velocity
of the centre of mass of a solid cylinder

at the bottom of inclined plane.

Campledis)

A body rolling down an inclined plane
has radius R and radius of gyration k.

The body starts moving from the height A
and reaches the bottom with velocity v.

Rotation of rieid bodies

Show that, v=

Solution

Consider free body diagram for a body
rolling down an inclined plane and
has radius R and radius of gyration k
starting from height & and reaches the
bottom with velocity v (Figure 4.27).

B

Figure 4.27: A body rolling down an inclined
plane

Since the total energy E at the top of
incline is purely P.E,thatis, (K.E=0)
and at the bottom of the incline the
total energy E is purely K.E, that is,
(P.E =0). Using the moment of inertia

5 v .
I =mk and @ = E the conservation of

mechanical energy (4.87) for the rolling
body can be expressed as,
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4.5.7 Linear acceleration of rolling
objects
Consider a rigid body of radius rand

mass M rolling down an inclined plane
(Figure 4.30).

Mgcos@

Figure 4.30: Rigid body with axis of rotation
along the inclined plane

At any instant, the line of contact AB with
the plane is at rest, and therefore, AB can
be considered as the axis of rotation at the
surface of the rigid body. The component
of weight along the incline is mgsin@
which provides the torque (/e)on the
object about an axis AB . That is,

(Mgsin@)yr=t=1_a=1,% (488

r

From equation (4.88), the linear acceleration

of the rigid body with axis AB can be
expressed as,

3 Mr’gsin@
I

AB

" (4.89)

From the parallel axes theorem in
equation (4.50), then, equation (4.89) can
be expressed as,

B Mrzgsinﬂ_ gsin  gsinf

b= — =
I,+ Mr° 1+ fﬁ.‘ 1+C
Mr-

(4.90)

I
Mr’
or equal to 1) depending on the shape of

1s a coeflicient (less than

where ¢ =

the body.
| \Adtivityd3 )
Aim: To compare the speed of
a ring and a disc rolling
down an inclined plane
Materials: Two discs (solid) with 2.5

cm and 5.5 cm diameters,
ring with 2.5 cm diameter,
beam balance lg
precision, inclined plane
or wooden board 1.5 m
or longer, ruler, wooden
block, stopwatch

Procedure

1. Prepare an inclined plane by raising
one end of the incline plane or thin
wooden board. Elevate it to a height
of about 6 cm to 10 ecm from the floor
or table top. Make sure the inclined
plane or board is level, and there is
no sideways tilt.

2. Measure the mass of 2.5 cm diameter
ring and record its mass.

3. Repeat step 2 for the 2.5 cm diameter
solid disc. Both should have
approximately the same mass.

4. Place aruler at the top of an inclined
plane as shown in Figure 4.31. Make
sure it does not slide down.

Ring#_____:iﬂm.:—folid disc
e weRUler

—




5. Position the 2.5 cm ring and 2.5 cm
solid disc behind the ruler so that
they both roll down the inclined
plane.

6. Adjust the ruler, if necessary, so that
the centres of the ring and disc are
at the same starting position on the
inclined plane.

7. Quickly remove the ruler from the
base of the ring and the disc so that
they both start rolling down the
inclined plane at the same time.

8. Repeat steps 1-6 using the 2.5 cm
diameter ring, 2.5 cm diameter disc,
and the 5.5 cm diameter solid disc.

9. Release all three at the same time.
The diameter of 5.5 cm solid disc
is estimated twice the mass of the
5.5 c¢m solid disc.

Questions

(a) From your observations, which one
reached the bottom first between the
disc of 2.5 cm diameter and the ring
of 2.5 cm? Why?

(b) Explain the variations observed for
the ring and disc of 2.5 diameters,
and the 5.5 cm solid disc when they
reach the bottom of the plane.

This activity helps youto gain practical
experience in measuring the moment
of inertia of rotating objects using basic
materials and methods.

—vampledio]

Determine the order in which a solid
sphere, disc and solid cylinder arrives
at the bottom of the inclined if both are
released at the same time to roll at an
inclined plane elevated at an angle 6.

Rotation of rieid bodies

Solution

Substituting the values of C for solid
sphere, disc and solid cylinder in
equation (4.90), their respective linear

. 3
accelerations a are ¢, ==gsin#,
sphere ?

2. 3
cylinder = gg Sin 9

2
a, = 33 sin@ and a

Therefore, the sphere arrives the bottom
first followed by both disc and the solid
cylinder as they have same value of C.

C \eampledy)

A sphere and a cylinder having the
same mass and radius start from rest
at the same point on an inclined plane
and they are left to roll down the plane.
Determine which one reaches at the

bottom first?

Solution

Consider a sphere and cylinder (Figure
4.29a) and its free body diagram
(Figure 4.32b)

w w
[ A

(a)

(b) R

mgsin@

mgcos@

mg

Figure 4.32: (a) Objects on an inclined plane,
and (b) free body diagram
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Then, the net force F in taking the body
down the plane based on Newton's 2™
law is,

F=mgsin@— [ =ma (i)

The moment of force of friction about
Ois fR which is equal to torque la,
about 0. Then, the friction force f can
be expressed as,

lo -
f= = (i)
Using (ii), equation (i) can be expressed as,
(iii)

: lo
mgsinf — — = ma
R

Using the moment of inertia of a solid
sphere in equation (4.36) and that of solid
cylinder in equation (4.44), the linear

acceleration a for a sphere and @’ for a
. . 5 .
cylinder respectively, a= ?gsmﬁ and
2 ; ,
a= ggsmﬂ. Since a>a’, then, the

sphere will reach the bottom first.

—bampled i)

Assolid cylinder of mass m is placed in a
rough inclined plane of inclination @ to
the horizontal (Figure 4.33). Show that
the minimum frictional force applied for

4 : o bt e .
rolling without slipping is Emgsmf}.
and the minimum coefficient of friction

|
is —tané.
lssan

h
mg cos@

Figure 4.33: Solid cylinder rolling on a rough
inclined plane

Solution
For translational motion,
f =mgsin@ —ma (i)
But for rotational motion,
1R

(ii
; i)

a=

since o = % and a = %(relalionship

between hner and rotational acceleration).
Using (i) into (i),

f=mgsin9—m[ffzJ

2mfR* :
=mgsin8 -2
o J g I (iii)

=mgsinf - [
m

X k. e : i
since [ = EmR' for a solid cylinder.

Therefore, (iii) simplifies to,

f=%mgsin9 (iv)

Similarly, from (Figure 4.33),

f =umgcosf and therefore, (iv) can
be written as,

umgcos@ = -:Ij:mg sin@

Thus, the minimum coefficient of

frictionis, = %tanﬂ

B I EEEEEEEEEEIIIII=,
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. Is it possible to change the
translational kinetic energy of an
object without changing its rotational
energy? Explain.,

If you see an object rotating, is there
necessarily a net torque acting on it?
Why?

. Can a stationary object have a

non-zero angular acceleration?
Explain.

When tightening a bolt, mechanics
sometimes extend the length of a
wrench handle by slipping a section
of pipe over the handle. Why could
this procedure easily damage the
bolt?

(a) If the forces on an object balance,
do the torques necessarily
balance? Explain.

(b) If the torques on an object
balance, do the forces necessarily
balance? Illustrate youranswers
with clear examples.

A grinding wheel is in the form of
a uniform solid disc of radius 7 cm
and a mass 2 kg . It starts from rest
and accelerates uniformly under
the action of a constant torque of
0.6 Nm that the motor exerts on the
wheel.
(a) How long does the wheel take
to reach its final operation speed
of 1200 rev/min ?

(b) Through how many revolutions
does it turn while accelerating?

Rotation of rieid bodies

7. Amodel airplane with mass 0.750 kg

is tethered by a wire so that it flies in

acircle 30 m in radius. The airplane

engine provides a net thrustof 0.8 N

perpendicular to the tethering wire.

Find:

(a) The torque which produces the
net thrust about the centre of the
circle;

(b) The angular acceleration of

the airplane when it flies at
horizontal level; and

(¢) The linear acceleration of the
airplane tangent to its flight path.

. A 15 kg object and a 10 kg object

are suspended, joined by a cord that
passes over a pulley with a radius of
10 cm and a mass of 3 kg
(Figure 4.34). The cord has a
negligible mass and does not slip
on the pulley. The pulley rotates on
its axis without friction. The object
starts from rest while at 3 m apart.
Treat the pulley as a uniform disc,
then determine the speed of the two
objects as they pass each other.
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9. An object with a weight of SON

is attached to the free end of a light

string wrapped around a wheel of

radius 0.25 mand a mass 3 kg . The
wheel is a solid disc free to rotate in

a vertical plane about the horizontal

axis passing through its centre. The

suspended object is released 6 m

above the floor.

(a) Determine the tension in the
string, the acceleration of the
object, and the speed with
which the object hits the floor.

(b) Verify your last answer by using
the principle of conservation of
energy to find the speed with
which the object hits the floor.

10. A uniform solid sphere of radius r

is placed on the inside surface of a
hemispherical bowl with much larger
radius R . The sphere is released from
rest at an angle @ to the vertical and
rolls without slipping (Figure 4.35).
Determine the angular speed of the
sphere when it reaches the bottom
of the bowl.

Figure 4.35

I1. A solid sphere of mass m and radius

rrolls without slipping along the
track (Figure 4.36). It starts from rest
with the lowest point of the sphere at

height / above the bottom of the loop

of radius R, much larger than r.

(a) What is the minimum value of
h (in terms of R ) such that the
sphere completes the loop?

(b) What are the force components
on the sphere at the point P if
h=3R7?

Figure 4.36

12. Show that the minimum coefficient of
friction for rolling without slipping
of a hollow cylinder and solid sphere

on an inclined plane are %mmﬂ and
%lam? respectively, where @ is the

angle of the inclined plane with the
horizontal.

4.6 Angular momentum

When an object is rotating about an axis,
its rotational inertia can be characterized
using angular momentum. The angular
momentum L can be defined as the product
of moment of inertia of an object and its
angular velocity @ (L=Ilw ). Itis a vector
quantity whose direction is that of the axis
of the rotating body and is given a positive
sign in the direction in which a right-hand
screw would advance if turned in the similar
direction. Mathematically, L is defined



as the product of the linear momentum
( p = mv) times the perpendicular distance
r from the axis of rotation. That is,

L=fxp (4.91)
and its magnitude given as prsin@ where

@ is the angle between P and 7.

Consider a particle A atadistance r, from
the axis O of a rotating rigid body that
rotates with an angular velocity @
(Figure 4.37).

Figure 4.37: Angular momentum and
moment of inertia

From equation (4.91), the angular
momentum L, of particle A rotating with

I ! .
angular velocity @ = — about axis O, with
r

|
@ =0, can be expressed in magnitude as,
L, =(my)xr=(mre)xn=mr’'e (4.92)

Similarly, for particle B of mass m, . its
angular momentum L, about axis O is

- 2
L,=mr,® (4.93)

In general, the total angular momentum
L for n particles about an axis O is,

L= IimlrlI - mzrz2 +..+ m"ff [0 (4.94)

where, mr’+mpr’+...+mr’ =1 is the
moment of inertia of the rotating rigid body.

Rotation of rieid bodies

Therefore, the magnitude of angular
momentum L of a rigid body rotating
with angular velocity @ about an axis O
can be expressed as,

L=Iw (4.95)

The vector form of angular momentum
from equation (4.95) can be written as,

L=10 (4.96)

4.6.1 Angular momentum and torque

Using the product rule of differential
calculus to equation (4.91), the time rate
of change of L can be expressed as,

dL d dr dv

- ¥ oo = OV
—=m—lVX = —XV+rxX—
dt mdr(‘ r) m(dr nrr dr)
=m(Fxﬂ) (4.97)
dt
Notethat,ﬁxr,::x;;:o
dt

Equation (4.97) can be written as,

I " .
rxma=rxF=171=—
dt

(4.98)

-

Where a= -d—F is the linear acceleration.

Thus, equation (4.98) provides the
relation between torque 7 and the angular
momentum L, that is, the torque acting
on a body is equal to rate of change of
angular momentum of the rigid body. This
is analogous to Newton’s second law of

motion. i.e., F = ‘;—P =ma. Where P is
[

a linear momentum.
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4.6.2 The principle of conservation
of angular momentum

Suppose no external torque 7__ is applied

on a rotating rigid body, equation (4.98)

can be expressed as,

—=0 (4.99)

This implies, from equation (4.99),
the angular momentum, L=lw is
constant and represents the principle
of conservation of angular momentum.
The principle states that, “If there is no
external torque acting about the axis of
the rotation then the angular momentum
of a body about that axis of rotation is

constant”.

The principle is also expressed as,

lo = !J, @, = constant (4.100)

Note that, it is the angular momentum
(which is the product of moment of inertia
and the angular velocity) that remains
constant and not the angular velocity @.
For the angular momentum to remain
constant, the moment of inertia decreases
and the angular velocity increases and vice
versa. The angular momentum, L= /@ is
analogous to linear momentum, p = mv,
in that, the moment of inertia is replaced
with mass, and angular velocity with linear
velocity. A summary of the comparison
of the dynamic equations for linear and
rotational motion is as shown in Table 4.1.

Table 4.1: Comparison of dynamic equations linear and rotational motion

' Linear motion
Mass (linear inertia) m

Eots_ltional motion
Moment of inertia [/

Momentum p= mv
s — ?
Newton’s second law, F = mﬂ
dt

Work W=Fd

Kinetic energy K.E = %m

Momentum L= /@

k] — d;
Newton’s second law 7 = J——

dt
Work W =10

Kinetic energy K .E = 1 lo’
2

| Power P=Fv
Velocity, v=u+ at

| Power P=1w
Angular velocity, @ = @ + ot

. L &
Distance, s= ur + Eaf'

vl =u’+2as

Angular displacement, 8 =@ 1+ %m]

1
s =u+aln——
. ( 2)

w =’ +200

|
8 =w +a(n——
L a (n 2)

LRI



—\ampled.1o)

If the earth were to suddenly contract to
half of its present radius (without any
external torque acting on it), by how
much would the day be decreased?

Solution
Consider the earth to be a perfect
solid sphere of mass M whose radius,
angular velocity, and moment of inertia
of the earth before contraction are

2n 2n

R, o="7=27 and %MRf and

: 2n
after contraction are R,, @, =?and

%MRf respectively.

During contraction, the angular
momentum of the isolated earth 1s
conserved. Therefore,

24 =\
since the earth contracts by a half its

radius, using R, =-§~’- in (i), it gives
T = 6 hours. This means a day will last
for only 6 hours, and therefore, a day
will decrease by 18 hours.

4.6.3 Applications of rotational
motion of rigid bodies

Torque has various applications in many
common tools used domestically and in
industries, where it is necessary to turn,
tighten, or loosen devices. Such tools
include spanners and screwdrivers. In
a longer handle will enable

general,

Rotation il ."J'._;'Jrn'l .-’I-‘u'."g.flj'n' LY

smaller force to accomplish a task. It is
easier, for example, to open a door when
the force is applied at a longer distance
from the hinge. All these are some of the
applications of torque in daily life.

In addition, the basic property of angular
momentum is to stabilize objects. For
example, if a coin or cycle tyre is placed
vertically on a horizontal surface without
rolling, and released, it will immediately
flip on its side. However, the coin or wheel
will sustain its vertical position if rotating.
This basic property of angular momentum
is gyro-airplane which maintains its
position regardless of the change in position
in airplane body, hence stabilize airplane
position.

Similarly. skaters and divers regulate their
rotational motion by just movements of

~ theirarms and legs inwardly or outwardly.
~ This is the application of the principle

of conservation of angular momentum.
When the skater or diver stretches her
arms and legs outwards, increases her
moment of inertia/, thus, her angular
velocity @ is reduced to maintain the

initial angular momentum.

If two spinning objects have the
same angular momentum, will they
necessarily have the same rotational
kinetic energy? If they have the same
rotational kinetic energy, will they
necessarily have the same angular
momentum? Explain.
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2. A circular metal disc of mass 4 kg

and diameter 0.4 m makes 10 rev/s
about an axis passing through its
centre and perpendicular to its plane.

(a) What is the angular momentum
about the same axis?

(b) Calculate the magnitude of the
torque which will increase the
angular momentum by 20% in
10seconds .

Alightrigid rod 1 m in length joins
two particles, with masses 4 kg and
3 kg at its ends. The combination
rotates in the x-y plane about a
pivot through the centre of the rod.
Determine the angular momentum
of the system about the origin when
the speed of each particle is 5 m/s.

A horizontal platform in the shape
of a circular disk rotates freely in a
horizontal plane about a frictionless
vertical axle. The platform has
a mass M =100 kg and a radius
R =2m. A student whose mass is
m=60kg walks slowly from the
rim of the disk toward its centre. If
the angular speed of the system is
2 rads’' when the student is at the
rim, what is the angular speed when

. A 2kgdisc travelling at 3 ms

he reaches a point r=0.5m from
the centre?

. A car of mass 900 kg is moving

around a circular path of radius
300m with a steady speed of
72 km/h. Calculate its angular

momentum.
=1

strikes a 1 kg stick of length 4 m
that is lying flat on nearly frictionless
ice (Figure 4.38). Assume that the
collision is elastic and that the disc
does not deviate from its original
line of motion and the moment of
inertia of the stick about its centre
of mass is 1.33kgm’. Find:

(a) The translational speed of the
disc;

(b) The translational speed of the
stick; and

(c) The angular speed of the stick
after the collision.

v —31'm~.'

J_*I/m

Figure 4.38
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1.

evision exercise 4

Explain why the angular velocity
of the earth about the sun increases
when it comes closer to the sun?

Give a physical quantity obtained by
a product of moment of inertia and

(a) angular velocity,
(b) angular acceleration.

How will you determine the direction
of a torque? Explain.

Why do you use a single finger to
turn the door, but you use a thumb
and finger to open a bottle cork?

Suppose you remove two eggs from
a refrigerator, one boiled and the
other fresh. If you wish to identify
the boiled egg without breaking
the eggs, you can spin them on the
floor and compare their rotational
motions. Which egg spins faster?
Which rotates more uniformly?
Explain.

A solid sphere and a solid cylinder,
each having the same mass and
radius, are released together at the
top of an inclined plane and roll
without slipping, but also with
negligible rolling friction. Explain
why the sphere will always reach
the bottom first despite the fact that
both must have the same total energy
at all times.

Determine the moment of inertia
of a 50 kg thin uniform meter rod

10.

12

13.

Rotation of rieid bodies

rotating about an axis passing through
the 25 cm mark perpendicular to its
length.

The diameter of a ring increase by
2% . What will be the percentage
increase in the moment of inertia
about the axis of symmetry?

Two circular discs of the same mass
and thickness are made from metals
having different densities. Which
disc has the larger rotational inertia
about its symmetry axis?

What is the purpose of the spin cycle
of a washing machine? Explain in
terms of aceeleration components.

. Explain briefly why a wheel rolling

on a flat horizontal surface cannot
be slowed down by static friction?

A solid ball, a solid cylinder, and a
hollow cylinder roll down a slope.
Which one reaches the bottom first?
last? Does it matter whether the
radii are the same? What about the

masses?

A wheel of moment of inertia
0.30 kgm® mounted on a fixed axle
accelerates uniformly from rest to an
angular velocity of 60 rads™ in 12s.
Find:

(a) The angular acceleration;

(b) The torque causing the wheel

to accelerate; and

(¢) The number of revolutions in
this 12 s period.
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14. A constant force of 30 N is applied

15.

16.

17,

tangentially to a rim of a wheel
mounted on a fixed axle and initially
at rest. The wheel has a moment of
inertia of 0.2 kgm® and radius of
1S cm.

(a) Whatis the torque acting on the
wheel?

Find the work done on the wheel

(b)
in 10 revolutions.

(c) Assuming that no work is done
against friction, use energy
consideration to find the angular
velocity of the wheel after
10 revolutions.

A disc and a hoop with the same
mass and radius roll down a slope.

(a) Which one has a greater moment
of inertia?

(b) Does one lose more P.E than
the other?

(c) Which one acquires the greater
speed?

An electric motor supplies power
of 510 W to drive an unloaded
flywheel of moment of inertia
2 kgm® at a steady speed of 6x 10’
revolutions per minute. How long
will it take before the flywheel comes
to rest after the power is switched
off, assuming the frictional couple
remains constant?

An ice dancer is spinning about a
vertical axis with his arms extended

18.

19.

20.

vertically upwards. Then, he allows
his arms to fall until they are
horizontal.

(a) When will he spin faster or
slower?

(b) Has his kinetic energy been
increased or decreased? How
do you account for the change?

A horizontal disc rotating freely
about a vertical axis makes 90
revolutions per minute. Asmall piece
of putty of mass 2.0x107 kg falls
vertically on to the disc and sticks to
it at a distance of 5.0x 107 m from
the axis. If the number of revolutions
perminute is thereby reduced to 80,
calculate the moment of inertia of
the disc.

A sphere of radius r rolls without
slipping on a concave surface of large
radius of curvature R. Show that the
motion of the centre of gravity of
the sphere is approximately simple
harmonic with a period

reae 151

where g is the acceleration due to
gravity.

A thin uniform rod is pivoted about
a horizontal axis which passes
through a point on the rod 20 cm
from the centre of gravity. If the
period of oscillation of the rod is




21.

1.58 seconds, find the length of the
rod. (Moment of inertia of a uniform
rod about an axis through its centre

: ml’ .
74 i = where m is mass and /

is length).

A cylindrical rocket of diameter
2.0 m develops a spinning motion
in space of period 2seconds about
the axis of the cylinder. To eliminate
this spin, two jet motors which are
attached to the rocket on opposite
ends of the diameter are fired until
the spinning motion ceases. Each
motor turns the rocket in the same
direction and provides a constant
thrust of 4.0x10° N in a direction
tangential to the surface of the rocket
and in the plane perpendicular to its
axis. If the moment of inertia of the
rocket about its cylindrical axis is
6.0x10° kgm?, find:

(a) Angular acceleration of the

spinning of the rocket;
(b) Angular speed;
(¢) The time for which the motors
are fired; and

(d) Thenumber of revolutions made
by the rocket during firing.

22. Aflywheel has 8 spokes and a radius

of 30 cm. It is mounted on a fixed
axle and spinning at 2.5 rev/s. A
24 cm arrow is to be shot parallel to
the axle through the wheel without

hitting any of the spokes. What

24,

26.

Rotation of rieid bodies

minimum speed must the arrow
have?

. A frictionless pulley has the shape

of uniform discs of mass 2.5 kg and
radius 20 cm. A 1.5 kg stone is
attached to a very light wire that
is wrapped around the rim of the
pulley and the system is released
from rest. How far must the stone
fall so that the pulley has 4.5 J of
kinetic energy?

A centrifuge in a medical laboratory
rotates at an angular speed of
3600 rev/min. When switched off,
it rotates 50 times before coming
to rest. Find the constant angular
acceleration of the centrifuge.

. The hub of a washer goes into its

cycle, starting from rest and gaining
angular speed steadily for 8s. At
what time does it turn at 5 rev/s?
At this point the person doing the
laundry opens the lid, and a safety
switch turns off the washer. The
hub smoothly slows to rest in 12s.
Through how many revolutions does
the hub turn while it is in motion?
A body rotating with uniform angular
acceleration covers 24 radians in the
4" second and 36 radians in the 6"
second. Calculate:

(a) The angular acceleration and
initial angular velocity: and

(b) The angular velocity after 10
seconds.




Chapter

Five

Fluid mechanics

Introduction

Principles of fluid mechanics play a vital role in everyday life. For example, they
are useful in the design and operation of aeroplanes, cars, hydropower plants,
and hydraulic systems. In this chapter, you will learn about the prineiples of fluid

mechanics that include surface tension, fluid motion, Bernoulli’s principle, and

viscosity. The competencies developed will enable you to apply the principles of

fluid mechanics in daily life.

Concept of fluid mechanics

Fluid mechanics deals with the behaviour
of liquids and gases, surface tension, and
the cohesive force that causes liquids
to form droplets. It explores how fluids
flow, interact with their surroundings,
and respond to forces. Therefore, it is
important to understand different real-
world applications of fluids.

5.1 Surface tension

A paper clip can rest on a water surface
even though its density is larger than that
of water; this is due to surface tension of
water. The surface of the liquid behaves
like a membrane under tension. Surface

tension arises because the molecules of
the liquid exert attractive forces on each
other. The surface of a liquid behaves like
a stretched elastic skin. This is why liquid
drops are spherical in the absence of
gravitational field. There is zero net force
on a molecule inside the volume of the
liquid, but a surface molecule is drawn
into the volume. Thus, the liquid tends
to minimize its surface area, just as a
stretched membrane does. Due to surface
tension, insects called pond skaters can
walk on water, water rises up in a capillary
tube, a needle may be made to float on
water, and a small piece of soap fixed to
the back of a piece of cardboard that is
floating on water will cause the cardboard




to move over the water surface. Surface
tension is the property of liquid by virtual
of whichits free surface atrest behaves like
an elastic skin on a stretched membrane.
It has a tendency of contracting so as to
occupy a small area as much as possible.

In this section, you will analyse surface
tension in terms of the molecular theory
and surface energy, then determine the
coefficient of surface tension of a liquid
and explain the factors that affect surface
tension.

Aim: To investigate the
behaviour  of  liquid
droplets on  different
surfaces

Materials: Distilled water, various
liquids (e.g., soap
solution, oil), beakers or
containers, pipettes or
droppers, plastic dishes
or petri dishes, various
solid  surfaces (e.g.,
glass, metal, wax, paper),
marker pen or adhesive
labels, stopwatch or timer,
graduated cylinder or
measuring cup, ruler or
measuring tape

Procedure

I. Label the surfaces to be tested (e.g.,
glass, metal, wax, paper) and place
them in a row.

Fluid mechanics

2. Fill a beaker or container with
distilled water.

3. Using a pipette or dropper, collect a
controlled volume of distilled water
(e.g., 0.5 cm?). The volume should be
maintained consistently throughout
the experiment.

4. Gently squeeze the pipette or dropper
above the first labeled surface,
allowing a water drop to form and
fall onto the surface.

5. Use a stopwatch or timer to measure
the time it takes for the water drop
to spread out and disappear. Record
this time in seconds.

Repeat step 3 for each surface.

7. Record the time taken for the water
droplet to spread and disappear on
each surface.

8. Repeat the steps 1-7 using different
liquids (e.g., soap solution, oil).

Questions
Why do different droplets behave
differently with time on different
surfaces?

This activity helps you to gain more
understanding on the concept of surface
tension and its applications in daily life.

5.1.1 Surface tension in terms of
the molecular theory

The cohesive force among liquid molecules
is responsible for the phenomenon of
surface tension. The molecules inside the

liquid are attracted equally in all directions
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by other molecules. In contrast,
the molecules on the surface
experience an inward pull,
because they are partially
attracted by other molecules. As
a result, a network of force is
then formed against the inward
pull in order to move molecules
to the liquid surface. This results
into a large potential energy on
surface molecules. In order to
attain minimum potential energy
and hence stable equilibrium,
the free surface of the liquid
tends to have the minimum
surface area and it behaves like
a stretched membrane.

Note that, any equilibrium
configuration of an object is
one in which the energy is a
minimum, This results to liquid
taking in a shape such that its
surface area is also minimum.
This is why a drop of water
takes on a spherical shape.
Therefore, for a given volume
of liquid, a spherical shape is the
one that has the smallest surface
area.

(a) Energy of liquid surface
The fact that a liquid surface
is in a state of surface tension
can be explained by the
intermolecular  forces. In
the bulk of the liquid, which
begins only a few molecular

diameters downwards from the surface, a particular
molecule such as A (Figure 5.1) is surrounded by an
equal number of molecules on all sides.

Liquid surface

. Resultant
No inward inward
force on A

forceonB
Figure 5.1: Molecular forces in liguid

The average distance apart of the molecules is such
that the attractive forces balance the repulsive forces.
Thus, the average intermolecular forces between A
and the surrounding molecules is zero. Consider
now a molecule such as C or B on the surface of the
liquid (Figure 5.1). There are very few molecules
on the vapour side above C or B. If C is displaced
very slightly upward, a resultant attractive force F
on it, due to the large number of molecules below
it, has to be overcome. If all the molecules in the
surface were removed to infinity, a definite amount
of work would be needed. Consequently, molecules
in the surface have potential energy. A molecule
in the bulk of the liquid forms bonds with more
neighbours than one in the surface. Thus, bonds
must be broken, i.e., work must be done to bring
the molecule into the surface. Hence, molecules in
the surface of the liquid have more potential energy
than those in the bulk.

Consider two atoms or molecules exerting forces
of attraction on each other as shown in Figure 5.2.

If the force F on A moves the molecule a small




distance Ar to the right; then, the work done AW

on A is given by,

AW= FAr (5.1)
5 e .
--;.—Ar >le r »

Figure 5.2: Forces of attraction between molecules

Let AU be the resulting change in the potential

energy, then,
AU =-AW (3.2)

The negative sign indicates that force is attractive
and the potential energy decreases.

Therefore, AU =—FAr , Thus, inthe limit; f = _dav

r

To showcase the principles of surface
tension by floating pin on the surface
of water.

Materials: Small dish, pin or needle, water

Procedure
1. Fill the small dish with clean water.

2. Carefully place a pin herizontally on the surface
of the water as in Figure 5.3.

3. Observe what happens to the pin.
Floating pin

Figure 5.3
Question

What causes the observed effect?

Fluid mechanics

(b) Measurement of surface
tension

Imagine a tangential line AB

drawn on the surface of a liquid

dividing the liquid into two parts

as shown in Figure 5.4.

Figure 54: Measurement of the
surface tension of the

liquid

The two formed parts of the
surface pull each other with
a force directly proportional
to the length of the line. It is
found that the forces of pull
are perpendicular to the line
separating the two parts and
tangential to the liquid surface.

Let F be the magnitude of the
forces exerted on each other
by the two parts of the surface
across the line segment AB of
length [. Surface tension is the
force per unit length acting in the
surface of a liquid perpendicular
to one side of a line in the surface.

y:lﬁ. where F is the force

on either side of line segment
AB and [ is the length of line
segment AB.
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The dimension of surface tension is
N MLT?
L

¥ = MT? and its SI unit is

Nm ™',

Therefore, coefficient of surface tension is
the force per unit length of an imaginary
line segment drawn in any direction on the
free surface of a liquid, the line of action of
the force being on the surface and at right
angles to the imaginary line segment.

Note: Surface tension is the physical
phenomenon, while the coefficient of
surface tension is the numerical value that
represent the strength of surface tension.

5.1.2 Surface tension in terms of
surface energy

Another way of viewing surface tension is
in terms of surface energy. A molecule in
contact with a neighbour is in a lower state
of energy than if it was alone (not in contact
with a neighbour). The interior molecules
have much more neighbours compared
to the surface molecules. Therefore, the
surface molecules have higher energy.
In order to increase the surface area of
certain liquid, work will have to be done
against the force of surface tension. This
work done is stored in boundary molecules
(surface layer) of the liquid in the form
of potential energy. Therefore, the liquid
surface will have more surface energy due
to the inereased surface area. The work
done against the force of surface tension
to increase unit surface area at constant
temperature is called surface energy (6)
of the liquid.

_ Workdone in increasing surface area

185 §

increase in surface area

Surface energy of the liquid has the same
ST units as that for surface tension, that is,
Nm 'or Jm™.

Consider stretching a film of liquid on a
horizontal frame (Figure 5.5). Wire AB
can slide smoothly along the frame. Since
the film has both an upper and lower
surface in contact with the wire, the force
F on AB due to surface tension is given
by F=2ly.

[f the wire AB is moved a distance x to
A'B’, then, work has to be done against this
force. The surface tension is independent
of the surface area of the film because as
the surface size inereases, more molecules
enter it and thereby maintaining the
average molecular separation. However,
surface tension decreases with increasing
temperature. Thus, provided wire AB
1S moved isothermally to A'B', the

" force on wire AB will be constant and

work done = 2xyl.

Smooth movable wire

TS e X i
T A A
! 2yl «— '
‘L ] B B
|
Liquid film Rigid
frame

Figure 5.5: Stretching of liquid film in a
horizontal frame

The increase in surface area is 2/[x (upper
and lower surface) and therefore, the work
done per unit area increase is given by,

5= Zf.r}’;
2ix
o=y

@ 00000

LRI



Therefore, the surface energy § is equal
to the surface tension 7- Hence, surface
tension is the work done per unit area
in increasing the surface area of a liquid
under isothermal condition. Work done in
increasing or decreasing the surface area
of a liquid is proportional to the change in
area, AA.

W = yAA, where y is the proportionality
constant which is the surface tension.

5.1.3 Excess pressure inside air
bubble or curved liquid
surfaces

The force of surface tension is related to

the magnitude of the curvature of a liquid

surface or a bubble formed in a liquid.

Every molecule on the liquid surface

experiences a force of surface tension that

acts tangentially to the liquid surface at rest.

The resultant force normal to the surfaces

acts on curved surface of the liquid. For |

convex surfaces, the resultant force is
directed inwards the centre of curvature,
while for concave surfaces the resultant
force is directed outwards from the centre
of curvature. For the equilibrium of the
curved liquid surface, there must be an
excess pressure force that balances the
resultant force due to surface tension.
Therefore, for a curved liquid surface in
equilibrium, the pressure in its concave side
is greater than the pressure on its convex
side.

Consider one half of the bubble, A, which
is at equilibrium (Figure 5.6). The sum
of surface tension force and the external
pressure force is equal to internal pressure
force on the bubble.

Fluid mechanics

The force on buble A due to the pressure
P is given by P xmr’, where nr’ is the
area of the circular face of A and pressure
is force per unit area. Similarly, the force
on A due to the pressure P.is given by
P,xmr’. Since the circumference of the
bubble is 2znr, the surface tension force
acting on the bubble is 2ary. It follows
that,

Prr’ +2nry = Par’
Simplifying gives, 2y = (P, <P)r,

therefore, P,— P, = 4y

g r
Hence, the excess pressure, P,— F, = Pis
given by

==L (5.3)

Figure 5.6: Excess pressure in a liquid bubble

Hence, excess pressure for a curved liquid
surface is inversely proportional to the
radius of the bubble; i.e., the smaller the
bubble the greater the excess pressure.
This explains why one needs to blow
hard to start a balloon growing. Once the
balloon has grown, less energy is needed
to make it expand more.

Excess pressure inside a soap bubble
can be calculated by following the
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same procedure used in a liquid bubble.
However, a soap bubble has two liquid
surfaces in contact with air, one being
inside and the other outside the bubble
(Figure 5.7). Hence, the force on one half
of the bubble due to surface tension is
2% 2mry.

For the equilibrium of the bubble,
P xnr’+4nry=mnr’P,

where F, and P, are pressure outside and
inside the bubble respectively. Excess
pressure,

_p-t
:

wd

(5.4)

Bubble B

-1
e

4

Figure 5.7: Excess pressure inside a soap bubble

This result for excess pressure is related
to the result obtained for a bubble formed
inside a liquid, equation (5.3).

CWampesi)

Find the excess pressure inside an air
bubble of diameter 5 cm in a liquid.
The surface tension of the liquid is
25x 107 Nm™.

Solution

2
Excess pressure, P= ok
-

e 2%x25x107 Nm™
25%107 m

Therefore, the excess pressure inside
the bubble is 2 Nm™.

“Wamples2)

A soap bubble has a diameter of
4mm. Calculate the pressure inside it
if the atmospheric pressure is 10’ Pa.
Surface tension of soap solution is
2.8x10°Nm™.

o |

=2 Nm™

Solution

P=F +FP where PR, and P, are
pressures inside the bubble, outside
the bubble and due to surface tension
respectively,

peps
,.
=2 -1
¥ ]05P3+4><2.8x10 Nm

2x107°m
=1.00056x%10° Pa

Therefore, the pressure inside a soap
bubble is 1.00056 10" Pa.

5.1.4 Coalescing and breaking of
liquid drops and bubbles
Understanding surface energy is important
in studying behaviours of bubbles and drops.
When subjected to various conditions, two
or more bubbles may merge during contact
to form a single large bubble. On the other
hand, a large bubble may break down into
smaller bubbles. Hence, the work done in
coalescing and breaking drops and bubbles

can be deduced separately.




Coalescence of liquid drops in vacuum

Liquid drops coalesce in the presence of
external forces. When drops combine, they
form a single drop (Figure 5.8).

e

Figure 5.8: Combined liquid drops in vacuum

Consider two liquid drops of radius 7
and r, respectively, coalescing in vacuum
to form a single drop of radius R under
isothermal condition.

By conservation of energy, sum of the

surface energies W, and W, of the two

drops equals to the energy W of the

formed drop i.e., W +W, =W. It follows

that. W =y xchangeinsurface area (A),
then,

dar’y +4nr,’y =4nR’y, on simplifying

gives,

R=\r’+r’ (5.5)

For n drops, R= Jrf Fri+rl 441,
- - n

This result for coalescing liquid drops also
holds for soap bubbles, except that the
soap bubble has two surfaces in contact
with air, i.e., inner and outer surfaces.

Note that, rain drops are a result of
coalescence of smaller droplets.

(a) Coalescence of soap bubbles in air

When soap bubbles combine together, a
common interface is formed. Consider
two soap bubbles of radius r, and r,
respectively, combining in air to form a
common interface of radius R (Figure 5.9).

Interface
boundary

Figure 5.9: Coalescing of soap bubbles in air

Pressure £, inside the small bubble is larger
than the outside pressure P, pressure P,
inside the large bubble is larger than P,,
and A is larger than P,.

From equation (5.4), it follows that,

P-P =2 anap-p =22
' r - @

1 2

Excess pressure of the two bubbles,

p-p=p, p=2L_ %
- o h

4y .S —
?24?’[:,_"_1} 51mplllylng this

expression gives,

rr
R=—12_
BN

(5.6)

Therefore, the radius of curvature of the
. . 7 : nr, .
interface is given by R=—-— This
r—r
2 |

equation holds only under isothermal
condition.
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(b) Breaking of liquid drops

When a large liquid drop is subjected to
external pressure greater than its pressure
holding its molecules, it breaks into small
droplets. When the drop of radius R
breaks into small droplets each of radius
r, there is an increase in surface energy,
but the total volume remains the same.

Let the drop break into two small identical-
drops. The increase inenergy W =y x AA,
where AAis the increase in surface area.

Original surface area of a large drop is
4nR* and that of the two droplets is twice
the area of one droplet, i.e., 2x4nr’.

AA =8nr’ — 4nR’
It then follows that,

W=yx(83rr3—47rR2) (5.7)
Generally, if a drop breaks down into n
equal droplets, then,

W= (n X 4mr’ —47:5’2]}#

Since the volume is constant,

4 + 4 4 4 , 4., 4
—aR =—nr +—mnr, +—nr +e.+—70r’
3 g " 5 * % 3 "

Since the droplets are identical, i.e.,
r=rn=r,=r=r,then,

—nR’ = nxim‘"
3 3
R_’I
By simplifying, n=—. hence

3

.
W=yx(nx4nrl—4n}i")

W=4a‘r}’R{£—l} (3.8)

r

. R — .
Since — > 1, there is an increase in energy
r

when a large drop breaks into small ones.

“Wbnamples3 )

The surface tension of the soap solution
is 0.03 Nm™'. Calculate work required
to produce a bubble of radius 0.5 m.

Solution

W =7AA
Since a soap bubble has two surfaces in
contact with air, then

AA =2x4nR’

AA=8nx0.5m’ =2am’
W=2xtm'x0.03Nm"'=0.19]

S\ mplesd)

Calculate energy in the change of
surface area of a soap bubble when its
radius decreases from 5cm to lem,
given that the surface tension of soap
solution is 2.0x107° Nm ™.

Solution
AA=A —A, M=4znR]—4nR;

Substituting the values of R, and R,,
AA=3.02x107m’.

Energy (W) in the change of surface
area of a soap bubble is given by,

W =2)AA

W=2x20x10"Nm"'x3.02x10°m"’
=12x107" )




“Wnampless )

A spherical drop of mercury of radius
2mm falls to the ground and breaks
into 10 small drops of equal size.
Calculate the amount of work to be
done in the process. The surface tension
of mercury, ¥ =4.72x10"' Nm™'.

Solution
The volume (V,) of the drop before falling

4
is EnR" and volume (V, ) after breaking

is %nr’n where 7 is the number of small
drops of mercury.

For the conservation of volume V, is
equalto V, .

Thus, i'.|t!1'.'3= iur3 n
3 3

r=i=9.28x10-‘m

Un
Work done (W) in breaking the drop is
given by, W =y AA, where AA is the
change in surface area when the drop
breaks.

Since, AA=4nnr’—4nR*; then, by
substituting the values of n, r and R;
the value of AA is 5.80x 107 m”.

Hence,
W=472x10"Nm™' x5.80%10°m?
=2.74x107°]

“\sampleso )

Two spherical soap bubbles of radii
30 mm and 10 mm coalesce so that
they have a common interface. If they
are made from the same solution and the
radii of the bubbles remain the same after
joining together, calculate the radius of
curvature of their common surface.

Solution

Excess pressure P= P, — P,, where P,
P, is the pressure inside the bubble
with radius of 10 mm and 30 mm,
respectively.

22K

R n_ "%

4y il
L |-
R T[r r_]

10 mm x30 mm
— =15 mm

"~ 30 mm—10 mm

Therefore, the radius of curvature of
their common surface is 15 mm.

5.1.5 Measuring surface tension
of a liquid by capillarity
method

When a liquid surface is in contact with the
surface of a solid, the shape of the liquid
surface 1s usually curved. This effect is
caused by the presence of cohesive and
adhesive forces. The curvature of the
liquid surface is determined by relative
strength between cohesive and adhesive
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forces. If the adhesive force is larger than
the cohesive force, the liquid tends to stick
to the wall of its container, and thus the
liquid has a concave meniscus as shown
in Figure 5.10 (a). On the other hand, if
cohesive force is larger than adhesive force,
the liquid is pulled away from the wall
and the meniscus is convex as seen in
Figure 5.10 (b). Good examples can be
shown by water and mercury for both cases.

\u :

?/ A

1 |

1 I
Water Mercury

(a) (b)

Figure 5.10: Concave and convex meniscus

In Figure 5.10, the angle 8 at which the
liquid meets the solid surface is called the
angle of contact. It is defined as the angle
between the solid surface and the tangent
to the liquid surface at the point of contact,
always measured through the liquid.

The angle of contact is affected by the
following factors:

(a) The nature of the liquid and the solid
in contact;

(b) The medium that exists above the
free surface of the liquid;

(c) Impurities present in the liquid,
i.e., adding impurities in the liquid
decrease the angle of contact; and

(d) Temperature, contact angle increases
with the increase in temperature.

Angle of contact is important in
determination of surface tension of a liquid
in the phenomenon called capillarity.

Capillarity is the rise or depression of
the liquid in a narrow tube immersed in
the liquid due to varying intermolecular
forces and pressure difference between
the upper and lower surfaces.

Suppose ¥ is the magnitude of the surface
tension of the liquid such as water, which
rises up a clean capillary tube with an angle
of contact zero (Figure 5. 11). The surface
tension acts along the boundary of the
liquid vertically downwards on the glass.
By the law of action and reaction, the glass
exerts an equal foree in an upward direction
on the liquid.

B
C e LEF™
T """""" 11.09M
h l

weight =nr*hpg

Figure 5.11: Rise in capillary tube

[f r is the radius of the capillary tube, the
length of liquid in contact with the glass
is 2nr. Since surface tension, ¥, is the
force per unit length acting in the surface
of the liquid, then, upward force on liquid
is given by,

Fr =2ar XY (5.9)




The upward force on liquid supports the
weight of a column of a height & above
the outside level of liquid.

The volume V' of the liquid column,
V=nr’h
The mass m , of the liquid column,
m= Vxp=nr'hp
Thus, the weight W of the liquid is
W =nr’hpg

From equation (5.9),
upward force F, =downward force mg
2nrxy =nr'hpg

_ rhpg
="
Suppose the angle of contact between the

(5.10)

liquid and the tube is @ (Figure 5.12), |
the magnitude of surface tension (y ) of |

liquid can be determined by considering
vertical component forces.

Internal radius r of

a capilary tube
Fcosﬂ'\ Y N
DTS
? - Liquid
p N h density p
N /

Figure 5.12: Measurement of surface tension
using capillary tube

At equilibrium, vertical component force
is equal to weight of water in the tube.

Fcos@=mg, but

m=pxV

Fcos@ = pVg (5.11)

Where Vis the volume of liquid in the tube
above the free surface of the liquid given
by volume of cylinder of height, 7 and
radius, r plus volume of small cylinder
enclosing a hemisphere of height, r and
radius, r minus volume of hemisphere of
radius, r.

V=nr’h+nrr- L i:ltr‘"
2\ 3

V=Jtr{h+£)
3

But, F =2ymr, substituting (5.12) into
(5.11) gives,

2ycosf = pgr( h+ %]

pgr(h+r)
il N

2cos O

(5.12)

y:
If the tube is very narrow, % can be

neglected, hence,

_ _pgrh
" 2cos6

(5.13)

The pressure difference for liquid rise in
capillary tubes can be described using
Figure 5.13. When the capillary tube is
placed in water as shown in Figure 5.13 (a),
initially, water level is the same inside and
outside the tube. But the concave meniscus
indicates that pressure at M (P, ) is less
than that at N ( P, ). Hence, water in the
tube will rise to a height /i as shown in

Figure 5.13 (b).
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A !{j r

| ml e

N "

: | B
LUl |1 J

(a) (b) (c)

Figure 5.13: Capillary action

Excess pressure is

2y
PN -"PM -_-?

Since the height of the liquid is & and its
density is P, then,

Bu - 'P.-'. ﬁhpg

where P, = P, which is the atmospheric

pressure. Therefore,

PA—(PA—hpg)=2%

b 2
pgR
From Figure 5.13(c), if @ is the angle of
contact of the liquid and r is the radius
of the capillary tube, R is the radius of
curvature of the meniscus, then
r

(5.14)

R=

cosf
substituting R in (5.14) gives
_ 2ycos@
pgr
Equation (5.15) shows that the capillary
rise & varies inversely with radius r of
the tube. Thus, the narrower the tube, the
higher the capillary rise. Capillary rise is
applied in many areas including supply of
water to tall buildings, absorption of ink

h

(5.15)

by a blotting paper, and rise of oil in the
wick of a lamp.

Capillary depression on the other hand,
occurs when the angle of contact is obtuse
(60 >90°), hence, a convex meniscus.
Suppose that the depression of the liquid
(e.g., mercury) inside a tube of radius r
is h (Figure 5.14). The convex meniscus
shows that the pressure at M is greater
than that at N.

A
/
Mercury

Figure 5.14: Capillary depression

From the general result of excess pressure
on curved liquid surfaces,

_ 2ycos@

P.u_‘P y

N

where P, = P, + hpg and P, = P,. Hence,

2y cos@
rps

—vamples7 )

The radius of a capillary tube is 0.25 mm
and it is inserted vertically in a liquid
whose density is 8x10* kgm™ and
surface tension is 3x107 Nm™. If the
angle of contact is 72.5°, determine the
height to which liquid will rise in the
tube.

h=

(5.16)



Solution

From equation (5.15),

_ 2ycosé
rpg

. 2x%3x107 Nm ™' X c0s72.5°
8 x10° kgm ™ x0.25%107 mx9.8 ms™

=902%x10"m

Therefore, the liquid in the tube will rise
9.2x 10 m above the normal level.

C enampless |

Water rises in a capillary tube to a
height of 2.0 cm. How high will the
waler rise (o a tube with radius of one
third of the former tube?

h

Solution

In the capillary tube, height A, is
inversely proportional to the radius r,

) 1 .
i.e., he<—, it then follows that,

p
hr,=h,r,
|
hz =M| where [ 3 =-><r|
r 3
h,=6cm

Therefore, water will rise up to 6 cm.

A glass tube of internal diameter 3 mm
is dimmersed into mercury whose

density is 13600 kgm™ and surface
tension of 0.45 Nm™. If the angle of
contact of mercury with glass is 135°,
calculate the depression of mercury in
a glass tube.

Fluid mechanics

Solution
From equation (5.16),
_ 2ycos@

P8

3 2x0.45Nm ' xcos135°
1.5%10 " mx13600kgm * x 9.8 ms™*

=-3.18x10"m

h

Therefore, the depression of mercury
in glass tube is 3.18x 107" m.

Factors affecting surface tension
Temperature and impurities affect the
surface tension of liquids. Experiments
show that the surface tension of liquids
(water in particular), decreases with
increasing temperature along a fairly
smooth curve. The decrease of surface
tension with temperature may be due
to the greater average separation of the
molecules at higher temperature. The force
of attraction between molecules is then
reduced, which results into reduction of
surface energy.

The presence of impurities on the surface
or dissolved in a substance directly
affects the surface tension of the liquid.
Adding impurities to the liquid reduces
or increases the cohesive forces between
similar molecules or adhesive forces
between different molecules. The surface
tension of water, for example, will be
increased when highly soluble impurities
like salt are added to it, whereas sparingly
soluble substances like soap decrease the
surface tension of water.
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. Briefly explain the following

phenomena as related to surface

tension.

(a) Some insects (bugs) are able to
walk on the surface of water.

(b) A steel needle when placed
carefully on water can be
made to float. However, when
a detergent (such as soap) is
added to water, the needle sinks.

(c) Water wets glass, but mercury
does not.

(d) Water moves up a paper towel
dipped into it.

(a) With the aid of a diagram,
explain briefly what you would
expect to happen to a nearly
spherical water droplet resting
on a clean horizontal surface if
a tiny amount of detergent were
added to it. How do you account
for the change that might occur?

(b) A soap bubble has a radius of
6 cm and another soap bubble
has a radius of 8 ¢cm find the
radius of the new bubble formed
if the two bubbles coalesce.
State the condition at which
this is valid.

If the energy required to blow a soap

bubble of radius r is E, show that

the extra energy needed to double
the radius of the bubble is given by,

E =24nyr® where 7 is the surface

tension of the soap solution.

Given that the excess pressure of one
soap bubble is four times the other

soap bubble, find the ratio of their
volumes.

. Two soap bubbles of radius » and

r, such thatr, <r,, coalesce. Show
that the radius of curvature of the

Pt I
common surface in air is ——2—
r—r
2 |

. Acapillary tube is immersed in water

of surface tension 7.2x10>Nm""
and rises to 6.2cm. By what
depth will mercury be depressed if
the same capillary is immersed in
it? The surface tension of mercury
is 0.54 Nm™, angle of contact of
mercury with glassis 140°, and the
density of mercury is 13600 kgm ™.

7. (a) The surface tension of a soap

solution is 0.03 Nm™'. What
amount of work is required
to produce a bubble of radius
0.5 cm?

(b) The inside diameters of the two
arms of a U—tube are 1.0 mm and
1.5 mm, respectively. Now, if it
is partially filled with water of
surface tension of 0.0736 Nm™
and zero angle of contact, what
will be the difference in the level
of meniscus between the two
arms?

. Air is forced through a tube of

internal diameter of 1.5 mm
immersed at a depth of 1.5 cm ina
mineral oil having specific gravity
of 0.85. Calculate the unit surface
energy of the oil if the maximum
bubble pressure is 150Nm™.

. The material of a wire has a density

of 1.4 gem™. If it is not wetted



by a liquid of surface tension
4.4x10™* Nem™, find the maximum
radius of the wire which can float on
the surface of the liquid.

10. Asquare frame of side Lis dipped ina
liquid. On taking it out, a membrane
is formed. If the surface tension of
the liquid is 7+ find the force acting
on the frame.

5.1.6 Compressible and
incompressible fluid

Compressibility is an important
characteristics of fluids and varies between
liquids and gases. A fluid is considered
compressible if its density changes with
change in its pressure. A gas is considered
compressible fluid since it is easy to
compress. A liquid on the other hand,

is considered incompressible because

its density remains the same even if its
pressure changes. In general, liquids are
called incompressible fluids, while gases
are called compressible fluids.

(a) Viscous and non-viscous fluid

Viscosity is an intrinsic property of a
fluid. It is an internal friction (also called
viscous force) exhibited between adjacent
fluid layers moving relative to each other.
It arises in fluids because the motion of
a molecule relative to its neighbours is
opposed by the intermolecular forces
between them. A fluid with this force i1s
called a viscous fluid, while the one without
it is termed as a non-viscous fluid. For
example, engine oils are viscous fluids,
while water is a non-viscous fluid.

Fluid mechanics

(b) Steady flow

In a steady flow, velocity, density, and
pressure at each point in a fluid flow
remains constant. Steady flow is also
known as streamline flow, orderly flow,
or uniform flow. For a fluid undergoing
steady flow, all particles passing at any
given point follow the same path called a
streamline. A streamline is a curve whose
tangent at any point is along the direction
of velocity of the fluid at each point along
its path. A special case of steady flow
(Figure 5.15) in which the velocities of
all particles at given streamlines are the
same (though the particles of streamline
may move at different speed) is called
laminar flow.

v,
/;;v'.' rZ vl
v, LV,
j

Figure 5.15: Laminar flow

In Figure 5.15, the velocities of particles
in the three streams at one particular
time 1, are; v,, v,, and v,. Likewise, the
same velocities can be observed at any
other time 1, . Hence, in laminar flow, the
velocities of the particles within a stream
will remain constant throughout the flow.

(¢) Critical velocity and turbulent flow

When the velocity of a steady flow exceeds a
particular value, that is, the critical velocity,
the motion of particles of the fluid changes
from steady to an irregular flow, known as
turbulent flow. In a turbulent flow, path and
the velocity of particles of the fluid change
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continuously and randomly with time. The
velocity v of a fluid flowing through a
pipe depends on coefficient of viscosity 1,
density pof the fluid and radius r of the
pipe which can be expressed using methods
of dimensional analysis as, v = L_r] where

rp
k is a constant called Reynold’s number R .

Therefore, v can be expressed as,
Rn
rp
When R, is less than 2000, the fluid flow
is laminar or steady, if it is greater than

3000, the flow is turbulent, and between
2000 and 3000, the fluid flow is unstable.

y= (2.17)

5.1.7 The law of mass continuity

The equation of continuity is derived
from the principle of conservation of
mass which states that, “Mass of the fluid
entering per second at one point is equal
to mass of that fluid leaving per second
at the other point provided that there are
Consider
a steady flow of a fluid passing through a

no leaks or sinks of the fluid."

tube of cross sectional area A, at point P
and A, at point Q as shown in Figure 5.16
where Ax, =v,Ar and Ax, =v,Ar.

-

P /AI Q li’

v =30

—

‘Ax,

Figure 5.16: Steady flow of a liquid

Let the density and velocity of the liquid
at point Pis P, and v,, respectively. The
mass flux past point P is

Am A(p1‘41 )
Ar At

_plA] _pA]‘H dI‘ld

that at Q is % =p,V,A,. If there are no
leaks along the path of the fluid, the mass

flux of the compressible fluid at P is equal
to mass flux at Q;

Alvipl s Az":p: (5.18)
For incompressible fluids, P, = P, , then,
equation (5.18) is reduced to

Ay, = A, (5.19)

Equation (5.19) is known as equation of
mass continuity.

For incompressible fluids, the product of
cross-sectional area A and velocity v of
the fluid at any point in a pipe is constant.
Le., Av=constant. This constant is
called volume flux or volume flow rate.

Water flows steadily at the rate of
1000 em’s™" through a horizontal pipe
of non-uniform cross-section. Find the
velocity of the water at a section where
the radius of the pipe is 10 cm.

Solution
From the equation of continuity, the

v
volume of water per second — = Av
!

But K=1000cm]s", area of cross
§

section of the pipe A=100rcm’




Vv
Hence,y= —x —,

1
r A

3 -1
B 1000 ecm's
- 5

100 ecm”

=3.18cms™

vV

The velocity of the liquid is 3.18 cms™.

Exercise 5.2

When a steadily flowing gas flows

from a larger-diameter pipe to a

smaller-diameter pipe, what happens

1o;

(a) its speed,

(b) its pressure, and

(c) the spacing between its
streamlines”?

Water enters a cylindrical tube PQ
through one end P with a speed v,
and leaves through the other end Q
with speed V,. If the tube is always
completely filled with water, show
that the volume of water per second
entering the tube is equal to the
volume of water per second leaving

the tube.

The water supply for a eity is often
provided from reservoirs built on
high ground. Water flows from the
reservoir, through pipes, and into
your heme when you turn the tap
on your faucet. Why does the water
flow more rapid out of a faucet on
the first floor of a building than on
a higher floor?

Two water pipes of diameters 1.2 cm
and 4 cm are connected in series (0
a main supply line. Find the ratio of

velocities of flow of water in the two
diameters.

5. The flow speed of water through a
pipe of cross sectional area 4.0 cm?
is 5.18 ms™'. The water gradually
descends 10 m as the pipe increase
in area t06.5 cm”. Find the speed
of flow at the lower level.

6. The cylindrical tbe of a spray pump
has a cross-sectional area of 8.0cm”.
At its end there are 40 fine holes of
diameter 0.1 mm each. If the liquid
flows inside the tube at 1.5 m per
minute, what is the speed of ejection
of the liquid through the holes?

5.2

Why is it that when you press your thumb
over the end of a garden hose so that the

Bernoulli’s Principle

' _opening becomes a small slit, the water

comes out at high speed? Is the water under
greater pressure when it is inside the hose
or when it is out in the air? The relationship
between fluid speed, pressure, and elevation
was first derived by the Swiss Physicist
Daniel Bernoulli. Bernoulli’s theorem
is derived from the law of conservation
of energy. According to the theorem, the
total energy (potential energy and kinetic
energy) per unit volume remains constant
throughout the flow, provided there is
no source or sink of the fluid along the
length of the pipe. The principle holds
for incompressible, irrotational, and non-
viscous fluid in steady flow. In this section

you will learn how to derive Bernoulli’s
equation and its daily applications.
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CUskss
Collect transparent pipes of different
diameters, tools for measuring diameters
and volume of liquids, and stopwatch.
Use a source of water and the materials
collected to investigate how varying
cross-sectional area of a pipe affects
fluid flow.

5.2.1 Derivation of Bernoulli’s
Equation
Consider a steady flow of irrotational,
incompressible, and non-viscous fluid
flowing in a non-uniform tube (Figure 5.17)
from Q, at height i to Q, at h,. The cross-
sectional areas at Q,and Q,are A and A,,
respectively, and the corresponding fluid
velocities are v, andv,. Since the tube 1s
not horizontal and not uniform, the pressure
of the fluid varies among different points
of the tube. A 0.0

Non-viscuos fluid

Figure 5.17: Fluid flowing in @ non-uniform rube

Let the pressure at Q, be A and at Q, be
P,. The force at Q, is FA,, work done
W on the fluid in the region QQ/ is
given by,

PA (v Ar)= PAV

and since Ax, =vArand AAx = AV,
then,

W, = PAV (5.20)

According to the equation of continuity, the
same volume (V) of fluid will pass through
0, . The work done (W, ) by the fluid on
the right-hand side of the pipe is given by,

W, = PAV (5.21)
Therefore, the total work done on the
fluid 1s

AW =W, —-W, = PAV - PAV

AW =(P - P)AV

Let the fluid density be p and the mass
passing through the pipe as Am during the
time interval At.
Hence,

Am= pAv At, Am= pAV

The change in gravitational potential
energy A(P.E) can be obtained by,

A(P.E.)=mgh, — mgh = mg(h,—h)
A(P.E.)= pgAV(h,—h))

Similarly, the change in kinetic energy is

1 3 )
A(K.E.)= Ep&‘v’(\'; .

The total change in mechanical energy is
AU =A(P.E.)+ A(K.E.), thus,

AU = pgAV(h, —Irt]+%p&1’{rf —vf) (5.22)

Applying the work-energy theorem in the
volume of the fluid, AW =AU

(p,—p,)AV = %Pﬂ"'["i v} )+ pgAV(h,~h) (5.23)

Dividing eachtermby AV, and rearranging
equation (5.23) gives,

). .3 1 2
F;+§pv,‘ +pgh =P, +=pv,+pgh, (5.24)



Equation (5.24) is the Bernoulli’s equation
which can further be written in general
form as,

P+ %prz + pgh= constant (5.25)

Thus, Bernoulli’s principle states that,
“For a streamline motion of steady,
non-rotational, incompressible, and non-
viscous fluid, the sum of pressure at any
point, the potential energy per unit volume,
and the kinetic energy per unit volume is
always constant.”

However, for horizontal pipe (h =h,),
equation (5.24) can be reduced to

1,
P+ 2 pv- = constant (3.26)

M\Evamples.i1)

Water enters in a house water system
through a pipe with 2.0 cminner diameter
at an absolute pressure of 4 x 10° Pa. The
pipe leading to the second floor bathroom
5 mhighis 1.0 cm inner diameter. If the
flow velocity at the inlet pipe is 4ms ',
find:

(a) The flow velocity at the outlet; and
(b) Pressure in the bathroem.

Solution
(a) The flow velocity from equation of

continuity . _ 4y (i)
where A, and A, are areas of large
and small pipes respectively, v, and
v, are their corresponding velocities.

2

But %:(%J . Substituting the

2

Fluid mechanics

values d,=1.0 cm, d,=2.0 cm,
v, =4ms™ in (i) gives v, =16 ms”'

(b) Pressure can be found using
Bernoulli’s equation;

1 2 3
B=R+35p0n=v;)+pg(h~h)
P =4x10’ Pa+%xl(}00 kgm * x

((4 rns")z—(lﬁ ms")2)+
1000 kgm % 9.8 ms *x(0—5 m)

P,=231x10"kgms “or 2.31x10°Pa

Therefore, the flow velocity and
pressure in the bathroom are 16 ms™

and 2:31x10° Pa, respectively.

5.2.2 Applications of Bernoulli’s
Principle

Bernoulli’s principle has numerous

practical applications in various fields.

These include flow of a liquid through

a wide tank, aerofoil lift, venturi meter,

atomizer of sprayer, and pitot tube.

(a) Fluid flowing from a tank

Consider a tank with some liquid
(Figure 5.18). Let point A be at a height
h from the bottom and B is at the
reference line.

R
A v N
'y
h
L. _“'_El P
2
B 2
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The pressure acting at A and Bis atmospheric
pressure P. Let v, be the velocity of the fluid
which is flowing out at B, then,

| |
.'f’i+§p1uI +pgh = P3+§pv2 +pgh,

Assuming the cross-sectional area at A is
very large compared to that at B, that is,

v, <<v,, then, V_f - vf = v::
Since, F, = P, = P, then, equation (5.24)

1 3
can be reduced to pgh= > PV2- Therefore,
v, = JZgh (5.27)

This is the velocity of the emerging liquid
(velocity of efflux) from a wide tank. It is
equal to the velocity of free fall, assuming
that there is no air resistance. In this
process all the potential energy is changed
into kinetic energy. This process is called
Torricelli’s theorem which states that,
“The speed of efflux of a liquid from an
orifice is the same as the vertical velocity
that would be acquired in a free fall.”

“amples.i2)

A cylindrical tank with a radius of 1 m

rests on a platform 5 m high. Initially,

the tank is filled with water to a height

of 5m. A plug whose area is 10~ m’,

is removed from an orifice on the side

of the tank at the bottom. Calculate:

(a) Initial speed with which the water
flows from the orifice;

(b) Initial speed with which the water
will strike the ground;

(c) Initial distance from the tank to
the point where water strikes the
ground: and

(d) Time taken to empty the tank.

Solution
Consider the water tank in Figure 5.19.

Figure 5.19: Water tank

(a) From Torricelli’s theorem, velocity

of orifice v=/2gh,

v=12x98ms%x5m=99ms"

Hence, the initial speed with which
the water flows from the orifice is

0.9 ms .

(b) The initial speed (say y’) can be

found from trajectory equation

’ 2 2
V= 1"”; + v_‘,

where v_is the horizontal velocity
and v is the vertical velocity.

Hence, v=v, V=gl and

2h s :

I = [—. combining these equations
£

gives v'=24/gh

p'= 2\/9.8 ms - x5m=14ms"

Therefore, the initial speed with
which the water strikes the ground
is 14 ms™".

(c) The initial horizontal distance from

the tank x, = vt



= E:J—zxsm, =1.0s
g 98 ms ™

and
v=1/2gh= J2>< 9.8 ms™ x5m

=99 ms”’

x, =99ms™ ' x1.0s=99m

Therefore, the initial horizontal
distance from the tank i1s 9.9 m.

(d) From Figure 5.19, v, =-% and
t

v = /2 gh, then, from equation (5.19);
dh T
_‘41 E — A: 2gh

The negative sign in the preceding
equation indicates that the height of
water in the tank is decreasing.

By separable integral,

0 J':h_%dh=‘|:dr

A28

which simplifies to

-

A, N2

2rm’ 5m
t= X -
10°m° \2x98 ms>
=3.17x10's

Therefore, it will take 3.17x10"s
to empty the tank.

(b) Aerofoil lift

An aerofoil, just as an aircraft wing, is
constructed with the shape, such that
when it moves across air layers, the air
flows faster at the top than at the bottom
of the wing (Figure 5.20). This creates
the pressure difference which makes the
upthrust force much higher to uplift the
plane. This is called dynamic lift.

Consider a wing of an airplane in the
streamlines of air as shown in Figure 5.20.

v,(high)

j

—_
v,(low)

S A4
-
vl W

Figure. 5.20: An airplane wing

The time 7 taken by a volume of particles

of air fromA to A’ and from B to B'is

the same. such that,

pl = AA ;11'1(] v, = BB 2 bu[ AA’ > BB’.
1 - t

hence v, > v,

From Bernoulli’s principle, the pressure at
B’ is greater than that at A" This creates

1 3 3
a dynamic lift [F =EpA(v,'—v;)l to the

whole wing, so the whole plane “floats’
in air.

(¢) Venturi meter

This is a special instrument which contains
a gauge or meter that can be used to measure
the speed of flowing liquid like water and
oil (Figure 5.21).




Figure 5.21: Venturi meter

A liquid of density p flows in a horizontal
pipe from Y to Q, such that the velocity at
Yis v, and thatat Qis v, and, A and P,
are the pressures at Y and Q, respectively.
The U-shaped tube containing a liquid of
density p” is connected with its openings
at Y and Q. Since the pipe is horizontal,
(h, = h,), Bernoulli’s equation (5.25) at Y
and Q can be simplified to,

1 2 2
P-P, =Ep(v2 -v) (5.28)
If A and @ are the cross sectional areaat Y and
Q, respectively, then, from equation (5.19)

VA
v: o

a
Substitute equation (5.29) into (5.28),

| ) Az_a:
P.'—Fi=§»°".'{ , J

(5.29)

(5.30)

at

Since h in Figure 5.21 is the liquid column
height difference between the two arms of
the U-shaped tube, then,

F—F=ghp (5.31)

Equating equations (5.30) and (5.31) and
solving for v, gives,

v=a —28,£p—,
\}P(A'—a')

Knowing the values for densities, cross
section areas and height, the speed of
flowing liquid past a point Y can be
determined.

g ¥
But, volumeflux at Y is, —= Av,; thus,
!

Y pa [ 2800
t p(A*—a®)

(d) Atomizer or sprayer

The atomizer or sprayer (Figure 5.22) is
a device that is used to spray paint or an
insecticide. When the rubber ball of the
atomizer is squeezed, air rushes through
the narrow neck of the device. In so doing,
the pressure in the narrow channel at A is
reduced.

Rubber ball

Insecticide

Figure 5.22: Atomizer

Once the pressure at A is reduced,
atmospheric pressure pushes the insecticide
up the tube towards the narrow channel.
The insecticide is then pushed outwards
into a fine spray of droplets.

(e) Pitot tube

The pitot tube (flow meter) is a device used
to measure the velocity of a moving fluid.
It is very often used in airplanes to measure



their relative speed. The schematic diagram
of a pitot tube is shown in Figure 5.23.

Static
pressure
tube

Pitot tube

(total pressure)
B

Figure 5.23: Pitot tube

The fluid enters the tube through C and it is
immediately brought to stagnation. Hence,
the pressure P at A is sometimes called
stagnant pressure. Applying Bernoulli
principle;

i o,
P+hpg+ Epv‘ = constant
The static component is determined from

tube B and given as P+ hpg, or P if the
flow is horizontal, (i.e.. h=0)

The dynamic component is given by % pv,

hence, the total pressure P determined from

| B
tube A is given by P.=P+ Epv'
L%,
ﬂ_—P:EPp
p

where AP = P, — P, which is the pressure
difference.

- Exercise 5.3

I. The Bernoulli’s equation can be
written in the form;

|
P+ 5 pv- = Constant

(a) Explain the meaning of each
term in the equation.

(b) State two conditions which must
apply for this equation to be true.

(¢) What happens to the internal
pressure in a fluid flowing in a
horizontal pipe when its speed
increases?

2. Explain the following phenomena
related to Bernoulli’s principle.

(a) Smoke going up in a chimney.

(b) When a fluid flows through a
narrow constriction its speed
increases.

(c) Tornadoes often lift the roofs of
houses.

3. A fire hose must be able to shoot
water to the top of a building which
is 28.0 m high when aimed straight
up. Water enters this hose at a steady
rate of 0.50 m’s™" and shoots out of a
round nozzle. What is the maximum
diameter of the nozzle?

4. A manometer connected to a closed
tap reads 3.5x10° Nm™. When
the valve is opened, the reading of
manometer falls to 3.0x10° Nm™.
Find the velocity of flow of water.

5. Alarge open tank has two holes in
the wall. One is a square hole of side
[ at a depth y from the top and the
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other is a circular hole of radius r at
a depth 4y from the top. When the
tank is completely filled with water
the quantities of water flowing out
per second from both holes are the
same. Find the value of the radius.

5.3 Viscosity and turbulent flow

Viscosity characterize the degree of internal
friction in fluids. This internal friction,
or viscous force, is associated with the
resistance experienced by two adjacent
layers of fluid moving relative to each
other. Viscosity causes part of the kinetic
energy of a fluid to be converted to internal
energy. Viscosity mechanism is similar
to the one by which an object sliding on
a rough horizontal surface loses kinetic
energy. In previous sections, the discussion
focused only on an ideal fluid (steady flow,
non-viscous, and incompressible fluid).
In this section, you will learn about the
characteristics of viscous fluid and turbulent
flow, specifically, the Newton’s law of
viscosity, Poiseuille’s formula, Stokes’ law,
and applications of viscosity in daily life.

5.3.1 Coefficient of viscosity

Coefficient of viscosity n, of a fluid is a
measure of the degree to which the fluid
exhibits viscous effects. This effect is
described by Newton’s law of viscosity
which states that, “The frictional force F
between the layers is directly proportional
to the area A of the layers and the velocity

. dv .,
gradient — .

dy
Consider a pipe that contains a fluid
flowing steadily (Figure 5.24).

Figure 5.24: Friction between successive

lavers of a fluid

There are so many cylindrical fluid layers
located at different positions within the
pipe. Layers have varying speed ranging
from zero at the wall of the pipe to the
maximum speed at the centre of the
pipe. Fluid layers between C and B have
velocities which are less than that of
C but greater than that at P. If A is the
V=V,
h
is the velocity gradient where A is the
distance of separation of the two layers
with velocities v, and v, . Then according
to Newton’s law of viscosity

Y. =
FO'CA 1 2

[ntroducing the constant of proportionality
into equation (5.33), gives,

surface area of layers in contact,

(5.33)

(v,—v,)
h

where the constant 77 is called the
coefficient of viscosity. Making 1 the
subject of the formula gives,

_ Fh
A(v,—v,)

F=nA (5.34)

7 (5.35)

Hence, from equation (5.35), the coefficient
of viscosity 7 is defined as the frictional
force F per unit area A per unit velocity
gradient v .




The units of NMcan be obtained from
the method of dimensional analysis as
follows;

e L
[Alx[v,]
But [F1= MLT?, [Al=L, [v,]=T"
hence the dimensions of viscosity,

n=ML'T"

Therefore, the unit of coefficient of
viscosity is kgm™'s™ or Nsm™.

Note that, viscosity of an ideal fluid is
zero. The coefficient of viscosity of a liquid
decreases with an increase in temperature.
But for gases, the coefficient of viscosity
increases with increase in temperature.
Viscosity (particularly of oil and grease)
is utilized in lubricants for various parts
of machines. Viscosity is related to
internal friction and hence it affects heat

generation in bearings, cylinders, and gear |

sets. Therefore, various parts of machines
require specific density of lubricants,
The knowledge of viscosity is therefore
important in measuring and choosing
related lubricants for machinery parts.
This means that the viscosity of an oil is
foremost to be considered when selecting
lubricating oil for a specific application.

5.3.2 Poiseuille’s Formula

Poiscuille studied the flow of a liquid
through a horizontal pipe and found that
the volume of liquid flowing out per second

V : . .
— , depends on the coefficient of viscosity
!

n , the pressure gradient £ and the radius
r of the tube. Thus,

K o nr f N

t
difference between the two ends of the
pipe of length /.

where P is the pressure

By method of dimensional analysis,

Z- kﬂ"r’{?] (5.36)

Equating dimensions,
M°LCT =(ML'T™y L' (ML*Ty
Equating powers of like terms,
M:x+z=0
L:—x+ y—"22=3
L:—x-2z=-1

Solving for x, v, and z;
¥=-=1, y=4,z=

Substituting the values of x, y, and z into

kPr’

nl

equation (5.36) gives, %:

The constant of proportionality k was

experimentally found to be % Hence,
Vv _apr'
t  8nl

This is called the Poiseuille’s formula.

Through Poiseuille’s formula, the
coefficient of viscosity of a liquid can be
determined. Consider the liquid flowing
steadily from a tank of height & through
a capillary tube of length / at constant
pressure (Figure 5.25).
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h Capillary
/| tube

Liquid
}l [ Beaker-—'{_ J

Figure 5.25: Determination of coefficient of
viscosity of a liquid

A volume V of the liquid to be collected
at time interval 7 is obtained by applying
Poiseuille’s formula,

Vo nPrt

¢ 8nl
where / is the height of the liquid column
from the capillary tube to the top of the
liquid level and p is the density of the
liquid.

; but P=pgh

Hence, the coefficient of viscosity can be
obtained from the formula

V _npghr'

t 8&nl

CWamples1y)

Water flows through a herizental tube with
diameter 0.08 m and 4 km length at the
rate of 20 litres per second. Calculate the
pressure difference required to maintain
the flow, given that the coefficient of
viscosity of wateris 10~ Nsm™. Assume
only viscous resistance exists.

Sa!mmn' | Vo oaprt
From Poiseuille’s formula, —= :
t  8nl

V.
where — is the volume per second.
t

snl

The pressure, P= 4 X—

! mr

8x 10 Nsm 2 x4x10°m

P=2x10"m’s" x -
n%(0.04 m)

P=796x10"Nm™

Therefore, pressure difference is
7.96x10* Nm™.

CWamplesiy)

A tank of cross-section aréa A has a
viscous liquid to a height A, above the
base. The liquid isallowed to flow out of
the container through a horizontal tube
which is narrow and long, connected
to the base of the tank. Show that the
height fof the remaining liquid at any
time ¢ in the tank obeys the equation,

h=he™".

Solution
Consider Figure 5.26 as a condition for
the problem.

_ H (Atmospheric

\_"ISCOUS pressure)

liquid /

. (

S %
h  Tube of
Tt A radius r
y /

—T

Figure 5.26: Emprying tha tank

The liquid flow rate Q, in the tank is
equal to the flow rate Q, in the tube, i.e,
Q, = Q,,then, from Poiseuille’s formula;



dh TAPr )
o (i)
dt 8nid

B =hpg+H and P,= H, then,
AP=P—P =hpg (ii)

Placing equation (ii) into (i);
dh _ mpgr‘h  dh

i s h

npgr"
8niA
By integrating, it follows that;

h@=~—c_|”dr
 h 0

In(h)—In(h,) = —ct (iii)

Equation (ii1) can be simplified to,
h=he™".

where c¢= which is constant.

5.3.3 Stokes’ Law and terminal
velocity

When a small solid sphere is dropped into
a viscous liquid, the ball will accelerate
and eventually reach a point where it moves
with a constant velocity known as terminal
velocity (Figure 5.27(a)).

_ _ + Body
—_— -
;‘-_’Ihi:gUh 12 % —accelerating [
iqui =esdese=e | 2= downwards
Upthrust + .
viscosity
force
_ ik Body falling
Welghl/ ; " al constant
¥ |4 speed W
(a) ()

Figure 5.27: Sphere falling through viscous

liguid

There are three forces that act upon the ball
namely, the weight of the ball, the upthrust
and the viscous force (Figure 5.14 (b)). At
terminal velocity, the net force is zero, since
the acceleration is zero, then

F+U=W

According to Stokes’ law, “The viscous
force is proportional to the radius r of the
ball, velocity v of the ball, and coefficient
of viscosity n of the liquid.”

By dimensional analysis,
F = kr.t‘n_'v:
[F]=[kr"n’v]

(3.37)

Equating the dimensions,
MLTZ=L(ML'T") (LT)

Equating powers of the like terms gives,

L —-y+z4+x=1,
Ti—y=2z= -2, M:y=

Substitution of these values into equation
(5.37) gives, F=krnv

From mathematical analysis, the
proportional constant, k= 6.

Therefore, the viscous force F'is expressed
as,

F=6mrnv (5.38)

Equation (5.38) is the expression for
Stokes™ law. A graph of velocity against
time for motion of a ball falling in a
viscous fluid and attaining terminal
velocity is shown in Figure 5.28.
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Velocity
A Terminal
7 E— velocity (V,)
i attained by
a ball
» Time

0

Figure 5.28: Terminal velocity

Suppose P is the density of the sphere
and o is the density of a fluid, then, the
weight W, of the sphere,

4
W=mg, but m= grtprj hence,

4
W =—npr
37Pr8

Similarly, upthrust U,

U=%nar3g

At terminal velocity, F+U =W, then.

SR YO
6mrny, +§‘.‘I0‘r g= E:ftpr g

, =2 (p-o)g

3,
: o (5.39)

Thus, equation (5.39) represents the
expression of terminal velocity which is
a constant velocity attained by a spherical
body when falling through a viscous fluid.

T A

A small oil drop of radius R falls with
a terminal velocity of 2.0x 10" ms™ in
air, Find the new terminal velocity of
the oil drop of half of this radius.

Solution

Terminal velocity of first drop,

= 2PGIER (i)
I gn

Terminal velocity of the second oil
drop,

, = (p=0)er (ii)
- 18n
Dividing equation (i) by (ii)
i f— 4' | = ﬂ
v, ' 4
=
v, = e ;ns =0.05ms™"

Therefore, terminal velocity of the
-1

second drop is 0.05 ms™.

‘ Exercise 5.4 -
1. (a) Stokes’ law for the viscous
force F acting on a sphere of
radius a falling with velocity
v through a large expense of
fluid of coefficient of viscosity

n is expressed by the equation
F =6mnanv. State why this
equation is true only for
sufficiently low velocities.

(b) Sketch the graph of velocity
against time for the motion of
the ball falling in a viscous fluid.

2. Explain the following observation
as related to fluid dynamics.

(a) A sphere released in a fluid
will fall with diminishing



1.

2

acceleration until it attains a
constant terminal velocity.

(b) Hot water flows more readily
than cold water through small
leaks in a car radiator.

Calculate the velocity of an oil drop
of radius 3.0x 10~ m falling through
the air of coefficient of viscosity
1.8x10° Nm™s, given that the
density of the oil is 8.0x10%kgm™.
The density of air may be neglected.

A square plate with edge length
9.0 cm and mass 488 g is hinged
along one side. If air is blown over
one surface only, what speed must
the air have so as to hold the plate
horizontally? The air has a density
of 1.212 kgm™.

[t is said that the shape of a liquid is
the same as the shape of its container.
But, with no container and gravity,
what is the natural shape of a drop
of water? Give reasons for your
response.

A small, dry paper clip can rest on
the surface of still water. Why can’t
a heavier paper clip do the same
without sinking?

Explain the following observations
in terms of surface tension.

(a) A wet tent will let in water if
the inside is touched.

(b) A pond skater can walk on the
surface of water, but a person
cannolt.

4. Take a kitchen sieve and immerse

it in molten candle wax. Remove
it quickly, shaking off excess wax
so that the wires of the sieve get a
thin coating of wax. Now pour some
water into it. Explain what happens.

. A U-tube has limbs of radin 0.5 cm

and 0.5 mm, respectively. A liquid
of surface tension 7%x10° Nm™'
is poured into the tube when it is
placed vertically. Find the difference
in levels of the two limbs. The
density of the liquid in the tube is
1000 kgm ~*and the angle of contact

is zero.

. The radius of a capillary tube is

0.025mm. It is held vertically
in a liquid whose density is
0.8x10°kgm™, surface tension is
3.0x10"Nm™, and the cosine of
angle of contact is (.3. Determine
the height to which the liquid will
rise in the tube relative to the liquid
surface outside. Use acceleration
due to gravity, g =10 ms™.

. Water rises up in a glass capillary

up to a height of 9.0 cm, while
mercury falls down by 3.4cm in
the same capillary. Assume angles
of contact for water glass and
mercury glass as 0° and 135°,
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respectively. Determine the ratio
of surface tensions of mercury and
water. The density of mercury is
13.6x10 kgm™ and the density of
water is10° kgm ™.

Two soap bubbles have a radii
3cm and 4 cm, respectively. If
the bubbles are combined to form
a single large bubble, calculate the
radius of the formed large bubble.

Initially, a soap bubble in a piston
chamber of pressure B, has a radius
r. If the piston is pulled out until the
radius of the soap bubble doubles,
show that:

(a) The new pressure inside the
chamber is given by,
B_¥

=0

8 2r

(b) If the piston is compressed until
the radius is halved, the new
pressure inside the chamber is
givenby, P=8F, +1-j1 where
F,, the original air is pressure
inside the piston chamber and
assume isothermal condition.

10. If olive oil is sprayed onto the surface

of a beaker of hot water, it remains
as separated droplets on the water
surface. As the water cools, the oil
forms a continuous thin film on the
surface. Suggest a reason for this
phenomenon,

1.

132

13.

14,

(a) It is sometimes stated that, by
nature of its surface tension,
the surface of a liquid behaves
as if it was a stretched rubber
membrane. To what extent do you
think this analogy is justified?

(b) Explain why the pressure inside
a soap bubble is greater than
outside pressure.

A soap bubble has diameter of 4 mm.
Calculate the pressureinside it if the
atmospheric pressure is 10° Nm™
and surface tension of soap solution
is 2.5x 10 Nm',

Air is introduced through a nozzle
into a tank of water to form a
stream of bubbles. If the bubbles
are intended to have a diameter of
2 mm, calculate how much pressure
of the air at the tip of the nozzle must
exceed that of the surrounding water.
Assume that the value of surface

tension between air and water is
72.7%10° Nm™,

A large tank contains water to a depth

of 10 m. Water emerges from a small

hole on the side of the tank 20 cm

below the level of the water surface.

Calculate:

(a) The speed at which the water
emerges from the hole; and

(b) The distance from the base of
the tank at which the water
strikes the floor on which the
tank is standing.



15. (a) Derive Bernoulli’s equation

for an incompressible and non-
viscous fluid.

(b) How is an airplane able to fly
upside down?

16. A simple garden syringe used to

produce a jet of water consists of
a piston with an area of 4.00 cm®
which moves in a horizontal cylinder
with a small hole at its end. If the
force on the piston is 50 N, calculate
the speed at which the water is forced
out of the small hole. Assume that
the speed of the piston is negligible.

17. Two fast moving rowboats are likely

to crush when moving parallel and
close to each other. Explain why this
is likely to occur.

18. (a) State Poiseuille’s formula.

(b) Using the method of dimensional
analysis, derive the Poiseuille’s
formula.

(c) Two capillaries of same length
and radii in the ratioof 1: 2 are
connected in series and a liquid
flows through this system under
streamline conditions. If the
pressure across the two extreme
ends of the combinationis | m
of water, what is the pressure
difference across the first

capillary?

19. Water flows through a horizontal

pipe of varying cross-section at the

21.

22,

23.

Fluid mechanics

rate of 10 m’s™

. Find the velocity
at a section where the radius of the

pipe is 10 cm.

. Explain why;

(a) a parachute is used while
jumping from an aeroplanes.

(b) aflag flutters when strong winds
are blowing on a certain day.

(c) clouds seem floating in the sky.

(d) a bigger rain drop falls faster
than a smaller one.

A flat plate of area 0.1 m* is placed
on a flat surface and is separated from
it by a film of oil 10™° m thick whose
coefficient of viscosity is 1.5 Nsm .
Calculate the force required to cause
the plate to slide on the surface at a
constant speed of Imms™'. Assume
that the flow is laminar and that the
oil adjacent to each surface moves
with that surface.

Explain why;

(a) itis easier to throw a curve with
a tennis ball than a cricket ball.

(b) airplanes extend wing flaps that
increase the area and the angle
of attack of the wing during
takeoffs and landings.

Two drinking glasses with equal
weights but different shapes and
different cross-sectional
are filled to the same level with

areas

water. According to the expression




\\
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P=PF +pgh the pressure is the

same at the bottom of both glasses.
In view of this, why does one weigh
more than the other?

24. Draw sketches of streamline for the
following flow systems. Discuss the

significant features in each case.

(a) Liquid flowing round a sharp
pipe bend

(b) Air flowing round a moving
articulated lorry

25. Briefly explain why;

(a) cars need different oils in hot
and cold countries.

(b) engine runs more freely as it
heats up.

(c) skin lotions are easier to pour
in summer than winter.

26. (a) State Bernoulli’s principle and
explain the Bernoulli’s equation
for the flow of an ideal fluid in
stream line motion. Mention any

two applications of Bernoulli’s
equation.

(b) Describe different types of flow
of fluids. State and explain
equation of continuity.

27. (a) Explain why, when the sphere
is falling with terminal velocity,
F=W-U where F is the
Stokes' law force.

(b) Show that the viscosity 1] can be
calculated from the expression,

= 2rig(p—o)

9v
where v is the velocity of
the sphere. Explain why it is
important for the experiment
to be performed using hot oil.

n

28. Find the rate of flow of water
through a pipe 3cm in diameter
before turbulent flow occurs. The
critical value of Reynold’s number
is 2000 and viscosity of water is

8.01x10 " Nsm .




Thermal properties of
materials

Introduction

Thermal properties of materials are necessary for addressing societal challenges
related to energy, health, and safety in various aspects of our daily lives. They
play a crucial role in understanding and predicting how materials respond to
changes in temperature and heat transfer. In this chapter, vou will learn about
the fundamental principles and theories underlying the thermal properties of
materials that include heat transfer, kinetic theory of solids, liguids and gases,
and the first law of thermodynamics. The competencies developed will enable
vou to apply the concept of thermal properties of materials in daily life.

— — —

6.1 Kinetic theory of matter in
solids and liquids

The kinetic theory of matter provides
a framework for understanding the
behavior of matter at the microscopic
level, particularly in terms of the motion
of particles. When applied to solids, the
kinetic theory helps explain various
characteristics and properties of solids.

In a solid, particles (atoms, ions, or
molecules) are closely packed together in
a regular, three-dimensional arrangement.
This ordered structure gives solids their
definite shape and volume. The particles
in a solid vibrate around fixed positions,
exhibiting only small displacements from
their equilibrium positions.

-

The world without temperature regulation
-~

. Conduction is the primary mode of

heat transfer in solids. It involves the
transfer of thermal energy through
direct molecular or atomic interactions.
In solids, particles are closely packed,
and neighboring particles are in contact
with each other (Figure 6.1). When one
end of a solid is heated, the particles in
that region gain energy and vibrate more
vigorously. These particles then transfer
their energy to adjacent particles through
collisions, causing them to vibrate as well.
This process continues throughout the
solid, gradually transferring heat from the
hot end to the cooler end. The efficiency
of conduction depends on the thermal
conductivity of the material, which is a
measure of its ability to conduct heat.
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Sensation
of heat

Figure 6.1: Conduction of heat by suspended elastic

conducting balls in a row

On the other hand, in liquids, particles are not
fixed in place, but have more freedom to move.
Heat is transferred by convection, where it
involves the movement of the heated material
itself. As a liquid is heated, its particles gain
energy and become less dense, causing them
to expand and rise. This creates a convective
flow pattern where the hotter, less dense liquid
moves upwards, while cooler, denser liquid
moves downwards to replace it. This circulation
of fluid carries thermal energy along with it,
resulting in efficient heat transfer. Convection
can occur naturally, such as in boiling or natural
convection currents, or it can be forced, as in
the case of using pumps or fans to circulate a
liquid.

Aim: To explore Kinetic theory of
matter in solids and liquids

Materials: Marbles (about 10-12), clear
container with a lid, sand or any

granular material (enough to fill
the container), ruler, water,
light-coloured food dye, source
of heat

A. Kinetic theory of solids

Procedure

1. Fill the clear container with
the granular material up to a
certain level.

2. Place the marbles on top of
sand while distributing them
evenly.

3. Close the lid of the container
tightly.

4. Shake the container
horizontally for a few
seconds.

5. Stop shaking and observe
what happens to the marbles.

Question
Discuss  the  observations
focusing on the movement of

the particles.

B. Kinetic theory of liquids

1. Fill the clear container with
water up to a certain level.

2. Add a few drops of light-
colored food dye to make the
movement of particles more
visible.

3. Close the lid of the container
tightly.

4. Observe what happens to the
movement of particles.

5. Measure the initial room
temperature and record it.

6. Heat the container gently
by either placing it under a




heat source or running warm water
around it.

7. Observe the behavior of the particles
in the liquid as the temperature
increases.

Question
How is heat transfered in solids and
liquids?

6.2 Kinetic theory of gases

Kinetic theory of gases makes use of
many assumptions in order to explain the
reasons why gases act the way they do. The
theory explains the behaviour of gases by
considering the motion of the molecules.
In the theory, the gas is assumed to consist
of a very large number of molecules (one
mole is about 6.022 x10™ molecules) that
move randomly and collide frequently.
This causes a gas to exert a force on the
walls of the container. The force that a
gas exerts per unit area is called pressure.
It can be observed that whenever a
molecule bounces off a wall, it reverses
(changes) its direction. The rate of change
of the momentum produced is equal to the
average force which the gas molecules
exert on the wall,

In this section, you will learn to interpret
the assumptions of kinetic theory of
gases, obtain the expression for pressure
of a gas, deduce root mean square speed
of gas molecules, and establish the
relationship existing between kinetic
energy and temperature of a gas.

~(e) Between collisions,

Thermal properties

6.2.1 Assumptions of the kinetic
theory of gases

The main assumption is that the range

of intermolecular forces (both attraction

and repulsive) is small compared with the

average distance between molecules. The

other assumtions are:

(a) Collisions between the molecules
and the container are perfectly
elastic.

(b) The volume of the gas molecules is
negligible compared to the volume of
the container in which they occupy.

(c) The time spent in a collision 1is

negligible compared with the
time spent by a molecule between
collisions.

(d) The intermolecular forces are

negligible except during a collision.

a molecule
moves with uniform velocity in a
straight line.

(f) Even in a small volume, there is a
large number of molecules and that

a large number of collisions occur in
a small time.

The above assumptions define an ideal
gas.

6.2.2 Pressure exerted by gases

Consider an ideal gas enclosed in a
cubical container of sides L (Figure 6.2).
If a single molecule of a gas of mass m,
initially moving towards x-direction has
a velocity u,, then, the x-component of
momentum is mu,.

of materials
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Figure 6.2: Molecules in a cubical container

The molecule will eventually reverse the
direction of its momentum after colliding
with the wall. Since the collision is elastic,
it will rebound with the same speed so
that its momentum will now be —mu,.
The change in momentum in x-direction
is mu, — (—mui)= 2mu,.

Since the molecule travels a distance
2L to-and-fro, the time for such a trip is

2L . .
—, and therefore, this molecule’s rate
u

I

of change of momentum due to collision
. , mu,’

with the wall x will be T‘

By Newton’s second law of motion, the
rate of change of momentum is equal

i mu,~
to net force, and therefore, L is the

force exerted on the molecule by the
wall. Likewise, by Newton's third law of
motion, the molecule exerts an equal but
oppositely directed force on the wall.

Therefore, force on the wall x is o

-

; . mu-
and force per unit area is TL- (since area

of the wall x=L"). Therefore, pressure

2
mi,

on the wall is :

If there are N molecules in the container
and their x-components of velocity are

T T e u, , then, the total pressure, P
on wall x will be given by,

P=% u,:+u;+...+u~3) (6.1)

If u* is the mean value of the squares
of all the velocity components in the x-
direction, then,

2 2 2
—= W +u, +E.,
u = =
N

2 2 2 2
Nu  =uft+us +..+uy, .

, implies,

Thus, from equation (6.1)

P==(Nu) (6.2)
For any molecule, S =ut +vi+w,
where u, v, and w are components of
velocity along x, vy, and z, respectively,
and ¢ 1s the resultant velocity. This
also holds for the mean square values.

] %5 2 >
Therefore, ¢ =u"+v +w" .

But, since N is large and the molecules
move randomly, it follows that the mean

2 2 2
values of u~, v, and w” are equal,

. 2 2 2
I.E.. lu‘ — -I;“ — “;“

— =

3 i C
Therefore, ¢” =3u", u’ = ?and S0,

- an_:
3L

!'-nlll.




But L' = volume, V of the gas. Thus,

_ Nmc¢?
3

PV

(6.3)

Since p= -”::—" js. the density of the g8s,
Nm is the total mass of the gas, then,

1 —_—

P= = pc’ (6.4)

The root mean square speed, v, of a gasis

the square root of ¢’ . From equation (6.4),

‘ 3P
Iprms et e
P

For an ideal gas, Charles’ law and Boyle's
law can be combined to obtain the general
relationship between pressure, volume,
and temperature. Consider a fixed amount
of gas of volume V, kept in a cylinder at
a pressure P, and temperature7,. If it is
desired to calculate its volume V, at an
absolute temperature7,, you have to
increase the pressure to P, while keeping
the temperature 7, constant. This is
governed by Boyle’s law.

FV, =RV,

(6.5)

(6.6)

If it is desired to calculate V, at an
absolute temperature, where 7, and P,
is kept constant, you have to increase the
temperature to 7,. This is governed by
Charles’ law expressed as,

Vi .4

Fz w T, (6.7)

Combining the two laws, that is, equations
(6.6) and (6.7) yield,
BV, _BY, PV
2

= constant

For a gas with n number of moles,
PV =nRT
R is called the universal gas constant

or molar gas constant with a value of
8.31 Jmol 'K .

(6.8)

Equation (6.8) is called the equation of
state because it expresses a relationship
between the state variable of the system.
Any gas which obeys this equation is
called an ideal gas.

6.3.3 Internal energy and kinetic
energy of gases

Gas molecules at a particular temperature
possess internal energy. This energy
depends on the translational kinetic
energy and rotational Kinetic energy of
the molecules. Translational kinetic energy
(KE,,) of molecules depends on linear
movement of molecules. On the other hand,

" rotational kinetic energy (KE,, )depends on

the rotational speed of the molecules.These
two finally determine the rotational degrees
of freedom, f . The degrees of freedom
are the number of independent ways the
molecules can possess kinetic energy. The
total kinetic energy ( KET) of molecules is
the sum of both translational and rotational
kinetic energy. For translational kinetic
energy of an ideal gas:

. Nm;
3
Equation (6.9) can also be expressed as,

pv=2n L
3|2

PV

(6.9)

(6.10)

By comparing equations (6.8) and (6.10)
and rearranging,
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N[lmfz}:"RT, l”lcl_lz3_nRT
2 2

WK

, N . ;
Since — is the number of molecules per
n

mole, i.e., N, the Avogadro number, then,
1 5 3
—mc” =
2 2N,

Both R and N, are universal constants.

RT (6.11)

Therefore, i
N

A

1s also a universal

constant called Boltzmann’s constant,

k=138x10*JK"'. Therefore, the
average translational kinetic energy of a
gas molecule is

KE, = %kr (6.12)

Let M be the molar mass of the gas, i.e.,
M = N.—'I.nl , then,

| = 3 :
ENH”"- =—RT which results to

o [ET
ms M

Similarly, rotational kinetic energy is such
that, |
KE =f x[sz]

From equations (6.12) and (6.13),

(6.13)

KE, =%kT+f(%kT) (6.14)

The internal energy of the gas, U is
therefore given by,

U=NxKE,

For monoatomic gas (with only one atom
for each molecule, for example inert
gases), f =0

KET=ng+0>< lkT =§kT
2 2 2
and,
3 3
U=N><KET=E><Nanr U=EHRT

For diatomic gas (with two atoms for each
molecule, for example oxygen, hydrogen,
and nitrogen), f =2

KE, =%kT+2x[%kT}=%kT and,

U=Nx KErzngkTor U=%nRT

For polyatomic gas (with more than two
atoms for each molecule, for example

ozone, carbondioxide etc), f =3 which

alsoresultsto KE, = %k?‘ and () = INKT

or U =3nRT.

E \umpieor)

What is the root mean square speed of
a hydrogen molecule at 27°C?

(k=138x10JK™y,

Solution
From the relation, v = Lol
m
T =273 +27 =300K
2x10'kg
Mass of hydrogen (m) = —
yarogen (m) = ¢ 123x10°

m=3.32x10""kg

3%(1.38x10 JK™' x300 K )
e 3.32x107 kg

=1934 ms™'
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Estimate the total number of air
molecules in a room of capacity 25.0 m’
at a temperature of 27 °C and 1 atm
pressure, given that k =1.38x10 7 JK .

Solution

Let N be the total number of air
molecules in a room. Then, according
to perfect or ideal gas equation;

PV = NkT

i 1.013%10°Nm ™ x 25 m’
kT 1.38x10JK ' %300 K

=6.1x 10" molecules

N\ bsampie6s )

(a) What is the average translational
kinetic energy of an ideal gas

molecule at 27 °C ? (Given that
k=138x10"JK "' and
R=8.314Jmol 'K ")

(b) Whatis the total random translational
kinetic energy of the molecules in
1 mole of this gas at 27 °C?

(c) What is the root mean square
speed of oxygen molecules at this
temperature?

Solution
Using the relation

@) K E= %kT

=%xl.38xl0‘”]K"x3UﬁK

=6.21x107"]

- Exercis

properties of materials

b) xp= %nRT

=%x1molx8.314]mol“'l(" % 300K

=3741.31]

©, [
= m

. M
Since n=1, then, m=—, where M
A
is molar mass of a compound and m is

the mass of an oxygen molecule. Then,

e 320X 10 kgmol '
6.023x 10" mel™!

=531x10% kg

L [3x138x107IK ™ x300K
e 5.31x10 kg

=483.6ms”’

e 6.1

1. (a) Briefly explain why the pressure
of a gas increases when the
volume of a gas is reduced at
constant temperature?

(b) The temperature of an ideal
monatomic gas is increased from
25°C to 50°C. Is the average
translational kinetic energy
of each gas atom doubled?
Explain your answer. If your
answer is no, what would be the
final temperature if the average
translational Kinetic energy was
doubled?

2. Calculate the root mean square speed,
v, of the following system of gas
molecules:
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Number of

Molecules 317(3(2]]
Speed .
(ms") 2216.117.8| 4 12.5

3. A sealed vessel has a volume of
1.5%107m* and contains oxygen
at a pressure of 1.0x10*Pa and
a temperature of 300K. Given
that the molar gas constant,
R=8.3Jmol'K™', the Avogadro’s
number, N, =6.023x10* mol ',
and the molar mass of oxygen
=32x10""kgmol™, determine:

(a) The number of moles of oxygen
in the vessel.

(b) The number of molecules in the
vessel.

(c) The root mean square speed of
the molecules in the vessel.

4. By what factors do the mean square
speed and the root mean square speed
of the molecules of a gas increase
when its temperature is doubled?

5. The temperature of a gas is increased
in such a way that its volume
doubles and its pressure becomes
four times the original value. If
the root mean square speed of the
molecules originally was 250ms™',
what will be its value at the higher
temperature?

6. Calculate the root mean square speed
of hydrogen molecules and oxygen
molecules at the temperature of
0 °C. (Relative molecular masses
of hydrogen and oxygen are 2 and
32, respectively).

6.3 Elasticity in terms of
molecular theory
Unlike fluids (liquids and gases), solids
have definite shape and size. At the
molecular level, particles of solids tend to
maintain their arrangement because they
vibrate about their mean positions and have
strong attraction to one another.

When a deforming force is applied to a
solid, the intermolecular forces of attraction
will resist any change on the equilibrium of
the particles. As a result, the particles will
be slightly dislocated from their equilibrium
position and the solid object as a whole
appears to be deformed. If the deforming
force is removed, the intermolecular forces
restore particles into equilibrium and the
solid object regains its form (shape and

size).
Aim: To investigate elasticity of

the material into molecular
perspective

Materials: Rubber bands of different
thicknesses, ruler, weights
of various masses, retort
stand, stopwatch

Procedure

I. Set up the experiment by attaching
a rubber band securely to a clamp or
support stand so that it hangs freely.




2. Measure and record the original
length (Lo) of the rubber band using
a ruler.

3. Put a known weight to the bottom
end of the rubber band. Start with a
small weight (e.g., 50 g) and increase
the weight incrementally to obtain
further five readings, providing
enough time between additions for
the rubber band to stabilize.

4. Measure and record the new length
(L) of the rubber band after each
weight addition. The change in
length (AL) can be calculated by
subtracting the original length (Lo)
from the new length (L).

5. Repeat steps 3 and 4 for different
rubber bands of varying thicknesses.

6. Plot a graph of the force (weight
applied) versus the extension
(change in length), for each rubber
band tested.

7. From the graph, establish the
relationship between force applied
and the resulting extension. Note

any patterns ortrends exhibited by
different rubber bands.

Questions

(a) Discuss the molecular theory of
elasticity with respect to the observed
data.

(b) Explain how the intermolecular
forces between polymer chains in

rubber bands allow for deformation

Thermal properties of materials

when subjected to an external force,
returning to their original shape
when the force is removed.

This activity demonstrates the concept
of elasticity from a molecular theory
perspective, illustrating how molecular
interactions contribute to the behaviour
of elastic materials.

6.3.1 Stress and strain

Stress is the quantity that is used to
describe the applied deforming force / on
a body. When an external deforming force
is applied to the solid body, an internal
restoring force (due to the intermolecular
forces of attraction) is developed in the
body. This internal restoring force per unit
area A of the deformed body is called stress.
At equilibrium, the restoring force equals
the external applied force. Therefore,

deforming force

stress = _
cross - sectional area

(6.15)

Stress =

> |

In case the forces applied are along the
length of the body (Figure 6.3(a)), the
stress is termed as longitudinal stress o
given by,

(6.16)
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In case the body is subjected to a uniform
pressure from all sides (Figure 6.3(b)),
the stress is termed as hydrostatic (bulk)
stress AP given by,

F

AP=—
A

(6.17)
In fact, the hydrostatic stress is the
difference between the outside and the
inside pressures of the body. In case the
forces are acting tangentially (Figure
6.3(c)), the stress is termed a shearing
stress. Hence,

) F
shearing stress= vy

where A is the area to which the force F'is
acting tangentilly.

The unit of stress is Nm™ or pascal (Pa),
and its dimensions are ML'T™, same as
that of pressure.

] Al
la als |
| i F
=" =0A
F*— A :—I-
(a)
F
+ F
F-. i "—F 9:; 4
N Fl
5 .
F =AAP
(b) (c)

Figure 6.3: Longitudinal, hvdrostatic and

shearing stress

Strain occurs when the deforming forces
act on a body without causing it to move,
but bring about a change in its shape and
or size. It is defined as the change in the
dimension per original dimension of the
body. Hence,

change in dimension

strain =
original dimension
The above mentioned stresses yield
three types of strains, namely: linear
(longitudinal) strain, bulk strain, and shear
strain. If a body of length /'is extended by
Al, then,

change in length

linear strain = —3
original length

linear strain = T (6.18)

Similarly, bulk strain occurs when the
deforming force produces change in
volume of the body. It is measured by the
ratio of change of volume of the body to
its original volume. Then,

AV

bulk strain = — T (6.19)

The negative sign signifies that as the
external pressure increases, the volume
decreases.

When the tangential forces act on a body,
they change its shape (Figure 6.4). The
angle @ through which a line originally
perpendicular to the fixed plane is turned
is called shear strain. Shear strain = tan@

#

which is ﬂ Hence,
AF

shear strain = A—f (6.20)
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Figure 6.4: Shear strain

Strain being a ratio of two similar quantities
is a dimensionless quantity.

6.3.2 Brittle and ductile materials

Robert Hooke experimentally observed
that within the elastic limit (i.e., small
strains), the stress is directly proportional
to the strain produced in a body. Thus,

Slress

= constant (6.21)

Straimn

This constant is a measure of elasticity
of the material and is called the modulus
of elasticity. As mentioned earlier, strain
being dimensionless quantity, modulus
of elasticity has the same dimension and
unit as that of the stress.

To get a clear distinction between brittle
and ductile materials, let us consider a
metallic wire of uniform cross-sectional
area subjected to an increasing load.
The stress-strain variation for the wire
is shown in Figure 6.5. The portion OA4
of the curve is a sloping straight line. It
is the region in which Hooke's law is
valid. As can be seen in this region, stress
is proportional to strain. The point A
represents the elastic limit.

Thermal properties of materials

Within this limit, a strain is very small
and on removing the applied stress, the
body regains its original state of zero
strain. In other words, it can be said
that in this region, the body is perfectly
elastic. At the moment the elastic limit
is exceeded, the strain increases more
rapidly than the stress. The region AB in
Figure 6.5 corresponds to this stage. The
extension in this region is partly elastic
and partly plastic. This means that if the
wire is unloaded in this region, it will not
return to its original condition along OA.
The wire is then said to have acquired a
permanent stretch. The point B is called
the yield point.

Stress
b ..:
e
By P
A“'
f

/

[ » Strain
0

Figure 6.5: Stress-strain curve for an elastic
material

Beyond B and up to C, the strain increases
rapidly and in an irregular manner for
small increase in stress or sometimes
even without any increase in stress.

Beyond C and up to D, the extension is
plastic. In this region, the strain increases
steadily with decreasing stress and
the cross section of the wire decreases
uniformly with the extension. But after D,
the length of the wire goes on increasing
without any addition of a load or even if
the load is reduced a little.
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The stress corresponding to point D is
called the ultimate strength or the tensile
strength or breaking stress. Eventually,
beyond D, the wire breaks. This point 1s,
therefore, called breaking point.

Those materials for which the portion BD
of the curve is relatively long are called
ductile materials. These materials can
undergo large increase in length before
breaking and show large plastic range
beyond elastic limit. Examples of ductile
materials include copper, silver, and iron.
The materials, for which the portion
BD is relatively small and breaks when
subjected to a small extension are called
brittle materials. Cast iron, glass, and
ceramic are examples of brittle materials.

6.3.3 Moduli of elasticity

Depending upon the type of stress applied
on the body and the corresponding strain,
the moduli of elasticity are classified
into the following three types: Young's
modulus (Y), Bulk modulus (B), and
Shear modulus (S).

(a) Young’s modulus of elasticity
Young’'s modulus is the measure of
the resistance of a solid to a change
in its length when a force is applied
perpendicular to a surface. It is given
as the ratio of longitudinal stress to the
longitudinal strain which is equivalent to
the slope of the line in Figure 6.5 (within
the elastic limit OA).

Consider a wire of length L and cross-
section area A fixed at one end to a rgid
support as shown in Figure 6.6.

LT

ul | ;

F
Figure 6.6: A stretched wire by force

If a normal force F is applied to the free
end, the length of the wire will change by
AL. Thus,

longitudinal stress

Young's modulus =
longitudinal strain

FL
AAL

“bxampleod )

A wire increases by 10~ of its original
length when a stress of 1x10* Nm™
is applied to it. What is the Young’s
modulus of the material of the wire?

Y= (6.22)

Solution
From equation,

Y — longitudinal stress

~lon gitudinal strain
1%x10*Nm™ "
=~—3[‘;—=lx 10” Nm™
10

Therefore, the Young’s modulus is
1%10" Nm ™,



Bulk modulus

This refers to the situations in which
the volume of a body is changed by the
application of an external normal stress.
Bulk moduli are possessed by solids,
liquids, and gases. The application of a
force AF (Figure 6.7) which results to
change in pressure AP, is everywhere
normal to the surface of a spherical
body. This force changes the volume of
the body by AV, but the shape remains
unchanged. If the applied pressure is not
too large, the compression produced in
the body is proportional to the pressure.

) (Initial
(Change in volume)
volume) 1%
Av\, ===~ v (Final
P volume)
I
AF =P, —AF
1\
A./‘ S, ot
(Surface f
area) AF
Figure 6.7: Volume subjected to a
radial stress
Bulk modulus = M
bulk strain
AFV
B=——
AAV
AP
where g=M’, B=-V—
A AV

When AP and AV become very small,
then, in the limit,

(6.23)

Thermal properties of materials

The unit of the bulk modulus is Nm ™ or Pa.
The negative sign in equation (6.23)
indicates that the volume decreases with
an increase in pressure. The reciprocal of B
is called compressibility K of a substance

. 1
ivenby K=—.
g y B

A material is, therefore, easily compressed
if it has a small bulk modulus. Gases
obviously have much smaller bulk modulus
than solids and liquids.

E.\'ample 6.5 ,

A solid ball 300 em
submerged. in a lake of a certain depth
such that; the pressure exerted by water
is 9.8x10° Nm™. Find the change in
volume of the ball at this depth. Bulk

modulus of the materials of the ball is
10" Nm .

in diameter is

Solution
Using the relation
=V
AV B
, A3
[ dar' 4mx(150% 107 m)
— 3 3
V=14.137Tm’
~(14.137m* x9.8x 10 Nm~)
AV = 12 ¥ ]
10° Nm™

=-1.385x10"m’

Therefore, the change in volume is

-1.385x10°m". The negative sign
indicates a decrease in volume of the
ball.




Physics for

“vampieso)

A cube is subjected to a pressure of
5x10°’Nm™. Each side of the cube is
shortened by 1%. Find:

(i) The volumetric strain; and

(i1) Bulk modulus of elasticity of the
cube.

Solution

Initial volume, V, = 1", and final
| 3 <]
volume, V, =(1-0.011) =(0.991) .

(i)  Volumetric strain,
av I —(0.9':)1')J
S

ay _ 0.03
Vv

(i1) Bulk modulus,

_ 53X 10°Nm™
003

B
B=1.67x10"Nm™

(b) Rigidity or Shear modulus

A shear stress is one which changes the
shape of a body: the strain which results
is called a shear strain. Figure 6.8 shows
a solid block WXYZ whose lower face
is fixed. A force F acts on the block
tangentially to its upper face. The force
provides a shear stress which distorts the
block so that its new shape is wx'y'Z.

w Z

Figure 6.8: Shear forces act on an object

If the tangential stress is E-and the

corresponding shear strain iS « radians,
then,

shear modulus = M
shear strain
S5 A—Z- (6.24)

C \Euampleq7 )
|

Aluminium cube having 4 cm in each
side is subjected to a tangential force.
The top face of the cube is sheared
0.012 cm with respect to the bottom.
Find:

(a) The shear strain;

(b) The shear stress; and

(c) The shearing force.

The modulus of rigidityis 2.08x 10" Nm .

Solution At
(a) Shear strain, o = e

0.012 cm

0= —
4cm

Therefore, the shear strain is 0.003.

=0.003




(b) Shear modulus (S)—M Similarly, energy (U ) stored in a wire

~ shear strain per unit volume (V) can be obtained using
Shear stress = § X shear strain equation (6.25) as,
§=0.003%2.08x%10'""Nm™ W Fr
U = o—= a
=6.24%10"Nm™ vV  2AL
Therefore, the shear modulus is " 1 (F x
. ==X| — |X| =
6.24x10" Nm™. 27\ A )\ L (6.26)
(c) Shearing force, Therefore,

F =shear stress x area of cube face I
. U = — X stress X strain
F=624%x10"Nm~x0.04m x0.04m 2

=998x10* N which is equal to the area under the curve
Therefore. the dhsasstess s ']::i['nsl::ress versus strain, up to the elastic
9.98x10°N. '
C \ampeas )
6.3.4 Potential energy in deforming Calculate the increase in energy of a brass
a solid body bar of length 0.2 m and cross-sectional

Consider a wire or any material which 241 em? when deformed with a force
extends by an amount x when a force

F 1s applied on it. If the extension is
increased bydx, where dx is so small
that F can be considered constant: then,
the work done is dW = Fdx.

- of 49N along its length. (Young’s
modulus of brass is 1.0x 10" N/m?)

Solution

Increase in energy of the bar = Work
The total work done (W) in increasing the = done in deforming the bar, i.e.,
extension from 0 to x is equal to elastic
potential energy stored in the wire (the
strain energy) and is given by;

W=1F.r and x=£,lhen.
2 YA

i _FU
W= -[u Fdx 2A4Y
If the wire obeys Hooke’s law, then, (49 le %x0.2 m
F = kx, where k is a constant, so that = o - = 2
i 2x(1.0x107* m?)x(1.0x10" Nm ™)
W =j kx dx
0 =24x%x1071J
kx* Fx . .
W= = or W= ? (6.25) Therefore, the increase in energy of a

brass baris 2.4x 107 J.
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N\ Eample6s )

A 3.0 m length of a rod is suspended
horizontally from the ceiling using two
vertical wires of equal length tied to
its ends. One of the wires is made of
steel of cross-sectional area 1x 10 m”
and the other is made of brass of
cross-sectional area 4x107m’. Find
the position along the rod at which a
weight may be hung to produce:

(a) equal stresses in the wires.
(b) equal strains in the wires.

Young’s modulus of steel and brass
are 2x10"Nm™, and 1x10"'Nm?
respectively.

Solution

Let xbe the distance from the steel
wire at which the weight W is hung.
Suppose T; and T are the tensions in
the steel and brass wires, respectively.

w
(a) For equal stresses in the wires:
o,=0,
7 3
T, = 2L XA, (1)
[ ]

Since the system is in equilibrium, take
moments about C:

The sum of clockwise moments is equal
to the sum of anticlockwise moments.

T:';x:TRx(B—xJ (ii)
Insert equation (1) into (i1)

T =
(A—*‘xAj;):T,,x(T'”)

B

i_?:-.r

As X

1_3-x (i)
4 X

Solving equation (iii), x=2.4m

Therefore, the weight should be
placed at a distance of 2.4 m from
the steel wire or 0.6 m from brass.

(b) For equal strains (S) in the wires:
S =S,

Stress(o) )
Young's Modulus(Y)’

From S=

T T
Since 0 = A—‘ and o, =A—”
B

T, _AY,
7. AY

i

]

_1x107m* x2x10"Nm™ _ 1
4x107°m* x1x10"Nm> 2

i_ 3—-x 1
T 5 - 2

B

(iv)

Solving equation (iv); x=2m

Therefore, the weight should hang 2m
from steel wire or 1m from the brass.



6.3.5 Applications of elasticity of
materials

The knowledge about elasticity of
materials serves a lot of purposes to
humans. It is used by engineers in
bridge designing to know the maximum
load the bridge can withstand without
bending or breaking. Also, it is used
in designing structural details of
columns, beams, and supports of
buildings to avoid bending or breaking
due to expansion or contraction.

Winches are used for lifting and
moving heavy loads from one place
to another. They have a thick metal
rope to which the load is attached. In
order to lift a load without deforming
the rope permanently, it is ensured that
the extension should not exceed the
elastic limit.

Most parts of structures and machinery
are under some kind of stress. In
their design, it has to be ensured that
applied stress do not exceed the elastic
limits of the materials. In railway track
structure, the vertical dynamics are
significant part of the stress exerted
as well as the level of vibration and
emitted noise. Thus, elastic materials
such “as rail pads, under-sleeper
pads, and under-ballast mats are
incorporated to reduce geometrical
degradation as well as to decrease

noise and vibrations along the track.

I. (a) Itisfound experimentally that the

Exercise 6.2

torque required to twist a hollow
cylinder is greater than the torque
required to twist a solid cylinder of
same length and radius. Explain.

(b) In the model of a crystalline solid,
the particles are assumed to exert
both attractive and repulsive forces
on each other. Sketch a graph of
the potential energy between
two particles as a function of the
separation of the particles. Explain
how the shape of the graph is
related to the assumed properties
of the particles.

2. (a) Elastic moduli, elastic limit, and

strengths of material are all quoted
with the same unit, Pascal. Explain
the differences between these three
physical quantities.

(b) Why stresses and strains rather than
forces and extensions are generally
considered when describing the
elastic behavior of solids?

3.(a) Would you expect a rubber band

to have a larger or a smaller force
constant than that of an iron wire?
Explain.

(b) A steel rod of length 0.6 m and
cross-sectional area 2.5x% 10" m’
at 100 °C is clamped so that when
it cools, it is unable to contract.
Find the tension in the rod when
it has cooled to 20 °C. Young's

modulus of steel is 2.0x 10" Pa,
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linear expansivity of steel is

[ G 107790,

4. (a) If a metal wire has its length
doubled and its diameter tripled,
by what factor does its Young's
modulus change?

(b) A wire 2m long with a

cross-sectional area 10°m’

is stretched 1 mm by a force
of 50 N in the elastic region.

Calculate:

(i) The strain;

(11) The Young modulus; and

(i11) The energy stored in the

wire.

A large tensile force is needed
to increase the length of a steel
wire by about 0.1 %, but a
modest tensile force doubles the
length of a rubber band. Explain
how the difference in behavior
is accounted for by the different
molecular structures of steel and
rubber.

(b) Explain why, if a steel wire is
formed into a helical spring,
the amount of elastic potential
energy it can store increases
enormously.

(c) A force of 20N is applied to
the ends of a wire 4 m long,
and produces an extension of
0.24 mm. If the diameter of
the wire is 2 mm, calculate the
stress on the wire, its strain, and
the value of Young modulus.

. A spring is extended by 30 mm

when a force of 1.5 N is applied

to it. If the spring was un-stretched

10.

before applying the mass, calculate
the energy stored in the spring when
hanging vertically supporting a mass
of 0.20 kg. Calculate the loss in
potential energy of the mass. Explain
why these values differ.

Calculate the volume of
1.025x 10" kg of sea water at a depth
where the pressure is 5.0x 10" Pa.
Then, calculate the density of sea
water at this depth. Bulk modulus
of sea water is 2.2x10° Pa and
density of surface sea water is
1.025% 10 kgm .

Two structural beams, beam 1 and
beam 2, both have the same cross-
sectional area. The tension force
required to stretch beam | by 1%
is_four times the force required to
stretch beam 2 by 0.5%. Beam | has
the following properties: L=10m
Y =12x10’ Pa. Calculate the
Young’s modulus Y for beam 2.

A bone that has the shape of a
cylinder has one end fixed to a
horizontal surface. If a 35 N force is
then applied laterally to the plane of
the upper face; determine the lateral
displacement, given that the diameter
and length of the bone are 1.2 cm
and 3cm, respectively. Shear
modulus of bone is 80x 10’ Pa.

A mild steel wire of length 2L and
cross-sectional area A is stretched
well within elastic limit, horizontally
between two vertical pillars. A mass
m is suspended from the mid-point
of the wire. Determine the strain
produced in the wire.



11. A body of mass, mis hung from
the middle point of the steel wire of
diameter 0.8 mmand length 1.2 m
clamped firmly at two points P and
Q. The distance between the two
points is 1.2 m in the same horizontal
plane such that the middle point
sags lcm lower from the original
position. Calculate the mass of the
body given that Young's modulus of
steel is 210" Nm ™.

6.4 Thermometric properties of
substances

Thermometry is a branch of science that
deals with measurement of temperature.
Temperature of a body is the degree or
intensity of heat present in a substance
or object, such that when two bodies are
placed in contact, heat flows from the
one at high temperature to the one at low
temperature. It is an indicator of the average
thermal energy of the molecules. In order to
measure temperature, a temperature scale
must be established.

Any object which has a physical property
that changes in a measurable way as the
object gets hotter or colder can be used
as the basis of scale of temperature.
Such a property is called a thermometric
property. Nearly all solids, liquids, and
gases expand when heated and this
expansion is commonly used to specify
thermometric properties on which variety
of thermometers are based. Therefore,
the length of solid bar, volume of liquid,
or gas can all be used as thermometric
properties. Other thermometric properties
include properties such as resistivity, e.m.f,
and resistance of a material. In order to
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define temperature scale, three distinct

conventions are adopted.

(i) A choice of suitable thermometric
property.

(i) A choice of specific functional
dependence of temperature on the
thermometric property chosen.

(i1i) A choice of appropriate number of
calibration points to specify uniquely
the function chosen.

A thermometer is used to measure
temperature. It makes use of a physical
property (thermometric property) of a
substance which changes continuously
with temperature. Table 6.1 shows some
thermometric properties of matter used in
various thermometers.

Table 6.1: Thermometric properties of matter

Thermometric Thermometer
property
Volume expansion | Gas thermometer
of a gas

" Volume expansion | Laboratory or
of a liquid clinical

thermometer

Volume expansion | Bi-metallic strip
of solid thermometer

Volume-constant
gas thermometer

' Pressure change in
fixed mass of gas

Change in “Thermocouple
electromotive force | thermometer
Change inelectrical | Resistance

| resistance thermometer

Thermometers have measurement scales.
Scale of temperature is a way to measure
temperature quantitatively. There are three
temperature scales in use today, namely
Celsius, Fahrenheit, and Kelvin.
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(b) Triple point

Triple point is the point at which gas, liquid,
and solid phases (states) of a substance
co-exist in equilibrium. The temperature
at the triple point of water is 273.16 K or
0.01°C and the pressure is 4.58 mmHg
or 610 Pa. At this point, it is possible to
change all of the substance to ice, water, or
vapour by making arbitrarily small changes
in temperature and pressure (Figure 6.9).

B A
Develop a detailed comparison between
the Celsius and Fahrenheit temperature
scales focusing on their formulas and key
reference points. Present a comprehensive
analysis including conversion techniques
and their practical applications.

6.4.1 Thermodynamic scale
Thermodynamic scale of temperature is

not an empirical scale of temperature. It is % t

a scale of temperature that is not based on £ - Water _

any thermometric property or experimental (;t::lidl [L'q"@ _
results. Therefore, it is an absolute scale

of temperature (7). Although this scale is SaNapor
theoretical. it is identical with the scale 2:”;”;‘3 ...... .

based on pressure variation of an ideal gas :

at constant volume. Q’:{; E

273.16K Temperature

Kelvin suggested that the standard scale (0.01°C)

of temperature should be based on ideal
or perfect gas or real gases at very low .
pressure or high temperature, ie., it |
should obey Boyle’s law.

Figure 6.9: Triple point at constant volume

Let X be aphysical property of a material
atits triple point temperature 7, X, be the
physical property of a material at unknown
temperature T (in kelvin). Since the change
in temperature is directly proportional to

the change in thermometric properties, i.e.,
T e< X , then,

Thetwo fixed points in the thermodynamic
scale of temperature are Absolute zero
and Triple point of water.

(a) Absolute zero

Absolute zero is the temperature at which
the pressure of an ideal gas becomes

zero, and it has the value of 0 K (zero = KRy (6.27)

kelvin). The temperature scale which
begins at absolute zero is called Kelvin or

where & is the proportionality constant.
Similarly,

absolute temperature scale. Absolute zero T=kX, (6.28)
is equivalent to —273.15°C. The absolute
zero is considered to be the lowest possible ~ Dividing equation (6.28) by (6.27),

temperature attained by a substance in
which the random motion of the atom and
molecules in the substance 1s minimum.

T=(£~L]XT
xrr r

(6.29)




For water, T, =273.16 K . Thus, equation
(6.29) can be written as,

T=[%)x273.16]( (2.30)

r
The fixed points and their corresponding
absolute temperature scales are summarized
in Figure 6.10.

Boiling

point 212°F 100°C 373K

Freezing

point 32°F 0°C 273K

Absolute

Zero —459°F -273°C 0K
Fahrenheit Celsius kelvin

Figure 6.10: Fixed points and absolute
temperature scale

6.4.2 Types of thermometers and
their uses

A thermometer depends on the thermometrie

property (X) of the materials used to make

it. This property varies with temperature

changes according to the expression,

fie= Xu_xu
X .—X

100 ]

%100 °C

Where X, X, and X, are the measures

at 0°C, 100°C, and temperature (¢)
under measurement, respectively.

(a) Gas thermometers

In most accurate work, temperatures are
measured by gas thermometer. It is referred
to as an ideal thermometer because the
increase in volume or pressure of a gas with
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temperature is independent of the nature of
the gas. Two types of gas thermometers
include: constant-volume gas thermometers
and constant-pressure gas thermometers.

(i) Constant-volume gas thermometers
A constant volume gas thermometer is an
instrument used (0 measure temperature
by observing the change in pressure of
a fixed volume of gas. It is based on the
principle that the pressure of a gas is
directly proportional to its temperature. The
thermometer consists of a sealed container
filled with a fixed volume of gas, often
helium or hydrogen, connected to a device
capable of measuring pressure changes
(Figure 6.11). As the temperature changes,
the gas within the container expands or
contracts, leading to variations in pressure.
These pressure changes are then translated
into temperature readings through
calibration against a standard thermometer
at various known temperatures.

Mercury

Flexible tube
Figure 6.11: Constant-volume gas thermometer

During measurement, the glass bulb
is placed inside the enclosure whose
temperature is to be measured. Keeping
the volume of air in the glass bulb constant
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by raising or lowering the glass tube (to
keep the mercury in the left side of the
gas tube at the constant reference level
R), the pressure of air in glass bulb at ice
point (0°C). steam point (lOO“C), and
at the unknown temperature (9°C) are

determined by recording the corresponding
values of height difference h. The pressure,
P of the gas is calculated from the relation
P= A+ hpg, where A is the atmospheric

pressure, and P is the density of mercury.

If B, and P, are pressures at 0°C and

100°C, respectively, then, the temperature
of the enclosure can be found by equation
(6.31) with pressure P;

9=[—§"1 }xlﬂﬂ"C
100 0

(ii) Constant-pressure gas thermometers
These thermometers are based on the
thermal expansions of gases at constant
pressure. As a thermometric property, it
uses the variation of volume of a gas at
constant pressure with temperature. If V
denotes the volume of a gas at constant
pressure, then one can talk of the volume
at 0°C, 100°C, and 8°C as V,, V,,,, and
V, . respectively. Replacing X in equation
(7.3) with volume V, it follows that,

(6.31)

o~ Jtooec

100 _Vu

(6.32)

(b) Eleetrical thermometers

Electrical thermometers are classified
into two categories, namely, resistance
thermometers and thermocouple
thermometers.

(i) Resistance thermometers

Resistance thermometers are based on
the fact that resistances of metals are
temperature dependent. It is based on the
uniform change of electrical resistance with
equal rise or fall of temperature, and so,
resistance R can be used as thermometric
property. Resistance thermometers are
usually made of platinum because of
its high melting point (1773°C), high
malleability, high corrosion resistance,
high ductility, stable electric propertics,
and chemical stability. These features
make platinum resistance thermometer
both sensitive and useful over a wide
range of temperature. They are also very
accurate over all thermometers “except”
gas thermometers, and are stable at high
temperature.

The principle of a resistance thermometer
Platinum wire is wound on mica (insulator)
and covered with quartz (glass material)
(Figure 6.12 (a)) and this forms one of the
four arms of Wheatstone bridge as shown in
Figure 6.12 (b).

Mica spacers __::_ﬂi — Dummy leads

Mica f% Platinum wire
Silica tube L
(a)

Dummy leads

Platinum wire ——

(b)
Figure 6.12: Platinum resistance thermometer
and its circuit




If R,.R,.R are known, then @ is
calculated as:

a=[——-Rﬂ_R" )xlﬂﬂ °C

100

(6.33)

When calibrated against constant-volume
gas thermometer, the resistance R of
platinum is found to vary with Celsius
temperature according to equation,

R, =R (1+af+b6%)

where R, is the resistance at 0°C, R,

(6.34)

is the resistance at temperature 6, a and
b are constants.

Note that, a thermistor is a type of resistance
thermometer made from semiconducting
materials, and it works on the principle
that resistance decreases with increase in
temperature.

Cwomplesio)

A particular resistance thermometer has
a resistance of 30€2 at the ice point,
41.5802 at the steam point, and 34.59Q
when immersed in a boiling liquid. A
constant volume gas thermometer gives
readingsof 1.333x 10°Pa, 1.821x 10°Pa,
and 1.528 x 10°Pa at the respective three
temperatures. Determine the temperature
at which the liquid isboiling:

(a) On the scale of the gas thermometer:;

and
(b) On the scale of the resistance

thermomeler.

Solution
(a) The Celsius temperature, 8,
according to the gas scale,

Thermal properties of materials

[ 1.528x10'Pa—1.333x10"Pa
1.821x10°Pa—1.333x 10°Pa

=39.96°C

Therefore, temperature on the gas scale
is about 39.96°C.

x100°C

(b) The Celsius temperature, 0,
according to the resistance scale,

[

R =

BR ﬁ]xlﬂ{) i @
\

100 0

Il

I

34.59Q - 300

= x100°C
.,41.539-309)

=39.64°C

The temperature on the gas scale is
about 39.64°C.

(ii) The thermocouple

A thermocouple is a device consisting
of two dissimilar metal wires welded
together at their ends, forming two
electrical junctions. These will set up an
electromotive force (e.m.f) at the point of
contact. A thermocouple works under the
Seebeck effect in which thermal e.m.fis
generated at the contact of the two dissimilar
conducting wires. Since the e.m.f generated
varies continuously as the temperature of
the junctions changes, it is used as the
thermoelectric property.

In the construction of thermocouple, two
junctions are always made. One junction
is always maintained at a reference
temperature, usually 0°C (hence called
‘cold junction’) and the other junction
(called the ‘hot junction’) is connected
to the body, whose temperature is to be
measured (Figure 6.13). The e.m.f generated
is measured by a high resistance voltmeter
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in mV. Thermocouple thermometers
have small heat capacities because the
junctions are small, therefore, they
have little effect on the temperature
of the body being measured. They can
measure rapid fluctuating (changing)
temperatures. Also, they have a wide
range of temperature measurement
(=200°C to 1500°C) depending on
the type of materials used. However, in
thermocouple thermometers, variation
of e.m.f. with temperature is non-linear.

They are also difficult to be recalibrated.

Chromel Chromel

Hot junction = ™\ Cold junction

Figure 6.13: Principle of a thermocouple
thermometer

The electromotive force (E) generated
and the temperature @ between the
junctions are related by:

E = af+ b’ (6.35)

This relation is parabolic as shown
in Figure 6.14, where the values of
a and b depend on the materials of
the wires used and the temperature
difference between the two junctions.
As the temperature increases, the
e.m.f. increases up to the temperature
called neutral temperature 6,, which

is independent of the cold junction.

If E, and E,, are e.m.f. at 0°C and
100°C, respectively, the temperature to

be measured will be given by equation
(6.36)

E - E
9=(MJXIO’D°C (6.36)
Elm_‘En
Note that, in practical use, several

thermocouples are connected in series to form
a thermopile so as to give larger e.m.f.

E A

E

Ml b o= = o= oo o= =

E = afl + b9’

>0
0 e, @

0 i

Figure 6.14: Thermocouple e.m.f. as a function of
temperature 0

From Figure 6.14, reference temperature
6, 1s the temperature of cold junction and
neutral temperature &, is the temperature of
hot junction whose e.m.f. is maximum.

Inversion temperature @ is the temperature of

hot junetion when e.m.f. is OV.

Applying differentiation on E = af + b@°,

AE _ 120, At £=0’9. =—2  where,
de de o 2b
6=6N' lhETL
; a a )
E_=ad+t6® =a| -2 |+8| -2
o =90+ a[ 2.1;] [ 2:;)
P o (6.37)
max 4b
e +6

AtE. ., 0 =20, and 6, = 112 &

When the inversion temperature is exceeded,
the thermoelectric e.m.f. in the thermocouple is
reversed. The use of a thermocouple thermometer
is restricted in the temperature range between
0°C and neutral temperature @,. This is
because, beyond the neutral temperature 8, , the




thermoelectric e.m.f. decreases
with increasing temperature.

(c) Pyrometer

A pyrometer is a non-contact
type of thermometer used for
measuring high temperature
using thermal radiation
emitted by a distant hot source.
Examples of sources with
very high temperatures are
furnaces. Pyrometer consists of
an optical component to collect
the radiation energy emitted
from a surface of an object.
It also consists of a radiation
detector that converts radiant
energy into an electrical signal
and an indicator to read the
measurements.

Other types of thermometer
which have similar features
as pyrometers include infrared
thermometers. They are used
to measure relatively low
temperature of surfaces that emit
radiation like a blackbody.

- Example 6.1 -

In a certain thermocouple,
the thermo e.m.f is given by

2

E=a9+é§——. where 0 is

the temperature of the hot
junction. If the cold junction

is at 0°C, a=10pV °C™
and b=-0.05pV °C7,

calculate:

of materials

Thermal properties

(a) The neutral temperature, EN and the inversion
temperature, @ ; and

(b) The maximum electromotive force, E_ .
Solution

(a) E=a8+bg

Bl

Since the neutral temperature is obtained at

maximum e.m.f., E

myx *

then, E =a+bb. At
dé

dE
—=0, L
a0~ =%
o1
g, =——OBVC _50c

YT 0,05 pv °C?
6,=2%0,=2x%200°C
= 400°C

2
) E,, =af 4ot

i . (200°c)’
=10 pV 2C;' X200 °C-0.05 pV °C* x———

E_.=1000 uv

\ Exercise 6.3

I. A faulty thermometer has its fixed points

marked 5°C and 95°C. What is the
correct temperature in centigrade when this
thermometer reads 59°C?

2. Explain why

(a) at least two (2) fixed points are required
to define a temperature scale.

(b) two thermometers using different
thermometric properties and calibrated
at two fixed points, would not necessarily
show the same temperature except at the
fixed points.

3. The resistance R, of a platinum wire varies
with temperature @ according to the equation,
R, = R, (1+ 800060 — b6’

where b is a
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constant. Calculate the temperature
on a platinum scale corresponding
to 400°C on the gas scale.

A liquid-in glass thermometer
uses a liquid volume which varies
with temperature according to the
equation, V, = ‘lﬁ,(l + aﬂ-l-bﬂ:)
where V, and V, are the volumes
of the gas at €°Cand 0°C,
respectively, and ¢ and b are
constants. If a=bx10, what will
be the reading of the liquid in glass
scale when the actual temperature
is 60°C?

A resistance thermometer has
a resistance of 28.11Q at the
ice point, 29.10 Q at the steam
point, and 28.11Q at unknown
temperature ¢. Calculate the value
of 0 on the scale of this temperature.

A particular constant-volume gas
thermometer registers a pressure
of 1.937x10"Pa at the triple point
of water and 2.618x10"Pa at the
boiling point of aliquid. Whatisthe
boiling point of the liquid according
to this thermometer?

The temperature measurement
described in question 6 above was
repeated using the same thermometer,
but with a different quantity of the
same gas. The readings on this
occasion were 4.0668x10"'Pa
at the triple point of water and
5.503x%10"Pa at the boiling point
of theliquid.

(a) What is the boiling point of
the liquid according to this
measurement?

| Temperature
points

Io

2.

(b) Which of the two values is the
better approximation to the ideal
gas temperature, and why?

(c) Estimate the 1ideal

temperature.

gas

Athermocouple thermometer has one
of its junctions dipped into steam at
100°C while the other junction is
dipped into ice at 0°C. An e.m.f.
of 1.2 mV is produced. When the
junction in ice i1s removed and
placed into an unknown liguid, the
thermocouple thermometer produces
an e.m.f. of 0.6 mV. What is the
temperature of the unknown liquid?

The following readings were taken
with a simple constant-volume air
thermometer. This has a fixed mass
of air trapped by a mercury column.
What is the room temperature from
these readings?

Level of mercury
closed ‘open limb
limb (mm) | (mm)

136 112

' Bulb in
| melting ice

Bulb in steam 136 390

at latm

Bulb at room

136 160
lemperature _

10. (a) Two thermometers are

constructed in the same way such
that, they have equal volume of
liquid used and that one has a
spherical bulb and the other has
an elongated cylindrical bulb.
Which one will respond quickly
to temperature changes?

(b) How do you justify that when a
body is being heated at melting
point, the temperature remains
constant?




6.5 Heat transfer

Have you ever wondered why fire walkers
do not burn their feet as they step quickly
across red hot coal or charcoal? Is it because
their feet are wet? What is the physics that
explains the phenomenon? You will learn
many intriguing applications of heat and
heat transfer. Heat flows from an object
at a higher temperature to the one with a
lower temperature. These objects could
be two solids, a solid and liquid or gas, or
within a solid, liquid or gas. There are three
ways that heat is transferred: conduction
(through direct contact), convection
(through fluid movement), and radiation
(through electromagnetic waves).

6.5.1 Thermal conduction

Conduction is the process in which heat
flows from the hotter regions of a material
to the colder region without there being
any net movement of the material itself.

(a) Thermal conductivity

Thermal conductivity of a solid is a
measure of the ability of the solid to
conduct heat through it. The greater
the thermal conductivity of a solid, the
greater the ability to conduet heat through
it. Consider a slab of materials of cross-
section area A and thickness dx subjected
to a high temperature 6, on one side and
lower temperature €, on the other side
(Figure 6.15). »

A

Direction
of heat A 93

—> | 6,

o
I |

-

dx

Figure 6.15: A slab
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With the aid of Figure 6.15, we can
determine the amount of thermal energy
dQ conducted through a solid. It is found
experimentally that the thermal energy
dQ conducted through the slab is;

(i) directly proportional to the area A of
the slab; the larger the area, the more
thermal energy is transmitted.

(ii) directly proportional to the time dt;
the longer the period of time, the more
thermal energy is transmitted.

(iii) directly proportional to the

temperature difference (9,—93]

between the faces of the slab; if there

is a large temperature difference, a

large amount of thermal energy flows.
(iv) inversely proportional to the thickness
of theslab, dx; the thicker the slabthe
greater the distance that thermal energy
must pass through. Thus, a thick slab
implies a small amount of energy
transfer, whereas a thin slab implies
a larger amount of energy transfer.

The above observations can be expressed
as,

Ale-6,) (6.38)
To make equality out of this proportion
in equation (6.38), you must introduce a
constant of proportionality k. The constant
depends on the material that the slab is made
of, since it is a known fact that different
materials transfer different quantities of
thermal energy. Hence,

w06,

d
0 dx

(6.39)
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Suppose 6, —6,=d6, then,

dQ _
dt

do

dx

(6.40)

where, d_Q is the rate of flow of heat from
di
the hotter face to the colder face and is at

right angles to the faces (its unit is J/s or

Watts, W), ? is called the temperature
X

gradient across the section concerned
(its unit is Km™), k is the coefficient of
thermal conductivity of the material (its
unit is Js'm 'K or Wm'K™). The
coefficient of thermal conductivity of
material is the rate of flow of heat per unit
area per unit temperature gradient when
the heat flow is at right angles to the faces
of a thin parallel sided slab of material
under steady state conditions. It is a
measure of the ability of the material to
conduct heat, i.e., the larger the value of
k, the faster the heat transfer. The thermal
conductivity of some materials is given in
Table 6.2.

When heat is flowing in the positive direction
of x (Figure 6.16), the temperature gradient
is negative, and therefore, the presence of
negative sign in equation (6.40) makes a
positive constant. This is because under
steady state condition, the temperature at
points within the slab decreases uniformly

o 0.147Jm™'°C™" x3.00m % 2.44m X (21.1°C - (- 6.67°C) ) X 24 X 60 X 60s

with distance from hot end to the cold
end. It is the existence of the temperature
gradient which causes the heat to flow.

Table 6.2: Thermal conductivities of some

malterials
Material Thermal
conductivity
S
' _ (Wm 'K") A
Silver 420 o
Copper 380 i
- Aluminium 240
" Brass | 109 3
Nickel _L_E-ﬁ'
Iron . 80
Lead 1_ 35
| Mercury, . | 8
~ Glass (Pyrex) | 1.1
Brick 0.6-1.0
Rubber [ 0.2
_Air | 0.03

“amples.iz)

Find the amount of thermal energy that
flows per day through a solid oak wall
10.0 cm thick, 3.00 m long,and 2.44 m
high, if the temperature of the inside
wall is 21.1°C, while the temperature
of the outside wall is —6.67 °C. Thermal
conductivity of oak is 0.147 Jm™'°C"".

Solution
From the relation,

0= M(el _92)’
x

=2.58x10")

0.lm

Therefore, thermal energy that flow per day through a solid oak is 2.58 x10J.




(i) Heat flow through lagged and
unlagged conductors

When a metal bar is heated from one end.
heat flow depends on whether the metal
bar is lagged or unlagged. If the metal
bar is well lagged with a poor conductor
of heat such as asbestos and wool, the
temperature falls uniformly from the hot
end to the cold end of the bar. Suppose
a long uniform rod, AB, of length L is
thermally insulated so that heat energy
cannot escape from its surface except at

the end as shown in Figure 6.16(a), then,
all heat energy entering one end of the bar
eventually leaves the other end.

Insulating material

|

Heat in _Heat out

YYYYYY

A B
(a)
-
2
E
E
&
(=8
=]
S
Distance

(b)

Figure 6.16: Conduction of energy through a
uniform, insulated rod of length L

The drop in temperature is linear as shown
in Figure 6.16 (b). When a steady state
has been reached, the temperature at each
point along the rod is constant in time. A
graph of temperature against length of the
bar is shown in Figure 6.16 (b).

= ; ;
Thermal properties of materials

Since the metal bar is well lagged no heat
is lost to the surrounding and a graph of
fall of temperature against length of the
bar is a straight line.

To a very good approximation, thermal
conductivity isindependentoftemperature.
The temperature gradient is the same
everywhere along the rod and is given by:

ﬁ _ |9| B 9:]

dx )
Since there i1s no heat that can escape
from the sides of the metal bar, the rate of

energy transfer by conduction through the
rod is equal, i.e.,

Q) _| 4@
drad drﬁ

szm(ﬁ'.-%) (6.41)
dt L
Equation (6.41) can be written as;
dQ — A (91 —6’2)
di . L (6.42)
k

On the other hand, for unlagged material,
heat flows from the hot end to the cold
end of the bar, but some amount of heat
will flow out of the sides of the metal
bar to the surrounding by convection
and radiation before reaching end point
B (Figure 6.17 (a)).

When the conditions are steady, the
temperature # measured at points along
the length of the bar varies (Figure 6.17(b)).
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Heat in — > Heat out
A B
(a)
s A
2
E
=
+
(b) Distance

Figure 6.17: Conduction of energy through a
uniform, unlagged metal bar of
length L

In this case,

o) _[dQ
dr ), \ di H'
Therefore, *d—q] > ﬂél_
de ), \dx),

It follows that the temperature gradient
decreases with distance from the hot
end of unlagged uniform bar. The graph
(Figure 6.17 (b)) shows the steady state
temperature distribution of unlagged
uniform bar of length L. There is a loss of
heat to the surroundings because the metal
bar is unlagged and the graph of fall of
temperature against length of the bar is
nol a straight line.

Campleory)

One face of a copper cube of edge
10 cm is maintained at 100 °C and
the opposite face at 0°C. All other
surfaces are covered with an insulating
material. Find the amount of heat
flowing per second through the cube.
Thermal conductivity of copper is
385Wm™'°C"".

Solution

The heat flows from the hotter face
towards the colder face. The amount of
heat flowing per second is,

dQ - M(Gl _92)
dr X

8, —6,=100°C—0°C=100°C

dQ  385Wm™°C™' x(0.1m)’ x100°C
dr 0.1m

=3850W

The rate of heat flow through the cube
is 3850 W.

(ii) Composite conductors

A composite conductor is the one made
by joining two or more conductors of
different materials joined end to end
or side to side. There are two types of
composite conductors; conductors in
series and conductors in parallel.

Consider a lagged composite conductor
made of two different materials each of
cross section area A and, coefficient of
thermal conductivities k, and k, joined
end to end as shown in Figure 6.18.




—— L, ———tte— L, —)

Figure 6.18: Lagged conductors in series

At steady state condition, the heat flowing
into one end of the conductor is equal to
that flowing out of the other end, given

6, >6>80,.
2=Ak[————6'_61J
! L

For conductor 1,

(7)-(%)

For conductor 2,

€] -m(52
th o\ L

(A

From (6.44)

From (6.45)

6-0,= %2
'y

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

Adding equations (6.46) and (6.47), and

simplifying;

(6.48)

properties of materials

In general, for any number of conductors,
the total rate of heat flow is given as,

Q_ A(el_el)
t a LI
23

where i = 1,2,3.....n

(6.49)

Suppose L =L,=L, equation (6.48)

becomes,
g_ Ak k, (91 _92) :
t Lk +k,) jo:980

Comparing and rearranging equations
(6.43) and (6.50), effective conductivity
k becomes,

k= kkfi (6.51)
] T

[n general, for any number of conductors

in series,
Y1 1 1 1 1 w1
=t —t—t.t—Or —= ) —
k k k, k k k =k

n i

When dissimilar conductors are joined side
to side (in parallel), the left ends of both
conductors are kept at the same temperature
6, and the right ends of the conductors
are kept at the same temperature 6,. The
temperature difference is maintained
between the end of each conductor and
there is no temperature difference at the
junctions.

Q
The rate of flow of heat (?] through

each conductor is different, but the rate
of flow of heat through the composite

conductor is the sum of the rate of heat
flow through each conductor.
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Consider two dissimilar conductors
joined in parallel as shown in Figure 6.19.

« L b

Figure 6.19: Lagged conductors in parallel

arrangement

If Q is the rate of flow of heat through
t

the composite conductor, then,

2]
AHJ “‘[ o

[
T_"'IA'I[

kA kA
= [L. 3 J(a -6,) (6.52)

Suppose, A=A, =A and L=L,=L,
then,

2_ Ak, +k,)(—9‘_93]
r 297

Comparing equations (6.43) and (6.53),
where k i the effective thermal conductivity
of conductors in parallel, for any number
of parallel conductors,

k=k|+k2+k3+...+kﬂ

= Z k,
=1

(6.53)

(6.54)

“Nampieots)

Two perfectly lagged bars x and y are
arranged in series and parallel. When
the bars are in series, the hot end of x is
maintained at 90°C and the cold end of
y is maintained at 30°C. When the bars
are in parallel, the hot end of each is
maintained at 90°C and the cold end of
each is maintained at 30°C. Calculate
the ratio of the total rate of flow of heat
in parallel arrangement to that in series
arrangement. The length of each bar is
L and cross section area i1s A. (Thermal
conductivity of x is 400 Wm'K™" and
that of y is 200Wm 'K™).

gﬂoc 9 moc
X v O
% L Pia— | —>
(a)
90°C = 30°C
.‘.'
(b)
Figure 6.20
Solution
(a) Heat flow through bar x,
90°C-6
(2) - et 2
t), ) L
Q SJgr=t (90"(:—.9) :
- =400Wm'K'xAx——= (i)



For bar y,

[-QJ =200Wm 'K ' x Ax
t

¥

(6-30°C)
L (i)

Since the bars are lagged, heat flow is

constant. Thus, [d—Q) =[£J
dt I dr ;

Equating equations (i) and (ii), and
solving 8=70°C.

Therefore, the rate of heat flow in series
is given by:

4

%] =400Wm 'K ™' x %x (90°C-70°C)
\ ¥
(

2) =8000 W' x 2 (i)
\ ¥/ L

For parallel: [%J =(%} +[,(I_3]
(_Q_
t

) =400Wm 'K x%x[‘)ﬁ“C—SO“C)%—

P

200Wm'K ! x%x(!)ﬂ“C—B{]“C}

] =24ﬂﬂﬂWm"x%+12000Wm‘lx%

"

6000 Wm ™' x% (iv)

o, T
=

I

L‘J

The ratio of rate of heat flow in the
lagged parallel to that arranged in
series is 9:2.

Thermal properties of materials

“amplenis)

Two slabs of lengths L, and L, and
thermal conductivities k&, and k,,
respectively, are in thermal contact
with each other. The temperature of
their outer surfaces are 6, and 6,, and
6, > 6,. Determine:

(a) The temperature £ at the interface; and

(b) The rate of energy transfer by
conduction through an area A of the
slabs in the steady state condition.

Solution

(a) Suppose the interface temperature is
A, for which 6, <f< 6,. The rate at
which energy is transferred through
area A of slab 1 is

Lol

The rate at which energy is transferred
through the same area A of slab 2 is

-0
a0 _ k,A[BZ ] (ii)
de ° L,

Since the two slabs are in a steady state

condition, their rates of energy transfer
are the same. i.e.,

7))
L ) UL

Therefore,

gz(k.ge. +k2119:) G

kL, +k, L,
(b) Substituting (iii) into either (i) or (ii);
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Thermal resistance (R-Value of
insulation)

Assuming k is a constant, show that the

: : 3 Thermal resistance of a material is the
radial rate of flow of heat in a matenal iy _
between two concentric spheres opposition of the material to the flow of

(Figure 6.20) is given by heat through it. The thermal resistance R of
Ak (T _T ) a slab of a material with area A is defined
=—12 1 2 where 5 and  guchthat the heat current through the slab is:

rz =

! a0 A6,-6,)
dt R

spheres respectively, and 7, and T, are  Thermal resistance R is closely related
their corresponding temperatures and (o the thermal transmittance (U-value) of
I, >T,. material as:

1, are the radii of the inner and outer (6.55)

R=—
U

Comparing equation (6.55) with (6.41),
R=
k

Since R is measured in m’KW™', U =

o~

is then measured in Wm “K ',

Figure 6.21: Conceniric spheres
Therefore, U value is the rate of transfer

Solution of heat through a structure (single or

Therate of heat fow: H =—EkA dr. SHut composite) per unit temperature difference

A=4nr. dr per unit cross sectional area. The lower

the thermal conductivity of the material

Hd—:=~4kxdT (i) of which a slab is made, the higher the
re R-value of the slab.

ol —Ark ¢,

Az C\Bamplesi7)

A room has a 4mx4mx10cm

—% '—'%F': (ii) concrete roof (k=126Wm™°C™). At

fi some instant, the temperature outside is
Simplifying (ii), 46°C and inside is 32°C.

drxkrr, (T1 -7, ) (a) Neglecting convection, calculate the

= ( e q) amount of heat flowing per second

into the room through the roof.

T =,



(b) If bricks (k=0.65Wm'°C™") of
thickness 7.5 cm are laid down on
the roof, calculate the new rate of
heat flow under the same temperature
conditions.

Solution
(a) Thermal resistance of the roof is
given by;

Rl
l"(I
3 0.10m
' 1.26Wm'°C™

=7.94x107 m’KW™'

Rate of heat flow through the roof,

2_ ‘4‘(91 _92)
t R

0 16m*(46°C-32°C)
= —————=28212W
t o 7.94x107 m’KW

(b) Thermal resistance of the bricks is
given by;

rob
- k:!
0.075m
R;': 1ol
0.65Wm " °C

=115x 107 m*KW™

The equivalent thermal resistance of
the roof now is

R=R +R,
R=(79.4+115)x10" m’KW"'
=194.4x10" m’KW"'

Thermal properties of materials

Therefore, the rate of flow of heat
through the roof is

Q_ A(el_el)

— ]

1 R

0 16m*x(46-32)°C

. =1152W
I 1944107 m°’KW™'

The thermal resistance R acts to impede
the flow of thermal energy through the
material. The larger the value of R, the
smaller the quantity of thermal energy
conducted through the roof. For the
compound roof wall, the total thermal
resistance to thermal energy flow is

R=R|+R2+R]+...+R"

Determination of thermal conductivity
by Searle’s apparatus

The Searle’s apparatus is used for
determining thermal conductivities of
good conductors of heat (Figure 6.22).
The holes at X and Y contain oil to
ensure good thermal contact between the
thermometers and the bar.

The heater is switched on and water is
passed through the coppercoil ata constant
rate. If the bar is assumed to be perfectly
lagged, then, it is at steady state (i.e., all
four thermometers give steady readings).
The rate of flow of heat between X and Y
is given by,

(6.56)
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Steam chamber
Steam inlet

Water
outlet

Cold water in
Insulator

Conducting
material

Steam outlet

Figure 6.22: Searle’s apparatus

Since the bar is assumed to be perfectly = Determination of thermal conductivity
lagged and none of the heat is being used =~ by Lee’s disc

to increase temperature (steady state), all =~ Lee’s disc is used for determining thermal
the heat which flows along the bar is being ~ conductivities of poor conductors of heat
used to increase the temperature of the = (Figure 6.23).

water. If m 1s the mass of water flowing
per unit time and ¢ is the specific heat
capacity of water, then, the heat required
to raise the temperature of the water is

Steam

& Steam in

given as, —ﬁ:::‘;[:le
investigation
0 me(6,-6,) (6.57) (a)
dt '
Equating equations (6.56) and (6.57),
(9| ik 9*)
kA-———== mc(ﬂ,—ﬂJ (6.58) (b)
X '

The value of k can be determined from P

equation (6.58).

When the latent heat of water is given, &

also can be obtained i.c., 0 fof
(6,-6,) " >
kA——==mlL,
X (C )
where L is the latent heat of vaporization Figure 6.23: (a) Lee’s disc, (b) cooling disk,
of water. and (c) cooling curves




The sample (e.g., cardboard) is in the form
of a thin disc and is sandwiched between
the thin base X of a steam chest and a thin
brass slab Y. Steam is passed through the
chest and apparatus is left to reach steady
state. The sample is thin and therefore to
good approximation, no heat is lost from
its sides. It follows that, at steady state,

d_Q= kA(el _9:)
dt X

where x is the thickness of the poor
conductor, A is cross-sectional area and k
is thermal conuctivity of the sample.

Plotting the graph of temperature € against
time 1, the rate of temperature change along
the disc Y is equal to the gradient of the
graph (Figure 6.23 (c)).

The conditions under which Y is losing
heat are the same as those at steady state,
and therefore,

(6,-6,) 46 a

kA ~ =mc—=mc—
X dt b

(6.59)

Thus, k can be determined from equation
(6.58).

" \Example618)
One end of a copper rod 2m long and
having lem radius is maintained at
250 °C. When a steady state is reached,
the rate of heat flow across any cross
sectionis 2.1Js™'. Whatis the temperature
of the otherend? (Thermal conductivity
of copper=380Js'm™"'°C™).

Solution
A=nmr?,

A=3.14%(0.01m) =3.14x10"* m’

Thermal properties of materials

6 -6,
g:kA[l ")! 9]-—91=[2}){i
t X t kA
=
0-0.= . 21.13:.1x2m —
"7 380Js'mT'°C ' x3.14x107"'m”
=35.20°C

Since 6, = 250°C, then it follows that,
250°C-9, = 35.20°C, 6, = 214.8°C

Therefore, the temperature of the other
end is 214.8°C.

Abrassboilerhas abase areaof 0.15m? and
thickness of 1cm. It boils water at the rate
of 6kilogram per minute when placed
on a gas stove. What is the temperature
of the part of the flame in contact with
the boiler? (k,__=109Js"'m"°C",
heat of vapourization of water is
2256 x 107 Jkg™).

Solution
The heat gained by the boiler is utilized
in vapourizing water,

O=mL (i)
also,
6 -6,
g = kA( | -) (”)
t X
Equating equations (i) and (ii) and
rearranging the terms,

g—a -
kA

92 =100 °C(temperature of steam)




==
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0 = 6kg x 2256 x10°Jkg ' x1x107°m
" 60sx109Js'm'°C' x0.15m’

=237.98°C

+100°C

Therefore, the temperature of the part of the
flame in contact with the boiler is 237.98°C.

Exercise 6.4

/S
. Calculate the rate of loss of heat through
a window of thickness 8mm and area of
2 m® if the temperature difference between
the two sides i1s 20°C. Take thermal

conductivity of glass to be |Wm™"K™.

. A 10 cmlong brass bar is joined to a copper
bar of equal length and diameter so as to
form a compound bar with a cross-sectional
area of 6.0 cm®. The junction has negligible
thermal resistance and the bar is well lagged.
The free end of the brass bar is maintained
at 100°C, and the far end of the compound
bar is kept at 20°C. Calculate the heat
flow per second along the bar and also
the temperature at the junction. (Assume
k for copper =400Wm K" and brass
=10"Wm™'K™),

. Heat is flowing along a uniform, lagged
metal bar and the temperature is 80°C at
8cm from the hotend and 50°C at 20 cm
from this end. At what distance from the
hot end is the temperature 60°C?

. One end of a well lagged copper rod is
placed in a steam chest and a 0.6 kg mass
of copper is attached to the other end of the
rod with an area of 2cm”®. When steam at
100°C is passed into the chest and a steady
state is reached, the temperature of the mass
of copper rises by 4°C per minute. If the
temperature of the surrounding is 15°C,

calculate the length of the
rod. (Specific heat capacity
of copper =400 Jkg 'K,
thermal conductivity of
copper =360Wm'K™).
[ce is forming on the surface
of a pond. Whenitis 4.6¢cm
thick, the temperature of the
surface of the ice in contact
with the air is 260K while
the surface in contact with
the water is at temperature
273K.

(a) Calculate the rate of
loss of heat per unit area
from the water.

(b) Determine the rate at
which the thickness of
the ice is increasing.
(Thermal conductivity
of ice is2.3Wm 'K,
density of water is
1000 kgm*, specific
latent heat of fusion of
ice is 3.25x10°Jkg ™).

6. Briefly explain why:

(a) animals in the forest use
snowholes as a shelter
from the cold.

(b) warm air rises up, but
the atmosphere is cooler
with increasing altitude.

7. (a) Show that the radial heat

flow across the coaxial
cylinder is given by;

(T:_Tl)

h

H =2rkL



where k is thermal conductivity,
L is length of the cylinder,
1, and r, are radii of inner and
outer parts of the cylinder
respectively.

(b) A copper hot-water cylinder
of length 1.0m and radius
0.20 m of material has thermal
conductivity 0.40 Wm 'K .
Estimate temperature of the
outer surface of the lagging,
assuming heat loss is through
the sides only, if heat has to be
supplied at a rate of 0.25 kW to
maintain the water at a steady
temperature of 60°C.

6.5.2 Laws of thermal convection
There are two laws: Dulong-Petit (five-

fourth power) law and Newton’s law of

cooling.

(a) Dulong Petit or five-fourth
power law

“Under the condition of natural convection,
the rate of heat lost by a body is directly
proportional to the five-fourth power of the
excess temperature over the surrounding
provided that the excess temperature is not
less than 50°C. "

do

(6.60)
dt

=(0-0,)
where @ and @ are the temperatures of the
body and surrounding, respectively.

(b) Newton'’s Law of Cooling
“Underthe condition of forced convection,
the rate of heat lost by a body is directly

proportional to the excess temperature
over the surrounding.”

dQ

= =(6-6,)
dQ
= =k(6-0) (6.61)

The Newton's law of cooling is applicable
under the following conditions:
(i) Forced convection (for all excess
temperatures)
(i1) The excess temperature less than
30°C under natural convection

When the body loses heat Q, its temperature
0 falls: if m is its mass, and c is its specific

heat capacity, the rate of heat loss is given

by dQ =—mc@; then, its rate of fall of
dr dt
temperature is given by,
de k
—=——/(0-6
dt mc( ) (A2

For a given object: k, m, and c are constants:
hence,

(6.63)
me

where A is a constant which represents

the nature of the surface and the heat

capacity contents.

Substitute equation (6.63) into (6.62) to
obtain,

ﬁ:—a(e—q)

" (6.64)

Equation (6.64) is an alternative statement
of the Newton's law of cooling, which
can now be stated as, “The rate of fall
of temperature (cooling) of an object is
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proportional to the excess temperature
over the surrounding.”

Verification of Newton’s law of cooling
can be done by plotting the cooling curve
of temperature € versus time 1 obtained
from cooling hot water (Figure 6.24).

Figure 6.24: Cooling curve

If @ is the surrounding (room) temperature,
then, excess temperature of water is
(9—9}). Several points (about six) are
chosen on the cooling curve and tangents
are drawn at these points. The gradient
of tangent represents the rate of cooling
of the liquid at a particular temperature
€. Then, plotting these rates (gradient of
tangent) against the excess temperature
(9-—9&,) gives a straight line through the
origin (Figure 6.25).

>

Rate of fall of temperature

>
Excess temperature

Figure 6.25: Rate of cooling versus excess
temperature

A straight line passing through the origin
of the graph of rate of temperature fall
versus the excess temperature verifies
that the given liquid obeys Newton's
law of cooling. The instantaneous value
of temperature of a cooling object is
obtained by integrating equation (6.64),
and becomes;

In(6-8,)=-Ar+c (6.65)
At t=0, and =06,
In(6,-6)=c (6.66)

Substituting equation (6.66) in (6.65),
In(6-86 )=—-Ar+In(6,-6,)

In[ §-% ]=—ﬁ;r. 6=06+(60-6)e" (6.67)
.BI'_H'- ‘ ' :

From equation (6.67), it is clearly seen
that when time =0, =6 , and when

time =0, @=86 . Therefore, when an
object is cooling, its temperature will never
fall below the surrounding temperature.

Aim: To determine the specific

heat capacity of a liquid

Materials: Copper calorimeter,
a copper lid, jacket,
thermometer, stirrer

made of stiff copper wire,
stopwatch, oil, beaker,
source of heat.




Procedure

1. Measure and record the mass of an
empty calorimeter with the lid as
m kg.

2. Heat water to a temperature of about
80 °C in a beaker.

3. Fill a heated water almost to the top
of the calorimeter and cover it with
a lid with inserted stirrer.

4. Place a calorimeter and its contents
inside the jacket.

5. Sdrit and start taking time readings
from 70°C at every 2 minutes as the
water cools for about 10 minutes.

6. After cooling for a time allocated,
measure the mass of calorimeter and
its contents.

7. Clean a calorimeter and refill it with
80 °C of the same volume of o1l and
repeat steps 4 to 6.

Questions
(a) On the same graph, plot the cou‘]ing_
curves for both water and oil.

(b) Find the slopes at corresponding
temperatures to give the rates of
cooling of the water and oil.

(¢) Using the slope obtained, calculate
the specific heat capacity of oil
provided.

(d) State the factors which the cooling
of the two liquids accounted.

(e) Describe the law that governs the
form of cooling that occurred.

(f) Deduce the logarithmic variation
equation of the law described in

step 5.

Thermal properties of materials

If M, is the mass of water whose specific

heat capacity is4.2x10" J/kg/ K, M,
is the mass of oil whose specific heat
capacity is cin the calorimeter, and

L e re the corresponding
— . = & C SpC ¢
dr)’” |dt ¥ -

rates of fall of temperature of water and
oil, respectively, at some temperature,

say 6. then, since m is the mass
of the copper calorimeter, lid, and
stirrer of specific heat capacity of

0.38x10" J / kg / K , it follows that:

(M.X4-2+m><0.38)x103'[ﬂ] _
dr |

(Mlxc+mx0.38)x10“[d—ﬁ]

dr ),

—] are the slopes

Si ﬂ] d
ince |~ ] and | — “

obtained from the graph, then ¢ can be
calculated.

| \Example620/

A body cools in 7 minutes from 60°C
to 40°C. What will its temperature
be after the next 7 minutes? The
temperature of the surrounding is
10°C. Assume Newton’s law of
cooling holds throughout the process.

Solution

Using the relation, |,{ﬂJ=_b.
6-0

when a body cools for the first 7
minutes,
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In bt °C [==7minx A
60°C-10°C
3 ; :
]n[§)=—7m1nxl (i)

When a body cools for the next 7
minutes,

f _1ne
In = 0% =—TminX A4,
 40°C=10°C
{ —10°
lnk%}=—7nﬁnxl (ii)

Solving equations (i) and (i1), 8 = 28°C

Therefore, the temperature of the body
after the next 7 minutes is 28°C.

| \Example62l/

A body at 80°C cools to 64°C in
5 minutes and to 52°C in the next 5
minutes. What will its temperature be
after another 5 minutes?

Solution

Using; ln[ e )=—ﬂ..t

6,6,

When a body cools for the first 5
minutes,

[64°C—9

In :

m}=—5mmxﬁ. (i)

When a body cools for the next 5
minutes,
[szﬂc-a
In

—— [=-5minx A (ii)
64°C—6,

Solving from equations (i) and (ii),
8 =16°C

When a body cools for the other 5
minutes,

i 6—-16°C
52°C-16°C
From equations (i) and (ii1), 8 =43°C,

]=--5min)<l (iii)

Therefore, the temperature of the body
after another 5 minutes is 43°C.

“Bumple622)

A body cools from 80°C to 50°C in 5
minutes. Calculate the time it takes to cool

from 60°C to 30°C. The temperature of
the surrounding is 20°C.

Solution

When a body cools for the first 5
minutes,

(50°C—20°C
| 80°C-20°C

In =-5minx A

In g] =-S5minxA, A =0.1386min"’
\

When a body cools for the next time 1,

: (30°C—20°C

n =—0.1386min"'x1,
60°C-20°C
t =10 min

Therefore, time taken by the body to
cool from 60°C to 30°C is 10 minutes.
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6.5

Using Newton’s law of cooling,

(a) show that the temperature of a
cooling body at any time f obeys
the mathematical expression,
6=6,(1-¢*)+6,e* where,
). = surrounding temperature,
0; = initial temperature and
A = constant.

(b) Using the expression in (a),
obtain an expression for the time
taken for the body’s temperature
to become half its value.

A liquid takes 5 minutes to cool from

80°C to 50°C. How much time will

the liquid takes to cool from 60°C to

30°C? The surrounding temperature

is 20°C.

A body initially at 80°C cools to

64°C in 5 minutes and to 52°C in

10 minutes. Determine:

(a) The surrounding temperature;
and

(b) The temperature after 15 minutes.

A body in a room of constant

temperature of 18°C cools from

70°C to 57°C in 5 minutes.

Assuming Newton’s law of cooling

to hold all the time, find:

(a) The temperature of the body
after a further time of 5 minutes.

(b) The time required for the
temperature to fall from 57°C
to 34°C.

Thermal properties of materials

5. Wind blows overa hot liquid placed
in a beaker in the laboratory whose
average room temperature is 27°C.
The liquid is cooling at the rate of
15°Cmin "' when it is at a temperature
of 87°C. Calculate the cooling rate
when it is at a temperature of 57°C.

6. Global warming is causing
temperatures to rise above expected
levels. Traditional building practices
and materials are failing to cope up
with these changes. As a result,
houses are very warm during the hot
seasons and moderately cold during
cold season. Consider local building
practices and building materials and
propose modifications in design and
construction of houses to cope with
climate change.

7. Take two spoons of the same size,
one silver and one stainless steel.
Hold the end of a spoon in each hand.
Then lower them both into a cup of
very hot water. With reasons, explain
which spoon will be hot first.

6.5.3 Blackbody radiation

Every object emits radiation of all
wavelengths, though the intensity
of different wavelengths may vary
considerably. We are familiar with the
glowing of an iron block, e.g., a heated
rod. When electric current is made to
pass through it, it first becomes dull red,
then reddish yellow and finally white
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hot. It means iron emits light as
it becomes hot when enough
radiation is emitted as visible
light for your eyes to respond
and at the same time giving
off other radiation of different
wavelengths. It is important to
note that radiation emitted from a
body have the following features
associated with it:

(i) Dark surfaces are the best
emitters of radiant energy.

(1) The rate of emissions
of radiation of a body
increases rapidly as its
surface temperature
increases. In fact, it is
proportional to 7", where
T is the surface absolute
temperature.

The
wavelength

(1ii) predominant
in radiation
emission becomes shorter
as the temperature of the
body increases. A body
that glows red is not as
hot as the one which
glows bluish white. Also,
this is the reason why the
colour of a body changes
from light red to dull red,
yellow, and finally white

as it becomes hotter.

The intensity of electromagnetic
radiation emitted by a body varies
with wavelength at different
temperatures (Figure 6.26).

T=4500 K

T=4000 K

10 =

[

0 00 10N 1500 2500

Spectral emissive power (kW/m nm)

Radiation wavelength & (nm)

Figure 6.26: Variations of intensity of electromagnetic
radiations with wavelength at different

temperature

The total emitted radiation is proportional to
the area under each curve, and increases with
increasing temperature while the corresponding
peak wavelength decreases. In fact, all bodies emit
heat radiation irrespective of their temperatures. A
body at a higher temperature loses these radiation,
while a body at a lower temperature gains this
radiation. But bodies at equal temperatures gain
or lose radiation equally.

This is explained by Stefan-Boltzmann law
which states that, “The amount of electromagnetic
radiation emitted per unit time from a unit area of
a body at absolute temperature in kelvin is directly
proportional to the fourth power of absolute
temperature of the emitting surface.” i.e., for the
body which is a perfect radiator, £ =0T", where
E is the energy radiated per unit area per unit time.

That is,
P= AE and P=c AT"

-y

it



where P isthe energy radiated by the body
perunittime and ¢ is the Stefan’s constant
whose value is 5.67 10" Wm~K™.

Suppose that a body’s surface at absolute
temperature 7'is at higher temperature than
the surroundings at the temperature 7. The
amount of radiation emitted by the body
per unit time is
P =c AT’

Therefore, the net loss of energy by the
body per unit time is given as,

P _=P-PorP_=0AT'-0AT'

mer

P,=cA(T*-T')

(6.68)

For a body with surface emissivity €,
equation (6.68) can be written as,

P, =ecA(T*-T")

nel

(6.69)

Surface emissivity € has the value between

0 and 1, and depends on the composition/ |

nature of surface of the body. A perfect
blackbody has high emissivity which is |
and radiates the maximum. On the other
hand, reflecting (shiny) surfaces has very
low emissivity which is close to 0 and
radiates poorly. An object that absorbs
energy well also radiates well, and an
object that absorbs poorly also radiates
poorly. Thus, if the object is hotter than the
surroundings, it will lose thermal radiation,
and if the body is at a lower temperature
than the surroundings, it will gain thermal

radiation from the surroundings.

Another law that governs the blackbody
radiation is the Wien’s displacement
law. The wavelength A4__ at which the

maximum amount of energy is radiated

decreases with increase in temperature,
such that,

AT = constant (6.70)

where T'is the absolute surface temperature
ofthe blackbody in kelvin. Equation (6.70)
1s known as Wien's displacement law. The
value of the constant is experimentally
found to be 2.9%10™ in SI units. Thus,
Wien’s displacement law may be stated
as, “The product of the wavelength, 4, .
at which maximum amount of energy is
radiated, and the absolute temperature
(T) of the emitting surface is always
constant.”

This law can wellillustrate the well-known
observation that when iron is heated, it
first becomes light-red, then dark-red,
then yellow and finally it becomes white.
The temperature in equation (6.70)
must be in kelvin so that a temperature
of absolute zero corresponds to no
radiation emission. Note also that every
object whose temperature is above 0K
including you, emits thermal radiation,
but the radiation is in the infrared portion
of the spectrum, which your eyes are not
capable of detecting.

[ \Example623/
The temperature of a furnace is 2324°C
and the intensity in its radiation
spectrumis maximum nearly at 1200 A.
Calculate the surface temperature of the
star that emits radiation of wavelength of
nearly 4800 A.

Solution
According to Wien's displacement law,
A T'=constant.
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_ Example62s)
’11T| == AETE ‘

. What is the total rate of radiation of
T = 1200;;\ %2597 K = 649.25 K energy fromﬁa human b'ndy with surface
4800A area 1.20m"~ and surface temperature

Therefore, surface temperature of the 30°C? If the surroundings are at a

star that emits radiation of wavelength of temperature of 20°C, what is the net
nearly 4800 A is 649.25 K. rate of radiative heat loss from the

body? The emissivity of the human
body is very close to unity, irrespective

BT of skin pigmentation.

A piece of metal loses 2557] of heat per
second by radiation when its temperature
is 1200K and the temperature of the
surroundings is 300 K. What will be the

Solution
Taking £=1,0=5.67x10*Wm“K™
the body radiates at rate;

= 4
rate of loss of heat when the temperature P=¢ecAT
of the metal is 600K ? =1.2m*x5:67%10”* Wm~ K™ x(303[{)4
=574W

Solution
The net loss of energy per second by
the metal at T}, (1200[(),

The total rate of radiation of energy from
a humanbody is 574 W.

This loss of heat is partly offset by
F=¢c A(T," —7:,4) (i) absorption of radiation which depends
on the temperature of the surroundings.
The net radiative energy transferred is

P, =0 A(T*-T,')
=1.2m’ x5.67x 10 Wm K * x (303" - 293° )K"

Dividing equation (i) by (ii) and =T2W
rearranging terms gives,

The net loss of energy per second by
the metal at 7,, (600 K),

%=EO'A(?;4—T;) (ii)

P (T;‘ = 7;4) (a) Solar constant
F=—1—a= Solar constant @_is the energy from the
(TI =T ) sun arriving perpendicularly at the top

surface of the earth’s atmosphere per unit
255)s”! x(ﬁ(}()* - 3(]0“)1(4 P P

155 area per unit time. In order to determine
(1200 - 300%)K* ¢, it is assumed that no part of the
energy from the sun is absorbed by layers
Therefore, the rate of loss of heat when between the earth and the sun.
the temperature of the metal is 600K 4 = 4
is 15Js7". A

T IR,



where P = Powerradiated by thesunasa blackbody,

A = area on which the radiantenergy passes

2

4 24 =
o ~OAL' 47K, _W':[ﬂJ e

A 4x D’ D

where D is the mean distance from the earth to the
sun, R, is the radius of the sun and 7, is the surface
temperature of the sun.

Note that, from knowledge of the solar constant, the
surface temperature of the earth 7, can be obtained
when itis in radiative equilibrium. i.e., powerreceived
by the earth ( P ) is equal to the power radiated by the
earth as a blackbody ( P.). Then,

P=i><P
£ A X

where A_is the area of the earth receiving the radiant
energy.

nR’ 3
P =—-x4nR’oT’
4D

ol

ER, .,
P = D‘" X R'aT' also,

2

P =4nR’oT'’

Since Pand P are equal at radiative equilibrium;
then,

-
=

2 R 2
AnROT" = ’L—; x R'oT*

X 3

R 2
T-l B —: T-‘l
¢ { 2 } 5
Therefore,
1
R )2
T=|—|T
4 2D L)

Substituting the values of R , D, and T, the effective
temperature of the earth’s surface can be calculated.

(b) Prevost’s theory of heat
exchange

The Prevost’s theory of
heat exchange tells you that
when the temperature of a
body is constant, the body
loses heat by radiation and
gains it by absorption at
equal rates. Hence, there
is no net radiation, and the
body and surroundings are in
equilibrium.

[t was put forward by Prevost

that;

(1) A body radiates heat at
a rate depending on its
temperature and nature
of the surface.

(1)) A body absorbs heat at
a rate which depends on
its temperature, surface
area, and surrounding
temperature.

(c¢) Applications of thermal
radiation

The loss of radiant energy
can be minimized by making
a surface of low emissivity.
For example, in a thermos
flask, a double walled glass
bottle with a silver coating

on the inner walls reduces
heat transfer by radiation
because the coating has a low
emissivity.

Thus, the three processes of
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heat transfer are minimum in a thermos
flask. So, a flask keeps hot things hot and
cold things cold for a fairly long time.

Radiation and convection are the major
mechanisms of heat transfer in the
atmosphere, the sun, and the solar system.
The climatic changes are also affected by
these processes of heat transfer. Our planet
constantly absorbs radiation coming from
the sun. In thermal equilibrium, the rate at
which our planet absorbs solar radiation
must be equal to the rate at which it
emits radiation into space. Similarly, a
premature baby in an incubator can be
cooled dangerously by radiation if the walls
of the incubator happened to be cold, even
when the air in the incubator is warm.

l. (a) Show that for radiation, as for
conduction and convection, the
heat transfer depends on the
temperature difference between
two bodies.

(b) Why do floor tiles feel colder
than wooden floor even
though both are at the same
temperature?

(c) Why is a blanket able to protect
ice from melting?
2. (a) Why does a good absorber of
radiant energy appear black?
(b) The car’s radiator is made of
steel and is filled with water.

You are asked to fill the radiator
to the very top with cold water,

then the driver drives off without
remembering to replace the
radiator cap. As the water and
the steel radiator heat up, will
the level of water drop or rise
and overflow? Explain.

3. Twospheres made of the same material

have radii 2.0cm and 3.0 cm and their

temperatures are 627 °C and 527°C,

respectively. If they are blackbodies,

find the ratio of:

(a) the rate at which they are losing
heat; and

(b) the rate at which their
temperatures are falling
when they are placed in room
temperature of 290K.

. The tungsten filament of an electric

lamp has a length of 0.5m and a
diameter of 6x10°m. The power
rating of the lamp is 60 W. Assuming
the radiation from the filament is
equivalent to 80% that of a perfect
blackbody radiator at the same
temperature, estimate the steady
temperature of the filament given

that Stefan-Boltzmann constant
=5.67x10°*Wm?K™.

. The total external surface area of a

dog’s body is 0.8 m* and the body
temperature is 37°C. At what rate
is it losing heat by radiation when
it is in a room whose temperature
is 17°C? Assume that the dog's
body behaves as a blackbody given
that Stefan-Boltzmann constant is
567x10°Wm™ K™,




6. The energy arriving per unit area on

the Earth’s surface per second from
the sun is 1.34x10°Wm™,

The average distance from the Earth
to the Sun is 215 times the length of
the sun’s radius. Given that both the
Earth and the sun are blackbodies,
estimate the temperature of the
sun. Stefan Boltzmann constant is
5.67x10°*Wm?K™.

6.6 First law of thermodynamics

Thermodynamics is the name given to the
processes in which energy is transferred
as heat and work. In previous chapters,
you learnt that work is done when energy
is transferred from one object to another
by mechanical means. Also, you leant
that heat is a transfer of energy from one
object at a higher temperature to another
at a lower temperature. Thus, heat and
work are closely related. To distinguish
them, heat is defined as a transfer of
energy due to a difference in temperature,
whereas work is a transfer of energy that
is not due to a temperature difference.
In discussing thermodynamics, we often
refer to particular systems. A system is
any object or set of objects that we wish to
consider. Everything else in the universe
is referred to as its “environment™ or the
“surroundings.” In this section, you will
examine the first law of thermodynamics,
which states that, be
converted from one form to another
with the interactions of heat, work, and
internal energy, but it cannot be created

“Energy can

no destroyed under any circumstances.”
Mathematically, this is represented as
dQ=dU +dW_ where dQ is the heat
exchange between a system and its
surroundings, dU is the change in internal
energy of the system, and dW is the work
done by or on the system.

6.6.1 Thermodynamics processes
Before discussing thermodynamic process,
let us define thermodynamic state of a
system. A system has certain properties
such as temperature, pressure, and volume
whose instanteneous values define the state
of the system. For example, in a thermos
flask there are 250ml of water at 50°C
and this is the state of the system. If the
values of the properties are changed (e.g.,
adding 50 ml of water at 25°C), the state of
the system also changes. Thermodynamic
process is a process in which there are
changes in the state of a thermodynamic
system. An example of thermodynamic
process is the car engine where heat is
generated by the chemical reaction of
oxygen and vaporized gasoline in the
engine cylinder. The heated gas pushes
on the pistons within the cylinder, doing
mechanical work that is used to make the
car move.

In a given sample of a gas, thermodynamic
process is shown on a P-V diagram as a
line or curve going from the initial state
to the final state of the gas as shown in
Figure 6.27. Generally, volume V of the
gas Is taken along x-axis and pressure P
along the y-axis.
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Figure 6.27: P-V diagram of an ideal gas

Point A(P,V,) is the initial state of the
gas and point B( F;VI) is the final state of
the gas. The curve from point A to point
B represents the thermodynamic process
by which the state of the gas changes. A
(initial state) and B (final state) can be
connected by many possible paths or
processes. Each one would represent a
different thermodynamic process.

6.6.2 Specific heat capacity

In thermodynamics process, we are
interested on how much a given amount
of heat transfer change the temperature
of a system. This change depends on the
nature of the system. A physical quantity
that describes the ability of a body to
absorb heat and increase its temperature
is called speecific heat. Suppose a body
of mass m is at temperature 7 and the
temperature of the body changes from T
to T+ AT due to an amount of heat AQ
absorbed by the body. The amount of heat
AQ is given by the relation,

AQ = mcAT (6.71)

where ¢ is the specific heat capacity of

the material. Equation (6.71) can also be
written as,
—
mAT
Therefore, the specific heat capacity of a
body is the amount of heat gained by a
body of a unit mass when raised through
a unit temperature difference, its unit is
Jkg 'K,

(6.72)

It is found that the specific heat capacity
of a substance depends on the nature of
material of the substance as well as the
external conditions under which heat
is supplied. The two commonly used
specific heat capacities are ¢, and ¢, that
is, the specific heat capacity at constant
pressure and specific heat capacity at
constant volume, respectively. The ¢
comes in when the substance is heated
at constant pressure and ¢, when the
substance is heated at constant volume. It
is found that c, and ¢ are quite different
for gases.

The first law of thermodynamics which
relates the heat supplied dQ, the change in
internal energy U and the external work
done dW states that, “In a closed system
the heat supplied is equal to the change
in internal energy plus the external work
done.” i.e., dQ = dU +dW

Let the pressure and volume be consant.
The heat supplied at constant pressure
is given by mec,dT, the change in the

internal energy is mc dT and the external

work done is PdV it follows that;




me , dT =me dT + PdV
From an ideal gas equation,

PV =nRT
PdV = nRdT
m

PdV =— RdT
M

where, mis mass of the gas, M is ils
molar mass, R is universal gas constant

R
and N = r (gas constant per molar mass).

Hence,
me, dT =me dT +mrdT; c,=c +r

where, ¢, , ¢, and rare measured in
Jkg 'K

Also, PV =nRT, then, P=E£T;
VM

P= prT. It follows that the gas constant

per molar mass can also be givenby r=—

pT

(a) Molar specific heat capacity
The amount of heat required to raise the
temperature of one mole of the material by
1°C is called molar specific heat capacity.
Let n be number of moles of a substance
that absorb an amount of heat © to raise its
temperature from 7to T+ AT, the molar
specific heat capacity C is given by,

U= l b 4 _ég,

(6.73
n_AR p

m :
where n=H. m being the mass of the

material and M its molecular weight (the
number of grams in one mole).

Therefore, equation (6.73) becomes,

= —_—— (6.74)

(b) Specific heat capacity of gases

It is found that the specific heat capacity
of an ideal gas is independent of the nature
of the gas chosen and it does not depend
on its temperature. But, it depends on the
physical conditions under which heat is
supplied to the gas; e.g., constant volume
or constant pressure.

Consider an ideal gas in a cylinder with
a frictionless piston (Figure 6.28 (a)) at
an internal equilibrium temperature 7,
volume V, and pressure P.

=y -

Constant volume

M

Heat
supplied
at
One mole | | constant | | One mole
volume
T —_— T+1
!
| ”
T Heat .Intcrna] energy
increases
(a)
] Constant
Constant pressure pressure
= l —  Heat l l -
supplied ¥
at Ax
— | EEEENTE
One mole constant One mole
pressure
T T+1

Internal energy
increase work done

(b)

Figure 6.28: Ideal gas in a evlinder at

T Heat

equilibrium temperature
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Let an amount of heat AQ be supplied to
heat the gas at constant volume. This heat
will increase its temperature by AT . This
is because heat energy AQ will increase
the motion of molecules of the gas,
thereby increasing the internal energy U
of the gas by an amount, say, AU, and
hence, its temperature by AT.

Now, the kinetic energy or energy per
mole of an ideal monoatomic gas is given
by the equation

3

U:ERT (6.75)

Therefore, if the temperature increases
by AT due to increase of internal energy
AE, t(hen, the internal energy at the
temperature 7+ AT is

E+AE=§R(T+ AT) (6.76)

From equations (6.75) and (6.76), the
increase of energy AU is

AU=§R(T+AT)—3RT
2 2

AU = %R‘AT

This increase in the energy, AU of one
mole of the gas is equal to the amount of
heat, AQ supplied to the gas at constant

volume. Therefore,

£=ER (6.77)
AT 2

But, as defined before, molar specific

AQ=%RAT or

heat capacity at constant volume, C, is,

¢ 1,40
''mn AT

for n moles of the gas, or C = % for

I mole of the gas

c=2R
v 2

Suppose an amount of heat AQ is supplied
to the gas to increase its temperature from
T to T+ AT at constant pressure P, i.e.,
the external force F, on the piston of
the cylinder containing the gas does not
change during its expansion. Since the
gas is at constant pressure, therefore. its
volume will increase from Viio V+AV.
In this process, AQ will be used to
increase the internal energy of the gas by
an amount A{/ and do seme work against
the atmospheric pressure P. Let the piston
move through the distance Ay against the
atmospheric pressure P (Figure 6.28 (b)),

(6.78)

F . .
then, P= I , where A is the cross-section

of the piston, or F = PA,

Therefore, work done W, by the gas
in moving the piston through Ax is,
FAx = PAAx, where AAr=AV (change
in volume). This work done is equal to the
extra amount of energy supplied to the gas
to make the expansion possible.

Thus, the total energy, AQ given to the
gas o increase its temperature by AT at
constant pressure is given by;

AQ= PAV + AU or
AQ = RAT + AU
(ideal gas equation, PAV = RAT)

(6.79)

But, AQ is equal to heat required to raise
the temperature of one mole of the gas by
AT at constant pressure.



Therefore, by the definition of the molar

specific heat capacity at constant pressure,
C

14 ]
AQ = number of molesx C,

X rise in temperature
or AQ= CP:_'\.T also,

AU =C AT (6.80)
Therefore, from equations (6.79) and
(6.80), it follows that,

C AT = RAT +C AT

C,-C,=R (6.81)

Equation (7.61) is called Mayer’s equation.
Where C, is always greater than C,
because at constant pressure thermal
energy has to be supplied not only to
increase the internal energy of the gas, but
also the gas does extra work against the

atmospheric pressure (Figure 6.28 (b)).

The units for C, and C, are Jmol K™,
As it was shown in equation (6.78), for

C = 21'?

2
Substituting this into equation (6.81), it
follows that,

q,:%mﬁ; Cp=%R

monoatomic gas,

It can easily be shown that, for a diatomic
gas, C, =-§-R and C, =%R and for

polyatomic gas C, =3R and C, =4R.
The dimensionless ratio of heat capacities

C
is givenby y = ?".Becausc C, is always
greater than C, for gases, ¥ is always
greater than unit. For monoatomic gas y
=1.67 and for diatomic gas, ¥y =1.4.

T ample 6,20

The density of a gas is 1.775 kgm™
at 27°C and 10°Nm™ pressure and
its specific heat capacity at constant
pressure is 0.846 kJkg"'K™'. Find the
ratio of its specific heat capacity at
constant pressure to that at constant
volume.

The gas constant per kg of gas is given
P

by r=p—T

Since
p=1775kgm", T =(273+27)K = 300K
and P=10°Nm_*; then,
= 10° Nm
1.775 kgm ~ x 300 K
=0.188 kJkg 'K

NOwe ¢,—¢,=r.¢c,=c,—r

¢, =0.846 kJkg 'K~ —0.188 kJkg 'K’

=0.658 kJkg 'K
y= ¢, _0.846 klkg 'K
¢, 0.658 klkg'K™'
y=1.29

Therefore, the ratio of specific heat
capacity at constant pressure to that at
constant volume is 1.29.

C\Example027)
What amount of heat must be supplied
to 2x107kg of nitrogen at room
temperature (o raise its temperature by
45°C at constant pressure? Molecular
mass of nitrogen, N, =28g and
R=8.3Jmol 'K,
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Solution
Heat added, AQ=nXRxAT
where n is the number of moles given by;

mass of nitrogen (m)

n=
molecular weght of nitrogen (M)

_ 2x107 kg
28x107 kg

=266.81]

x 8.3 Jmol 'K ' x45°C

Therefore, the amount of heat that must be
supplied is 266.8 J.

Cample 628/

A typical bedroom contains about 2500 moles
of air. Find the change in internal energy of the
room when air is cooled from 35°C to 26°C
at a constant pressure of latm. Treat the air as
an ideal gas with y=1.4.

Solution
L L EBHR L4 R
r=gh Y=T¢ o TG
But C. =i
[ y_]
—lgr-1
Gt 14{’:‘“i Ky 290.79 Jmol 'K

From the relation, dU = nc dT; AU = nCvAT
AU = 2500 molx 20.79 Jmol 'K ' x(26-35) K

AU =-4.68x10°]

6.6.3 Work done during thermodynamic
processes

The process occurring in closed systems which

do not permit the transfer of mass across their

boundaries is known as non-flow process. In non-

flow process, there is only work
and heat transfer, but there is no
mass transfer into or out of the
system. During the energy flow,
some of the changes take place
in pressure, volume, temperature,
internal energy, heat, work etc.

(a) Isochoric process
(constant volume)
When a gas is heated at a constant
volume (i.e., fixed space), the
temperature and pressure will
increase (Figure 6.29). All the
heating entering the system
becomes internal energy. No
work is done by the system,
the temperature rises from 7|
to 7, and the pressure from
F to P. Thus, 4w =0 and

dQ=dU =C,(T,-T,).
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Figure 6.29: P-V diagram for an

isochoric process

(b) Isobaric process
(constant pressure)

An isobaric process is a
thermodynamic process in which
the pressure of an ideal gas when
heated remains constant, while
both its volume and temperature
increase (Figure 6.30).
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Figure 6.30: P-V diagram for an isobaric process

The gas expands in the cylinder by
heating: thus, the work is done by the gas.
Also, the heat transferred changes the
internal energy of the system. The relation
between pressure (P), volume (V), and
temperature (7) can be found from the
characteristic gas equation:

v,

BV LBV ince P, = P, then, LR
LT 1

e

Work done during isobaric process

Referring to the first law of
thermodynamics:

dQ=dU +dW
The work done,
W=P\V,-V,)) or

W =nR(T,~T,) (6.82)

So, equation (6.82) is the equation for
work done in the isobaric process due to
heat  flow. Change in internal energy is
dU = nC‘_dT. The heat transfer is given
by nC dT =nC dT + PdV

It then follows that,
"C,n(Tz —T;)z "Cr(Tz _T1]+ P(VZ-VI)

rernes ol Ml ."_-',l',r-.

(¢) Isothermal process

[sothermal process is that process in which
the temperature of the working substance
remains constant. In such process, heat
is supplied or removed from the system
at just the right rate to maintain constant
temperature.

Conditions for isothermal process:

(i) The gas must be held in a thin walled,
highly conducting vessel, surrounded
by a constant temperature bath.

(i1) The expansion or compression of the
gas must take place slowly so that the
heat can pass in or out to maintain the
temperature of the gas at every instant
during expansion or compression.

When the temperature is constant, the
pressure of a gas varies with volume and
a graph which shows this variation is the
isothermal curve shown in Figure 6.31.

P A

PV=constant (isotherm)

>
1’4

Figure 6.31: P-V curve for an isothermal

process

[t is well known that the pressure P and
volume V of a mole of an ideal gas are
related by the equation:

PV =RT
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where 7 is the absolute temperature
of the gas and R is the universal gas
constant. Since in an isothermal process
temperature 7 is constant, then;

(6.83)

Equation (6.83) is called the equation
of the isothermal process for an ideal
gas. The path of an isothermal process
(called an isotherm) on the PV diagram
is shown in Figure 6.31. The higher the
temperature, the further the isotherm lies
from the coordinate axes. When the gas
expands or is compressed at constant
temperature, its pressure and volume
change in such a way that product PV is
always constant. So, if the gas expands
isothermally from the initial state A(F.V))
to the final state B(P,,V,), then;

PV = constant

BV, =By, (6.84)
Work done during isothermal process

Assume an ideal gas undergoes an
isothermal expansion from state A(F.V))
to state B(P,,V,) as shown in Figure 6.32.

P A

<Y

Figure 6.32: P-V diagram for an isothermal
expansion

The amount of work done can be determined
by adding up all the small works done in
small steps, state A to state B.

In case of an ideal gas, an isothermal
process work is done at the same rate as
heat is supplied, so there is no increase of
internal energy (for any ideal gas), i.e.,
dU =0 and dQ=dW.

[aw =" Pav
nRT

For n moles of an ideal gas, P=—,
thus, ¥

Since the gas expands isothermally, 7" is
constant; then,

V.
W =nRT In [ -‘}l] (6.83)

V
or W=2.303nRT log(—zJ
V'i
Equation (6.85) can also be expressed in
terms of pressure as follows:

PV, =PV, and 1L=Y2
o P,V

P
W= nRT!n[—') or
P

-
-

P
W =2.303nRT log{ F'}

-

Cexample6.29 =

One mole of an ideal gas which is kept
at temperature of 320K is compressed
isothermally from its initial volume of
8litres to a final volume of 4litres.
Calculate the total work done in the
whole process.

Solution

V
Work done,

W =nRT In| —=
oo



W =1x8.31Jkg 'K~ %320 l(xln[:—i]

=-—18431]

Therefore, the total work done in the
whole process is —1843 J.

(d) Adiabatic process

For an adiabatic expansion or
compression, no heat enters or leaves
the system and so, dQ=0. Therefore,

O0=dU +dW or dW =-dU.

All the work is done at the expense of
the internal energy of the gas; the gas
therefore, cools. Conversely, in an adiabatic
compression, the work done on the gas by
an external agent increases the internal
energy and the temperature of the gas rises.

Consider two isotherm in Figure 6.33 for |
a fixed mass of an ideal gas. |

Isotherms

- -
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Figure 6.33: P-V curve for an adiabatic process

If the gas initially has a temperature 7|
and volume V,, its state, i.e., B,V,T| is
represented by point A on the 7', isotherm.

If it then expands adiabatically to volume

V. so that its temperature falls to 7,, its
state is now represented by point B i.e.,
F,.V,,T, on isotherm T,. The curve AB
relates the pressure and volume of the mass
of the gas for this adiabatic change and
is called an adiabat. It is steeper than the
isotherm. Its equation can be shown to be;

PV = constant

Where ¥ is the ratio of the two specifie
heat capacities of the gas. It works to
a reversible adiabatic change for an
ideal gas having a constant value of 7.
Expressions for the temperature change
during the reversible adiabatic process
for one mole of an ideal gas can also be
obtained as follows:

EVi=RV/ (6.86)
also, P‘—V‘ — P:_Vz (6.87)
L T,

Dividing equation (6.86) by (6.87),
-1 __ -1
T;VIY R TIV;

TV = constant

This gives a relation between T and V.
From equation (6.87),
.Y _(BvY
T

TZ
Dividing (6.88) by (6.86), it then follows
that,

(6.88)

prt pr
L 93
7 I
P!
= constant (6.89)

This gives a relation between P and 7.
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Work done during adiabatic process

Suppose there is one mole of perfect gas
contained in a cylinder having insulating
walls. If the gas expands adiabatically
from the initial state A(PUVI ) to the final
state B(P;.V:], the work done W by the
gas during the adiabatic expansion is;

Jaw={"Pav

For adiabatic processes PV’ = k; where
k is constant. Then,

W= [ kvrav

W= L(kv,'-f —kv}) (6.90)
l-y' -~

Since BV," = PV] =k, substituting & in

equation (6.90),

1
W=;[P:V:— RY,] (6.91)

If 7, is the temperature of the initial state
and T, is the temperature of the final

state; then,

BV,=nRT, and PV, =nRT, +(6.92)

Substituting equation (6.92) to (6.91),

nRk
W-‘l'_—},(Tz'T.)

— \Bxampie6 i)

An ideal monatomic gas of 0.15mole
is enclosed In a cylinder at a pressure
of 250kPa and a temperature of
320 K. The gas is allowed to expand
adiabatically and reversibly until its
pressure is 100 kPa. Calculate the final
temperature and the amount of work
done by the gas. (For monoatomic gas,
¥=1.67).

(6.93)

Solution
A

From equation (7.69), T, =T, F

I

|
o\ 167
T,=320 Kx ithon) =2216K
- 250 kPa

Therefore, the final temperature of the

gasis 221.6 K.
work done W = ﬂ[r, ~T;]
-y~ !

~ 0.15mol x8.31 Jmol 'K
1-1.67

=183.101J

Therefore, the amount of work done by
the gas is 183.10 1.

W [221.6 K-320K ]

(e) Applications of first law of
thermodynamics

First law of thermodynamics is basically a

law of energy conservation. The following

are few examples of its application in real
life.

Energy flow in combustion engine: When
an engine burns fuel, itconverts the energy
stored in the fuel’s chemical bonds into
useful mechanical work and into heat. The
conservation of energy principle defined
by the first law of thermodynamics states
that, “The total chemical energy stored
in the fuel is converted to mechanical
energy and thermal energy.” The total
mechanical energy and heat energy out
(in cooling water, in oil, in exhaust,
radiated to surroundings) must equal the
energy available in the fuel.




Electricity production system: Water
energy can be harnessed by building a
dam to hold back the water of a river. If
you slowly release water through a small
opening in the dam, you can use the
driving pressure of the water to do work
of turning a turbine. The work of the
turbine can be used to generate electricity
with the help of a generator. Some of the
water energy is lost as thermal energy.
Electricity was not created out of nothing:
it is the result of transforming water
energy from the river into another form

of energy.

Cooling systems: These systems also
conserve energy. Cooling machines such as
refrigerators and air conditioners, actually
use heat by simply reversing the usual
process by which particles are heated. The
refrigerator pulls heat (through mechanical
work) from its inner compartment-the area
where food and other perishables are stored
and transfers it to the region outside. This
is why the back of a refrigerator is warm.

ey

Understanding about thermal
characteristics of materials in the
environments susceptible to temperature
changes is necessary. To ensure comfort
and resilience when temperature
changes abnormally, it is essential to
explore methods for creating favourable
environments. Using the principles of
thermal properties of materials, design a
prototype that can help to create optimal
conditions in these environments.

‘ Exercise 6.7

.

E.H

Thermal properties of materials

Acylinder contains | mole of oxygenat
a temperature of 27 “C. Thecylinder
is provided with a frictionless piston
which maintains a constant pressure
of 1 atm on the gas. The gas is heated
until its temperature rises to 127 °C,

(a) How much work is done by the
piston in the process?

(b) What is the increase in internal
energy of the gas?

(c) How much heat was supplied
to the gas?

(€, =7.03 calmol™'°C"";

R=1.99 calmol '°C';
leal=4.184))

Two moles of an ideal gas are

compressed in a cylinder at a

constant temperature of 65.0°C

until the original pressure is tripled.

(a) Sketch a P-V diagram for this
process.

(b) Calculate the amount of work
done.

A cylinder contains 0.250mol
of carbon dioxide (CO,) gas at a
temperature of 17.0°C. The cylinder
is provided with a frictionless piston
which maintains a constant pressure
of 1.00 atm on the gas. The gas is
heated until its temperature increases
to 127°C. Assume that CO, may be
treated as an ideal gas.
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(a) Draw a P-V diagram for this
process.

(b) How much work is done by the
gas in this process?

(c) What is the change in internal
energy of the gas?

(d) How much heat was supplied
to the gas?

(e) How much work would have
been done if the pressure had
been 0.50 atm ?

4. An ideal gas at 17°C has a pressure

6.

of 760mmHg and is compressed

(a) isothermally,

(b) adiabatically, until its volume
is halved. In each -case,
calculate the final pressure and
temperature of the gas (y =1.4).

A motorcar tyre has a pressure of four
atmospheres at a room temperature
of 27°C. If the tyre suddenly bursts,
calculate the temperature of escaping
air. Value of y for air is 1.4.

(a) Whena gas expands adiabatically,
it does work on its surroundings.
But, if there is no heat input to
the gas, where does the energy
come from to do the work?

(b) Show that for an adiabatic
process in an ideal gas, the
relationship between the
volume (V) of the gas and
temperature (7) is given by

£+[y—l)ﬂ=0

T 14

. Find the minimum attainable

pressure of ideal gas in the process
T=T+aV® where T, and «
are positive constants and V is the
volume of one mole of the gas.

. The amount of heat required to raise

the temperature of 3.00mol of a
polyatomic gas at constant pressure
from 320K to 370K is 4.99Kkl.
Caleulate:

(a) ¢, and c,;
(b) The value of ¥: and

(c) The heat required to raise the
temperature of 4.00mol from
300 K to 400 K at constant

volume.

. Agas atan initial pressure of 76 mm

mercury is expanded adiabatically
until its volume is doubled. Calculate
the final pressure of the gas if the
ratio of the principle specific heat
capacities is 1.40.



. Explain the following observation

as related to elasticity of a material.

(a) A heavier person compresses
a spring mattress more than a
lighter person.

(b) Steel nails are rigid and
unbending while steel wool is
soft and squishy.

. In designing structures in an

earthquake-prone region, how

should the natural frequencies of
oscillation of a structure relate to
typical earthquake frequencies?

Should the structures have a large

or a small amount of damping?

. Asteel wire, AB of length 0.60 m and
a cross-sectional area 1.5%10™° m?
is attached at B to a copper wire, BC
of length 0.39 m and cross-sectional
area 3.0 x 10° m”. The combination
is suspended vertically from a fixed
point at A, and supports a weight
of 250N at C (Figure 6.34). Find
the extension of each section of the
wire (Young's modulus of steel is
2.0x10" Pa. Young's modulus of
copper is 1.3x 10" Pa).

LLLL LI
A ;
—  Steel wire
B
— Copper wire

ct ,
B Weight=250N

Figure 6,34

Thermal properties of materials

4. The Young’s modulus of a metal
is 8x10"Nm™ and its density is
I1gem . Calculate its density if the

metal is subjected to a pressure of
20000 Nem ™,

5. A copper wire LM is fused at one
end M to an iron wire MN. The
copper wire has length of 0.9 m and
cross-section 0.90x10°m?*, The
iron wire has a length of 1.4m and
cross-section 1.30x10°m’. The
compound wire is stretched and its
total length increases by 0.01 m.
Calculate:

(a) The ratio of extensions of the
tWo wires:

(b) The extension of each wire: and

(c) The tension applied to the
compound wire,

Young's modulus for copper and
iron are =1.3x10"Nm~, and

2.1x10" Nm™, respectively.

6. The graph (Figure 6.35) represents
stress-strain curves for two different
materials, A and B, where F, and Fj
are respective point at which each
material fractures.

Stress
FA
Material A F
a8
Material B
Strain
Figure 6.35
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State, giving your reasons, which
material, A or B,

(a) obeys Hooke’s law up to the
point of fracture.

(b) 1s weaker than the other.

(c) has the larger value of Young's
modulus.

. A thin steel wire initially 1.5 m
long with a diameter of 0.5 mm is
suspended from a rigid support. A
mass of 3.0 kg is attached to the
lower end. Calculate:

(a) The final extension; and
(b) The energy stored in the wire.

Assume that the material obeys
Hooke’s law. (Young’'s modulus
for steel =2.0x10"Nm™)

. A light rigid bar AB of 0.20 mis
suspended horizontally from two
vertical wires of steel and brass each
of 2.00 m long attached on a ceiling
as shown in Figure 6.36.

LLLLL L

Steel Brass

V—2
A B

Figure 6.36

If the diameter of the steel wire is
0.60 mm and a mass of 10 kg is
suspended from the centre of AB;

(a) What is the tension in each wire?

(b) Calculate the extension of the
steel wire and the energy stored
in it.

(¢) Calculate the diameter of the
brass wire.

(d) If the brass wire is replaced by
another brass wire of diameter
1.00 mm, where should the
mass be suspended so that
AB remains horizontal? The
Young’s modulus for steel is
2.0% 10" Pa and that of brass
is 1.0x10" Pa.

9. (a) Explain what is meant by an

ideal gas. What properties are
assumed for the model of an
ideal gas molecule in deriving
the expression ,p=v-,p:'u.'3 :
where the symbols have their
usual meanings.

(b) How is pressure explained in
terms of the kinetic theory of
gases? Describe carefully, using
diagrams where necessary, the
steps in the argument used
to obtain an expression for

=
=—pc.
p 3P

10. (a) Show that for a fixed mass

of an ideal gas at constant



1.

12.

temperature, the expression

I = .
for p= gpc‘ can be written as

pV = A, where A is aconstant.

(b) For some real gases, the pressure
can be described in terms of
the equation p(A+B)=A
where B is also a constant for
a fixed mass of the gas at a
particular temperature. Show
that the expression p(A+B)= A
implies a pressure less than the
value predicted for an ideal
gas. Suggest a reason for this
in molecular terms.

Using the kinetic theory of gases,
show that:

(a) The pressure of an ideal gas is
doubled when its volume is
halved at constant temperature.

(b) The pressure of an ideal gas
decreases when it expands in a
thermally insulated container.

A volume of 0.23m’ contains
nitrogen at a pressure of
0.50x10°Pa and a temperature
of 300 K. Assuming that the gas is

ideal, ealculate:

(a) The amount of nitrogen present
in moles: and

(b) The root mean square speed
of nitrogen molecules at a
temperature of 300 K.

13

14,

15.

16.

17.

18.

Thermal properties of materials

(Molar mass of
=0.028 kgmol ™', molar gas constant

=8.3JK 'mol™)

Oxygen gas (0, ) has a molar mass
of 32gmol™.

nitrogen

(a) Whatis the average translational
kinetic energy of an oxygen
molecule at a temperature of
300K?

(b) What is the average value of the
square of its speed?

(c) What is the root mean square
speed?

Explain how conduction differs from
converction.

Why does the tile floor feel colder
than the wooden floor even though
both floor materials are at the same
temperature?

How does cross-section area of a rod
affect thermal conduction of a given
material?

Calculate the quantity of heat
conducted through 2 m* of brick
wall of 12 ¢cm thickness in 1 hour
if the temperature on one side is
80°C, and the other side is 28°C.
Thermal conductivity of brick is
0.13Wm 'K

A composite bar is made of a bar
of copper 10 cm long, a bar of iron
8 cm long, and a bar of aluminum




19.

20.
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12 cm long, all having the same
cross-sectional area. If the extreme
ends of the bars are maintained at
100°C and 10°C, respectively: find
the temperature at the two junctions,
given that thermal conductivity of
copper, iron, and aluminium is
400 Wm™'K~', 40Wm 'K and
20Wm 'K, respectively.

Calculate the heat flow rate through a
layer of cork of 2 mm thickness and
24 cm® area when the temperature
difference between its surfaces is
60 K, where the value of k of the
cork is 0.05 Wm 'K,

Two cylinders of equal physical
dimensions are placed one on
top of the other as illustrated in
Figure 6.37:

0°C
Figure 6.37

The lower surface of the silver
eylinder is kept at 0°C and the upper
surface of the iron cylinder is kept
at 100°C. Given that the thermal
conductivity of silver is eleven times
that of iron, calculate the temperature
of the surface AB.

21.

22.

23;

An electric heater is used in a
room of total wall area of 137 m*
to maintain a temperature of
20°C inside it when the outside
temperature is 0°C. The walls have
three layers of different materials.
The inner most layer is of wood of
thickness 2.5 cm, the middle layer
is of cement of thickness 1.0 cm,
and the outermost layer is of brick of
the thickness 25cm. Find the power
of the electric heater. Assume that
there is no heat loss through the floor
and ceiling. Thermal conductivity
of wood, cement, and brick are
1.25Wm 'K, 1.5Wm™'K™', and

1.OWm 'K, respectively.

A thin walled copper sphere of radius
Scm and mass 100 g containing
100 g of water is cooled to =176°C
by immersing it in liquid air. It is then
placed inside a filling hollow sphere
of expanded polythene of outer radius
10cminaroomat 20°C. What is the
value of thermal conductivity of ice
if the ice just melts after 24 hours?
(Specific heat capacities of ice
and copper are 2.1 kJkg 'K and
0.4 kJkg 'K, respectively, and the
specific latent heat of fusion of ice is
336 klkg ™).

A liquid cools from 70°C to 50°C
in 4 minutes. How much time will it
take to cool from 50°C to 40°C? The
surroundings temperature is 20°C.
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26.

27.

A patient waiting to be seen by his
physician is asked to remove all his
clothes in an examination room that
is at 16 °C. Calculate the rate of heat
loss by radiation from the patient,
given that his skin temperature
is 34 °C and his surface area is
1.6 m*. Assume emissivity = 0.80
and Stefan-Boltzmann constant
=5.67x10°"Wm™K™,

A 0.32 g of oxygen is keptinarigid
container and is heated. Find the
amount of heat needed to raise the
temperature from 25°C to 35°C.
The molar heat capacity of oxygen
at constant volume is 20 JK 'mol".

A tank of volume 0.2 m® contains
helium gas ata temperature of 300 K
and pressure of 1.0x10° Nm™. Find
the amount of heat required to raise
the temperature to 400 K. The molar
heat capacity at constant volume is
3.0cal K™, Neglect any expansion in
the volume of a tank. 1 cal =4.184 J.

A gas has a volume of 0.02 m’
at a pressure-of 2x10°Pa apd
temperature of 27 "C. It is heated
at constant pressure until its volume
increases to 0.03 m”. If its molar
heat capacity at constant volume is
0.8 Jmol 'K, and its molar mass
is 32 g, calculate:

(a) The external work done;

(b) The new temperature of the gas;
and

28.

29,

30.
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(c) The increase in internal energy
of the gas.

(a) What is meant by an adiabatic
change and isothermal change
of a state of a gas?

(b) A gas is contained in a thin-
walled metal cylinder and
compressed by a piston
moving with constant velocity.
Explain whether the change is
approximately an adiabatic or
isothermal as the piston moves

with a high or low velocity.

The resistance R, of a particular
resistance thermometer at a Celsius
lemperature ¢ as measured by constant
volume gas thermometer is given by
R, =50.00+0.17006+3.00x 106",
Calculate the temperature as
measured on the scale of the
resistance thermometer which
corresponds to a temperature of
60 °C on the gas thermometer.

The volume V, of a fixed mass
of mercury at temperature € °C
measured on the perfect gas scale
is given by

V,=V,(1+1.818x1070+0.8x1076"),

where V, is the volume at 0°C on the
gas scale. Calculate the temperature
expected on a mercury thermometer
when the gas thermometer scale
temperature is 40°C.
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32
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A copper-constantan thermocouple
with its cold junction at 0°C had
an e.m.f. of 428 mV when its
other hot junction was at 100°C.
The e.m.f. became 9.2 mV when
the temperature of hot junction was
200°C. If the e.m.f. is related to the
temperature difference 6 between
the hot and cold junction by the
equation, E= A@+ BO”. Calculate:

(a) The value of A and B: and

(b) Thetemperature for which E'may
be assumed to be proportional
to £ without incurring an error
of more than 1% .

Estimate the rate at which ice melts
in awooden box 2 cm thick of inside
measurements (60 x 60 % 6(}] cm’,

Assume that the outside of the box
is maintained at a temperature of
27 °C and that the coefficient of
thermal conductivity of wood is
0.1674 Js'm™'°C”". Latent heat of
fusion of ice is 336 10" Jkg ™.

33.The volume of a gas at atmospheric

34,

pressure is compressed adiabatically
to half its original volume. Calculate
the resulting pressure (¥ =14 ).

A thermos flask uses some principles
learned in this chapter to maintain
temperature of its content constant
for at most, six hours. Propose
modifications to be made in the
design and construction of thermos
flask to extend the time it can
maintain the temperature of its
content constant by two hours.




Vibrations and waves

Introduction

Rapid or quick oscillations are known as vibrations, often associated with

shaking or vibrating bodies. On the other hand, waves occur when a system

is disturbed from equilibrium, and the disturbance travels or propagates from
one region of the system to another. Examples of vibrations and waves include
vibrating eardrum and water waves, respectively. In this chapter, vou will learn
about the basic tenets of vibrations and waves, which include simple harmonic
motion and wave propagation. The competencies developed will enable you to

apply the concepts of vibrations and waves in daily life.

Think

Concept of vibrations

Vibrations are mechanical oscillations

in dynamic systems that repeat within-.a |

time period and can carry energy. They are
motion at regular frequencies, amplitudes,

instruments such as guitars, is based on
strings vibrating at a certain frequency. As

the string vibrates, it posseses both kinetic |

energy and potential energy. But these
energies are continually being exchanged
within the system of the vibrating string.

At the instant of maximum displacement, |

when the string is far from its equilibrium

position, the potential energy is maximum |

while Kkinetic energy is minimum.

Conversely, at the instant when the string | directed towards the equilibrium position.

- Simple harmonic motion forms a basic

passes through its equilibrium position,

-_—

Life without vibrations and waves

A Y o4

the kinetic energy is maximum and

. potential energy is minimum. An example

of vibration is the sound vibrations from
human voice that transfer energy from one

characterized by repeated back-and-forth | Pe mon's voosl cond to auathes pesson's

- ear drum by repeated vibrations of air

and accelerations. The design of string | molecules. In this section, you will leam

about free vibration (natural vibration),
forced vibration, and damped oscillations.

7.1 Simple harmonic motion

Simple harmonic motion (SHM) is a
special case of periodic motion. It occurs
in mechanical systems when the force
acting on an object is proportional to the
displacement of the object relative to the

- equilibrium position. The force is always
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building block for more complicated periodic
motion. It also forms a basis for understanding
mechanical waves essential for explaining other
phenomena in nature and man-made. For example,
when engineers and architects build bridges and
tall buildings, understanding of mechanical waves
plays an important role.

7.1.1 Concept of simple harmonic motion
As a model of simple harmonic motion, consider a
block of mass m attached to the end of a spring, with
the block free to move on horizontal frictionless
surface (Figure 7.1).

When the spring is neither compressed nor stretched
(Figure 7.1 (b)), the block is at equilibrium position,
that is, x=0. When the block is displaced to a
position x (stretched for Figure 7.1 (a) and
compressed for Figure 7.1 (c)), the spring exerts
on the block a force F, that is proportional to the
displacement and is given by Hooke's law, F, =—kx,
This force is called a restoring force because it is
directed towards the equilibrium position, hence
oppose the displacement from equilibrium.

(a)
i
x=0
(b)
MWW
=0
(c) A

x bt
x=0

Figure 7.1: A block of mass m attached to a spring

Applying Newton's second

law, ¥ F =ma_ to the motion
of the block, the net restoring
force in the direction of x will
be —kx=ma_, thus g = -ﬁ xX.
m

This implies that the
acceleration is proportional to
the displacement of the block,
and its direction is opposite to
the direction of the displacement
from equilibrium.

Any system that behaves in this
manner is said to exhibit simple
harmonic motion. An object
moves with simple harmonic
motion whenever its acceleration
is proportional to its displacement
and 1s always directed towards
the equilibrium position.

Sinusoidal representation of
SHM

A sinusoidal expression for
simple harmonic motion can be
derived by considering the motion
of an object moving uniformly in
a circle. There is nothing actually
moving in a circle when a spring
oscillates linearly, but it is the
mathematical similarity that finds
it useful.

Consider a small object of mass
m revolving counterclockwise
in a circle of radius A, with
constant speed v on a table
(Figure 7.2).




(b)

Figure 7.2: View of circular motion from
(a) above and (b) sideways

As viewed from above, the motion is circular
in the x-y plane. But a person who looks at
the motion from the edge of the table sees
an oscillatory motion back and forth, and
this one-dimensional motion corresponds
precisely to simple harmonic motion.
What the person sees, is the projection
of the circular motion onto the x-axis
(Figure 7.2 (b)). The position of an object
undergoing simple harmonic motion as a
function of time can be found using the

reference circle. From (Figure 7.2 (a)), it can

be seen that, ms.g:i . 50 the projection

of the object’s position on the x-axis is
x=Acos8.

The object in the reference circle (Figure
7.2) is rotating with uniform angular
velocity @. This can then be written
as @=wtr where @ is in radians. Thus,
x=Acoswt. Furthermore, since the
angular velocity (specified in radians per
second) can be written as @ =2x f, where
[is the frequency, then, x=Acos(2x f)t .
Because the cosine function varies between
| and —1, x-component equation shows
that x varies between A and —A. If a pen is
attached to a vibrating object as a sheet of
paper is moved at a steady rate beneath it, a
sinusoidal curve will be drawn. This curve
accurately follows the cosine (sinusoidal)
function. Figure 7.3 demonstrates how
an oscillating mass models sinusoidal
wavelike signal.

Motion of pm

Figure 7.3: A pen attached to an oscillating

object of mass m
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C\ampler. )

Which of the following forces would
cause an object to move in simple
harmonic motion?

(@ F = -05x* (b) F = -2.5y
(c) F= 9.8x (d) F= -50
Solution

Both (b) and (d) will give simple
harmonic motion because they give force
which is proportional to displacement,
and minus sign indicates acceleration
towards the centre. (a) does not produce
SHM since its motion is not proportional
to displacement. Similarly, (c) does not
produce SHM since its motion is not
towards the centre.

7.1.2 Equations of simple harmonic
motion

The displacement time curve is shown in
Figure 7.5.
%

Figure 7.5: Displacement-time curve

(b) Period

The period 7, is the time taken by
an oscillating object to complete one
oscillation or cycle (Figure 7.5).

circumference of acycle
speed

=

2n

Since V=@r, therefore, T = —.
To explore further sinusoidal characteristics @
of simple harmonic motion, Figure 7.4° (¢) Linear velocity
will be used to establish its displacement,
period, velocity, and acceleration. This
figure is a combination of ideas presented

Velocity is the rate of change of

: ' dy
displacement, that is, v = ?} , but
1

in Figure 7.2 and 7.3. y= Asinwt
N r ,
r EHTA \ d—}= Awcoswt. Thus,
9: VY il dr
\f)/ \/ v= A@coswt (7.2)
': Alternatively, squaring both sides of

Figure 7.4: Relationship berween SHM and equations (7.1) and (7.2) gives,

circular motion 3 7 .2 _
y = A"sin" wt (7.3)

(a) Displacement v = A'w’ cos’ ot (7.4)
This is the linear distance of the particle
from the equilibrium position of the
motion i.e., distance ON (Figure 7.4). It

is given by, y= Asin@, but 8 = @t

Multiplying equation (7.3) by @, and
adding equations (7.3) and (7.4) then
solving for v gives,

v=twyA’ -y’ (7.5)

y= Asinwt (7.1)




The velocity time graph is shown in
Figure 7.6.

(a) (b)
Figure 7.6: (a) Velocity-time curve against
time and,

(b) Velocity-displacement curve

C \umplenz )

A particle executing simple harmonic

motion has a period of 4 seconds and

an amplitude of 2 cm. Find:

(a) Maximum velocity; and

(b) Velocity athalf way of its maximum
displacement.

Solution

(a) Using the relation v=@ A’ -y,

maximum velocity is obtained when

}r:ﬂ, hence . =mA=2?nxA,
N =i~—ﬂx 2x10°m=3.14x10 " ms™'
S

(b) The velocity of the particle when

2

A . . on | .- I
y=—isgivenbyy=—_,[A"—-| —A
y=2 isgivenby =2 (2]

2 2 (1
v=4—tJ(O.DZm) —(EXD.OZm}

Hence,v=2.72x10"ms"".

Therefore, the maximum velocity is
3.14x 107 ms™" and velocity at a position
half way is 2.72x 107 ms™".

Vibrations and waves

(d) Acceleration
Acceleration is defined as the time rate of

change of velocity, i.e., a= %

Thus, a= %(Amcos wt),

a=—w’(Asinwr)
(7.6)

a=—m3y
If the angular speed @ is constant,
then acceleration of a body performing
SHM varies linearly with displacement,
v (Figure 7.7 (b)). Thus, SHM can be
defined as a to-and-fro motion of an object
about an equilibrium position whose
acceleration is directly proportional to the
displacement.

il

A

(b)

Figure 7.7: Variation of (a) acceleration with
time, and (b) acceleration with

displacement

Cxample73 )

Calculate the period for a particle
executing simple harmonic motion with
acceleration of 16cms™ at a distance of
4cm from the equilibrium position.
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Solution
Using the relation a=-w"y

2 2
{—E] , hence 3"=2:t\jE .
T a

Substituting values of ¢ =16¢cms™ and
y=4cm gives T =3.14s

-

o=

Therefore, the period of oscillation of
the particle is 3.14 s..

C \bampera)

The velocity of a particle executing
simple harmonic motion is 16 cms™
at a distance of 8cm and 8cms™' at
a distance 12cm from mean position.

Determine the amplitude of the motion.

Solution

Using the relation v=@4 A’ -y’
16cms ™ = @4 A’ v(Scm)z (i)

8cms™ = wJAI ~(12em)’ (ii)

Dividing equation (i) by (ii) gives,
A=%13.06cm

Hence, the amplitude of the system is
+13.06 cm.

7.1.3 Examples of simple harmonic
motion

Simple harmonic motion can be well

explained using various examples including:

vertical oscillations of a loaded helical

spring, oseillations of a liquid in a U-tube,

simple pendulum, and floating of loaded

test tube.

(a) Vertical oscillations of a loaded
helical spring

Consider a massless helical spring suspended

vertically as in Figure 7.8 (a). When a mass

m is attached on it, the spring stretches to

point O (Figure 7.8 (b)). Suppose the system
is stretched to a further displacement y and
then released (Figure 7.8 (c¢)). The resulting
vertical oscillation is approximately simple
harmonic motion.

e+

mg

(a) (b “(e)
Figure 7.8: Suspended helical spring with
mass m

If the system is in equilibrium, then net

vertical foree is zero. That is, T, = mg,

where 7| is the tension in the spring given

by Hooke’s law as T =—ke, where e is

|
the extension.

Therefore,

—ke=mg, (7.7)

where k is spring constant or force constant.
Vertical forces in Figure 7.8 (¢) when

the mass is displaced downwards by the
length y is given by:

z F =T, —mg
where T, =—k(e+y)

(7.8)

ZF,_ is called restoring force since it is
directed opposite to displacement y and
towards the equilibrium position (point
D). Itis responsible in bringing the system

back to the equilibrium. Since 2 F| isa
net force, it can be written as,
Z F =ma (7.9)




Equating equations (7.8) and (7.9), gives,
ma=—mg — ke—ky, but mg =—ke

k

a=——

m

(7.10)

Since k and m are constants, then ae<—y.
Hence a loaded helical spring executes
simple harmonic motion. Comparing
equations (7.6) with (7.10) gives,

g K

® =—
m

(7.11)

The period of oscillation T 'is obtained from

equation (7.11). Since @ = 2_“; T _2n
I ®

Therefore,

m

k
also, ke:n;g; E:E

¢ k
Therefore, T =2n JE (7.13)

£ :

In practical situations, usually two or |
more springs are connected either in
series or in parallel to each other.

Cbamplers )

A 3.0kg ball is attached to a spring
of negligible mass and with a spring
constant k=40Nm ', The ball is
displaced 0.10m from equilibrium and
then released. What is the maximum
speed of the ball as it undergoes simple
harmonic motion?

Solution
Maximum speed occurs at equilibrium,

when y = 0, thatis v =@A

But m=J£, Voo ‘—*[ iJA,
m m

Vibrations and waves

ol
v = [ONm G =057 ms
man 3k

Therefore, the maximum speed is
0.37ms™".

Consider two springs of force constants
k, and k,respectively, arranged in series
and a force F is applied at a free end of
lower spring as shown in Figure 7.9.

Figure 7.9: Springs connected in series

At equilibrium, F produces different
extensions e, and e, on the springs of
k, and k,, respectively. If e, is the total
extension, then, e, = ¢, +e,.

But from Hooke’s law,

= F B F P
k k,  k Kk
Dividing both sides by F gives,
LI S
k. k k,

Generally, for n springs connected in series
1 1 1 1

—=—t—t.t—

k, k k|

For identical springs k, =k, =k, then,
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In parallel connections (Figure 7.10), the
same extension is produced in both springs,
but the force in the springs is different.

F
Figure 7.10: Springs connected in parallel

Then, F=F+F, ke=ke+k,e.Forn
springs connected in parallel,

kT€= kie+kze+ vt kﬂe

= ei k,
i=1

For n identical springs,

ik.‘ = kT = nk
=1

C\bamplens )

A car with a mass of 1300kg is
constructed so that its frame is supported
by four springs. Each spring has a force
constant of 20000 Nm". If two people
riding in the car have a combined mass
of 160kg, find the frequency of vibration
of the car afteritis driven over a pothole
in the road.

Solution

To analyze the problem, we first need to
consider the effective spring constant
of the four springs combined. For a
given extension e of the springs, the
combined force on the car is the sum of

the forces from the individual springs:

F= 2(—.&3) =—(Zk)€ , where e has

been factored from the sum because it
is the same for all four springs.

The effective spring constant for the
combined stream =k =(Zk)

Frequency, f= ZL @ where m is
T\ m

mass of the car plus people.

=1.18Hz

\/4x 20000 N/m

1
I = 1460kg

2n
Therefore, the frequency of vibration
of the caris, f=1.18 Hz.

(b) Oscillation of liquid in a U-tube

Consider a liquid of density P in a
U-tube at equilibrium as shown in
Figure 3.24 (a). If the liquid on one side

- of the U-tube is depressed by blowing

gently down as in Figure 7.11 (b) and
released, the liquid will oscillate for a
short time about the respective initial
position O before finally coming to rest.

h
v
(a) (b)
Figure 7.11: Liquid in a U-tube
At some instant, suppose that the

level of the liquid on the left side
tube (Figure 7.11 (b)) is at D, a height y
above its original (undisturbed) position
O. The level B of the liquid on the other



arm is then at a depth y below its original
position O. So, the excess pressure on
the whole liquid is 2ypg. This excess
pressure will exert a force F on the liquid
in the tube and restores equilibrium at O;

F =-2ypgA where A is the cross-section
area of the tube. Since F = ma,

i BY
a=—2YP8A
m

The mass m of the liquid is given by,

m=px Ax2h, thus, = P48 ,
2pAh
It follows that,
a=—{£}y (7.14)
h
Note that, acceleration ‘a’ is directly
proportional to displacement ‘y’, then,

the oscillations are simple harmonic.
Comparing equations (7.14) with (7.6)
gives,

-

2
" =%, but &3=—n. then,

T
T=2'.'IJE
g

where T is the period of oscillation of a
liquid in a U-tube.

(7.15)

(¢) Oscillations of a simple pendulum
A simple pendulum consists of a thread
of length [ and a bob of a mass m attached
at its end, leaving the free end of a string
attached to a fixed-support as shown in
Figure 7.12.

Vibrations and waves

i Al B G

mg
Figure 7.12: The simple pendulum

There are two forces which act on the
bob, the weight /g and the tension 7 in
the string.

Resolving the force mg along the tangent
and along the thread:

Along the tangent, F = mgsin@,and along
the thread, F = mgcos@.Since the force,
F =—mgsin@ tends to take the bob towards
an equilibrium position, then this should
be the restoring force. Thus, a=—gsin@
where, F'=ma.

Suppose the bob moving from Q to O
accelerates with an acceleration equal to
a=—gsin@. For strictly SHM, the setting
of oscillating body has to be at small
angle, whereby, for small angle sin@ = 6.

Thus, a=-—g8. For small oscillations,
X : .
from arc length, 7=6'. this results into

a=—£.r. Hence, from equation (7.6)

a=-w’x, then, ®* = %
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2
but, T'= ;J—n =2 i Therefore, the period
4

of oscillation of a simple pendulum is

T= 2'.1:\/I.
g

(d) Floating of loaded test tube
Consider a loaded test tube of total mass
m floating in a liquid of density P
(Figure 7.13)

— IMAsSs

Figure 7.13: Loaded test tube floating

in a liquid

When a loaded test tube is placed in
the liquid, it is submerged a distance
h below water level. When the tube
is slightly pushed down and released
(Figure 7.13 (b)), will oscillate up and
down.

The restoring force (F ) isequalto

excess upthrust (F )clue to height y

up

where F =ma and F, =—pAyg. Hence,

ma=—pAyg (7.16)
but,
m= pAh (7.17)

Substituting equation (7.17) into (7.16)

gives a=—£y. which implies that,

(o<— Yy,

Hence, it is a simple harmonic motion
; , h
with a period T =2mn_|—.
8

7.1.4 Energy changes in simple
harmonic motion

When a body oscillates in simple
harmonic motion, its energy is constantly
changing between potential energy and
kinetic energy. But the total energy is
always constant according to the law of
conservation of mechanical energy.

Consider a particle of mass m executing
simple harmonic motion with an amplitude
A and constant angular velocity @. If x 1s its
displacement at a time 7, then the magnitude

" of restoring force F is F=-mw’x.

Suppose the particle undergoes a further
displacement dx, a small amount of work
dW is done against the restoring force. This
work is equal to the change in potential
energy AU of the oscillator given by
AU =—Fdx. Thus, dW = mw" xdx.

The total work done for the displacement
" W S i 2 _ 1 9.9
xis L dw —J'" ma xdx, W _Emm X

But,®’ = i,thus. Wi
m 0]

Therefore, the potential energy

U=%kx2 (71'8)

The kinetic energy is given by the relation

| I : .
K =Emv“. where v is the velocity when



its displacement is x. Then, from equation
(7.5), the kinetic energy can be expressed
as'r
]- 2 2 2
K=—2—mm (A"—x7) (7.19)
The total energy E, of the particle at any

point is the sum of kinetic energy and
potential energy.

]. 2 2 2 l q 9
E, = Emm“(A‘ - x“}+5m2r

I 3 ]
=—mw A"
2

Therefore, the total energy of a particle
executing SHM is always constant.
The variations of total energy between
potential energy and kinetic energy with
displacement or with time are shown in
Figure 7.14.

Total energy

Energy

Vibrations and waves

The periodic functions (sine or cosine)
in Figure 7.14(a) reflect the kinetic and
potential energies, and they vary in
opposite directions. When the potential
energy is 0, the kinetic energy is at its
maximum point and vice versa. The total
energy is represented by a horizontal
straight line directly above the curves at
the maximum value of both the kinetic
or potential energy. The y axis has no
negative values since energy is always
positive. From Figure 7.14(b), since
displacement is a vector, the graph has
both positive and negative x values. At
the amplitude locations A, the potential
energy is always maximum, and at the
equilibrium pesition (x = 0), it is zero.
This is represented by a “U’ shaped curve.
In contrast, the kinetic energy is maximal
at the equilibrium position, x = 0. and
zero at the amplitude positions A. The
total energy is represented by a horizontal
straight line above the curves.

—ample77 ]

A particle of mass 0.25kg vibrates
with a period of 2.0seconds. If its
greatest displacement is 0.4m, what is
its maximum kinetic energy?

Solution
From K = %mmz(Az - x?),

[
K =5 m0*A* (atx=0)

2
K, = 1x0.25kgx[2—“J x(0.4m)
max 2 2S

=0.197]

Therefore, the maximum Kinetic energy
is 0.197].
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7.1.5 Applications of simple
harmonic motion

Simple harmonic motion plays a role in
functioning of different appliances. These
include clocks, shock absorbers, musical
instruments, gravimeters, and seismometer,

Clock

A large pendulum clock or vibrating
quartz crystal are in periodic motion
in order to ensure that indicated time is
accurate. This is due to the fact that the
oscillator has a constant period because
it is in simple harmonic motion, thus, it
keeps time accurately.

Car shock absorbers

Springs attached to car wheels as shock
absorbers, ensure a smooth car ride on
roads with bumps. The absence of shock
absorbers will make the car to move up
and down when it passes over a bump, thus
causing unpleasant condition to passengers.
When there are springs in the car, the wheel
will rise compressing the spring while the
car body remain relatively stationary on
the compressed spring after passing over
the bump. Since the car executes simple
harmonic motion, shock absorbers will
push the car back to normal place leaving
the passengers in a pleasant ride.

Musical instruments

In a string instrument, for example
violin and guitar, plucking the string
provides the force required to make the
spring oscillate and produce sound. The
vibration produced in the string causes
the air column to execute SHM which
will result into producing a regular sound.

Hearing

Theear functions due to SHM phenomena.
The sound waves travel through the air
and when they arrive at the eardrum,
they cause it to vibrate. This signal
from the eardrum is sent to the brain for

interpretation.

Seismometer

Motion of the ground such as that due to
seismic waves from earthquake and voleanic
eruption is measured by seismometer. A
seismometer consists of a pendulum with
stylus at its bottom which is connected to
a frame. The pendulum executes simple
harmonic motion. During earthquake, the
stylus draws a pattern on a paper which
describes the ground movement. The pattern
represents the strength of the earthquake.
Also, gravimeter pendulum executes SHM
which will enable measurement of local
gravity at a given location.

CWbample7s )

A particle oscillating with SHM
has a speed of v=8.0ms" and an
acceleration of a=12ms™ when it
is 3m from its equilibrium position.
Find:

(a) Amplitude of the motion;

(b) Maximum velocity; and

(c) Maximum acceleration.

Solution ”

(a) Given a=@"y; @~ =“}‘,-
Substituting into v=@+/A" — ¥’
gives,

‘,:\{Ex }Az_},l‘ solving for A,
y




A=

A= Ivzy-l-a_vz
[

(8ms™ )2 x3m+12ms~ x(3m)’

12ms
=51

Therefore, the amplitude is Sm.

(b) Maximum velocity,

m

Therefore, the maximum velocity is

10ms™".

(c) Maximum acceleration,

ammv. =m2A=(EJ){ Am
}!

12ms™
& =

[FIHES

X 5m=20ms™

m

Therefore, the maximum accelération
is 20ms .

i Exercise 7.1

Think of several examples of
motion in everyday life that are
approximately simple harmonic. In
what respects does each deviate from

SHM?

If the analysis of simple harmonic
motion neglected the mass of the
spring, how would the spring’s mass
affect the period and frequency of

the motion? Explain your reasoning.

3.

Vibrations and waves

In any periodic motion, unavoidable
friction always causes the amplitude
to decrease with time. Does friction
also affect the period of SHM? Give
a qualitative argument to support
your answer. (Hint: Does the friction
affect the kinetic energy? If so,
how does this affect the speed, and
therefore, the period of a cycle?)

A mass attached by a light spring to
the ceiling of an elevator oscillates
vertically while the elevator ascends
with constant acceleration. Is the
period greater than, less than, or the
same as when the elevator 1s at rest?

Why?

(a) Explain the meaning of the
following terms as used in
simple harmonic motion:

(i) Period:
(ii)) Amplitude; and
(111) Restoring force.

(b) How can a uniform motion in
a circle be related to a simple
harmonic motion?

A butcher throws a cut of beef on a
spring scale which then oscillates
about an equilibrium position
with the period T =0.5 seconds.
The amplitude of vibrations being

A =2.0cm and having displacement
of 4.0cm , determine:

(a) Frequency:
(b) Maximum acceleration; and

(¢) Maximum velocity.

It is found that a load of mass 200 g
stretches a spring by 10.0 cm.
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The same spring is then stretched

by an additional 5.0 cm and released.

Find:

(a) Spring constant:

(b) Period of vibrations and
frequency;

(¢) Maximum acceleration; and

(d) Velocity through equilibrium
position.

A tray of mass 12 kg is supported by
two identical springs (Figure 7.15).
When the tray is displaced slightly
and released. it executes SHM with
a period of 1.5 seconds.

(a) What is the force constant in
each spring?

(b) When a block of mass m is
placed above the tray, the
period of oscillation changes to
3.0 seconds. What is the value

of m?
Block

<« Tray

«— Spring

Figure 7.15

For a particle vibrating with simple
harmonic motion the displacement
1 12 cm at the instant the velocity
is 5 cm/s and the displacement is
5 cm at the instant the velocity is
12 cm/s. Assuming the amplitude
is constant, calculate:

(a) Amplitude;
(b) Frequency; and
(c) Period.

10. A wooden cylindrical bar is floating
vertically in water 30 cm of its length
below the water surface. The bar is
slightly dipped and then released to
execute vertical oscillation.

(a) Prove that the oscillations are
approximately simple harmonic
motion.

(b) Determine the period of
oscillations.

7.1.6 Free and forced vibrations

Mechanical vibrations of a system can be
considered as free or forced oscillation
depending on the environment in which
the system is subjected to.

(a) Free oscillations

A system is said to undergo free
oscillations when the only external force
acting on it is the restoring force. That
is, there is no force to dissipate energy
and therefore, the oscillation maintains
its amplitude (Figure 7.16), thus, total
energy remains constant. Therefore, in
free oscillation, the system oscillates at
its own natural frequency. Such case can
be observed in vacuum where there is an
absence of external forces except gravity.
Free oscillations are sometimes referred to
as un-damped oscillations. Free oscillations
are ideal; in practice, the energy of a




vibrating system is not dissipated to the surroundings
over time and the amplitude remains constant.

%
=

Amplitud

» Time

Figure 7.16: Free (un-damped) oscillations

(b) Forced oscillations

A system is said to undergo forced oscillation
when it is maintained in a state of oscillation by
an external periodic force of frequency other than
the natural frequency of the system. Therefore, the
system oscillates on a particular definite frequency
and period. When the frequency of an external
agent is nearly or equal to the natural frequency
of the oscillating system, there is a sharp rise in
the amplitude of oscillation called resonance.
Resonance is useful in radio or television tuning,
although it can cause annoying oscillating rattle in a
car and an annoying boom or buzz of a loudspeaker.

7.1.7 Damped oscillations

The oscillation whose amplitude of vibration
becomes progressively smaller is said to be damped.
Damped oscillations can be underdamped, critical-
damped, and over-damped oscillations depending
on the level of decay of its amplitude of oscillation.

(a) Under-damped oscillations

This occurs when the oscillating system overshoots
(passes) the equilibrium position and oscillates with

Vibrations and waves

decreasing amplitude about the
equilibrium position (Figure
7.17). A system is said to be
under-damped if its coefficient
of damping(d) is less than 1,
i.e., 0 <l. A vibrating string
of a guitar or oscillation of a
swing are good examples of
underdamping.

(b) Critically-damped
oscillations

This occurs when the oscillating
system is brought to equilibrium
quickly without oscillating. It
provides the quickest approach
to zero amplitude for a damped
oscillator (Figure 7.17). Asystem
is considered critically damped
when its coefficient of damping
isequal to 1, i.e., § = L. Coils of
electric meters, for example, are
critically-damped in such a way
that their oscillations return to
equilibrium position quickly to
make readings of current in a
shortest possible time. Similarly,
cars have dampers (shock
absorber) connected parallel to
or through the springs so that
the suspension provides critical-
damping and therefore, come to
rest in the shortest time possible.
This provides comfortable ride,
otherwise, the car would move
up and down for sometime after
hitting a bump on a road.
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(¢) Over-damped oscillations

This occurs when the oscillating system is brought
to equilibrium slowly without oscillating (Figure
7.17). A system is over-damped if its coefficient
of damping is greater than 1, i.e., > 1. Swinging
doors are fitted with overdamped system to control
them not to overshoot the closing position and hurt
someone approaching the door.

A
Overdamped

=
L]
E
8
.%- ~—> P Time
a \,L Under damped

v

Figure 7.17: Damped oscillations

7.1.8 Velocity of vibrations of a string

A key property of a vibration is velocity. The
expression for the velocity of mechanical vibration
(e.g.. vibrating string) can be derived using the
method of dimensional analysis. Experiments
show that the physical quantities that determine the
velocity of vibrations on a string are the tension 7' in
the string and its linear mass density u (also called
mass per unit length). Therefore, the velocity v can
be obtained by method of dimensions as follows:

V oc Tu.ufa
v=kT"pb (7.20)
(where k is a dimensionless constant)

The dimensions of v, T, and g can be written as,
LT, MLT? and ML, respectively.

Thus, by the method of dimension analysis, equation
(7.20) can be written as;

M”LlT_l = M:Hbﬁ;—.‘:T—lu (721)

Solving for @ and b you obtain,
1 d | S |

> an 5 respectively.
Substituting values of aand b
into equation (7.20), you obtain,

T

u

The equation (7.22) shows
that the velocity of vibrations
is independent of frequency of
the vibrations. The velocity of
the vibrations is determined by
the mechanical properties of the
medium. Experimentally, k =1,
then. (7.22) can be written as,

J?
v=_|—
M

Therefore, the velocity of
mechanical vibrations is equal
to the square root of the tension
per linear mass density.

v=k (7.22)

(7.23)

7.1.9 Applications of
mechanical vibrations

Mechanical vibrations have
several applications in various
fields of engineering including:
design of machines, structures,
foundations, engines, turbines,
control systems, and musical
instruments.

In musical instruments such
as piano or guitar, the forced
vibrations of the struck string
cause the sound board of a guitar
to vibrate at the string frequency,




thus increasing the volume of sound of the
guitar. In addition, forced vibrations in
reed instruments e.g., saxophone causes air
columns to vibrate inside the instrument and
amplify the sound. Electric signals force
speaker cones in loudspeakers to vibrate,
thus, setting up air motion (longitudinal
waves) which are heard as sound. Forced
vibrations can have repercussion on a
machine as they can cause it to vibrate in
unwanted frequencies causing overheating,
undue wear, and misalignment. Usually,
rubber mounts are used to damp the
vibrations.

When the natural and forced vibrations
match in frequency; resonance occurs,
and the amplitude of vibration greatly
increases. Resonance is used extensively
in electronic circuits for tuning and phase
matching. However, resonance can lead to
destructions if not managed well. In engines
for example, resonance is minimized using
harmonic balancers, precision flywheels,
and cylinder firing order.

“ample79 )

A string has mass per unit length of
0.05 kgm™', calculate the tension in

the string along which vibrations have
1

aspeed of 8 cms ™.
Solution

T = v’ =0.05 kgm ™' % (0.08 ms™')’

Therefore,
T=3.2x10" kgms™

or 3.2x10°* N

Vibrations and waves

‘ Exercise 7.2

1. Describe an experiment to illustrate
the behavior of a simple pendulum
performing forced oscillations.
Indicate the results you would expect
to observe.

2. What are the factors which determine:

(a) the period of free oscillations of
a mechanical system?

(b) the amplitude of a system
performing forced oscillations?

3. The speed of a vibration is found to
depend on tension T'in the string, and
mass per unitlength g (linear mass
density), Using dimension analysis,
derive the relationship between v, 7,
and M.

4. The still wire of 0.4 m long and
mass 3.0 g, is stretched with tension
of 800 N. What is the velocity of
vibration produced by this vibration?

7.2  Wave motion

Wave motion is a propagation of
disturbances as a continous train in a
regular and organized way. The surface
waves on water, sound, and light travel
as wavelike disturbances. The simplest
types of wave motion are produced by
vibrations of elastic media, such as air,
crystalline solids, or stretched strings.
A wave transfers energy through matter or
space. Mechanical waves (e.g.. sound
waves) require a medium for propagation,
but electromagnetic waves (e.g., light)
do not. Waves can take several forms,
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but there are two fundamental types of
waves: “longitudinal” and “transverse”. In
a longitudinal wave, the wave propagates
parallel to the direction in which the
particles are disturbed. In a transverse
wave, the wave propagates perpendicular
to the direction in which the particles are
disturbed.

Note that, a wave travelling through a
medium causes disturbance (vibration) to
particles of the medium. In this section,
you will learn the difference between
progressive and stationary waves, how to
derive the expression for progressive and
stationary wave motion, and deduce the
principle of superposition of waves.

7.2.1 Progressive and stationary waves

The motion of a wave in a medium can
be bound between two fixed points
or unbounded to progress around the
surrounding environment. For example,
when you pluck at the middle of a string
fixed at both ends, the motion of the
vibrations (wave) appear to be bound
between the fixed ends. In contrast, when
you drop a stone on a pond of water, the
produced waves progress from the source
outwardly toward the edge of the pond.
In this case, waves can be categorized as
progressive or stationary waves.

(a) Progressive waves

A wave is progressive (travelling wave)
when a disturbance moves from a source
to surrounding region resulting to energy
transfer from one point to another,
without transporting the particles of
the medium in which the waves travel

through. In progressive waves, one
oscillating molecule transfers some of its
energy to the next molecule, which then
starts oscillating as well. This molecule
now transfers energy to the next molecule
and so on. Thus, the energy is transferred
along the wave. Waves in a ripple tank,
light waves, and sound waves in an
unbounded medium are all examples of
progressive waves. Likewise, the light
coming from the sun is an example of a
progressive wave.

As the transverse wave propagates through
the medium, the particles of the medium
undergo displacements. Each particle
execules the same type of vibration as
the preceding one, though not at the same
time. The amplitude of each particle
displacement is the same, whereas the phase
changes continuously. At this point, no
particle is permanently at rest, but different
particles attain the state of momentary rest
at different instants, and the particles attain
the same maximum velocity when they pass
through their mean positions.

A progressive wave can propagate either
in transverse or longitudinal mode. A
progressive wave is transverse if the
displacements of particles in a medium
are perpendicular to the direction of wave
propagation (Figure 7.18 (a)). Examples
of transverse progressive waves include
a wave in a ripple tank and light waves.
On the other hand, a progressive wave
is longitudinal if the displacements of
particles in a medium are along the same
direction as that the wave propagates
(Figure 7.18 (b)). An example of a
longitudinal progressive waves is a sound
wave.
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Figure 7.18: Progressive transverse and longitudinal waves

(b) Principle of superposition of waves

Consider two waves A and B travelling in
a medium in opposite directions. Suppose
the crest of A coincides with that of B
and the trough of A with thatof B (Figure
7.19 (a)). The resultant wave C will be
sum of the amplitudes of the two waves,
A and B. The resultant displacement is
larger than the displacement caused by
individual waves A and B.

Now, suppose the crest of A coincides
with the trough of B and the trough of
A falls on crest of B (Figure 7.19 (b)),
then the resultant wave D is the sum of
the amplitude of the two waves, A and
B, and it is smaller than the displacement
caused by individual waves, A and B.
The observed change of displacement
when two or more waves meet is based
on the principle of superposition of waves
which states that, “When two or more
waves pass through the same medium at
the same time, the net displacement at

any point is equal to the vector sum of

the individual displacement at the point.”

That is:
y(xn= 0+ y,(x0+..+y (0 (7.24)

The principle depends on linearity of the
wave equation. Therefore, for a medium
. that does not obey Hooke’s law, the wave
_equation is not linear and this principle
does not hold.
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An important application of the superposition
principle of waves involves beats. Beats are
amplitude variations in sound due to superposition
of two waves of equal amplitude, but slightly
different frequencies. This leads to loudness
variation called beat frequency, f, (Figure 7.20).

%/\f\/\/\ﬂ/\/\ﬂ/\ o Time
‘UUUUTUUUUTUU

A B C  Variation of
4 l l amplitude

Displacement

Resultant displacement

[ lél-em | |

frequency = I/T

Figure 7.20: Production of beat frequency

Suppose that the two superposing waves have
frequencies f; and f,, such that, f, is slightly
larger than f,, then, the corresponding periods
are Tand T, with 7, >T,. If the two waves start
out in phase at time =0, then, the frequencies
are in phase again when the first wave has gone
through exactly one more cyele than the second
wave and the observer will hear a loud sound at
points A and C, whereas little sound or nothing
is heard at point B (Figure 7.20). The loud sound
at A and C happens at the value of 1 equals to
periods of beat T,. If n is the number of cycles of
the first waye, then, the respective periodic time
T, for the first and second waves is,

T,=nT =(n-1T, (7.25)
Eliminating n from equation (7.25) and rearranging;:

1 1 1
—=——— 7.26)
I, L 1, et

From (7.26), the beat frequency,

1 .
f, =—. can be written as,

b

f,=f-1, (7.27)
—\Example7.10

Two forks, A and B, when
sounded together produce
4 beats/second. The fork Ais
in unison with 30 cm length
of a sonometer wire and
B is in unison with 25 cm
length of the same wire at the
same tension. Calculate the
frequencies of the forks.

Solution I
Fora sonometer, f o =

therefore,

_fHLﬂ_ZS(:meH_S
fi= L 30cm _6f”

A

From equation (7.27), beat
frequency, f;, is

Ja,=1+f =4 I:';f:zﬂts.’s+%fH
solving for f, and f,

Thus, f, =20 Hz and
[z =24 Hz

Therefore, the frequencies of
the forks Aand B are 20 Hz
and 24 Hz, respectively.

(c) Stationary waves

When two progressive waves,
with the same speed and
frequency, and nearly equal
amplitudes, travelling in opposite




directions are superposed on each other, they form
a stationary (standing) wave. In stationary waves,
energy is stored in one place, that means the waves
do not transfer energy from one place to another.

If you fix one end of a long, string or rope and
move the other end continuously up and down, a
wave is formed. The wave is reflected at the fixed
end toward the source, and the process repeats.
If the frequency of shaking is increased, one or
more loops of large amplitudes called stationary
waves are formed. The waveform seems to
stay stationary along the string or rope in either
direction. The points along the line of propagation
with amplitudes equal to zero are called nodes (N)
while points with largest amplitudes are called
antinodes (A) (Figure 7.21).

In antiphase

Figure 7.21: Stationary waves

In stationary waves, each particle has its own
characteristic. The displacement
amplitudes of the different particles are different,
ranging from zero at the nodes to maximum at the
antinodes. All particles in a given segment vibrate in
phase but in opposite phase relative to the particles
in the adjacent segment. The particles at the nodes

vibrational

are permanently at rest, but other particles attain
their position of momentary rest simultaneously.

Stationary waves can propagate either in transverse or
longitudinal mode as in the case of progressive waves.

Vibrations and waves

An example of transverse
stationary waves is the
stationary waves produced on a
vibrating string of a sonometer.
On the other hand, an example
of a longitudinal stationary
waves are the stationary waves
produced in organ pipes.

7.2.2 Expression for
progressive and
stationary
wave motion

Particles motion under
progressive and stationary
waves can be considered to
perform a simple harmonic
motion. In this regard, their
displacements and velocities
can be derived based on simple
harmonic motion.

(a) Displacement and velocity

of progressive wave motion
Suppose a particle P is at the
origin O, and oscillating with
simple harmonic motion of
frequency f,amplitude A and
angular frequency . Then, the
displacement y of the particle
P at O withtime 1 is given as:

v = Asinwt (7.28)

where @ =2nf

If a wave travels from left
to right, the particle P at a
distance x from O will lag
behind by a phase angle @
(Figure 7.22).
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Figure 7.22: Displacement for progressive wave

Therefore, the displacement y of particle P at
a distance x 1s given as:

v(x,r)= Asin(@f - @) (7.29)

A point M from O (one wavelength) has a
phase difference of 2z, thus particle P from O
has a phase difference of

X o 2n
Q= 7 X T[—Tl

Therefore, equation (7.29) can be written as;

y(x.1) = Asin(@r — kx) (7.30)

2n .
Where, k= T 1s known as wave number.

If the wave moves from right to left, the
particle P will lead that at O by phase angle ¢ .
The displacement y at P is given as;

v(x,t)= Asin(@r + kx) (7.31)

Therefore, the displacement y of the particle
moving from left to right and vice versa can be
written as;

v(x,t) = Asin(@r * kx) (7.32)

Since y represents the displacement of a particle

as the wave travels, then the particle velocity v

at any instant is given by;
dy

v =—= Awcos(wt * kx)

(7.33
"oodt 4

R EEEEEEET——

In addition, since the displacement
y remains constant as the particle
moves each point, say, P, P,..., then
the wave or phase velocity which
1s the rate at which the disturbance
(wave) moves across the oscillator
is given by;

(7.34)

Note that, equation (7.32), (7.33),
and (7.34) apply for both transverse
and longitudinal progressive waves.

Cevample 711
A wave travelling along a string
is described by
v(x,t)=3.3sin(2.7t=72.1x) In
which y is in millimeters, x isin
meters and ¢ in seconds. What is
the (i) amplitude, (i) wavelength,
(1i1) period, (iv) frequency, and
(v) velocity of this wave?

Solution

Compare equation (7.30)
with the given wave equation
y(x,t) = 3.351n(2.7t - 72.1x)
(i) Amplitude A=3.3 mm

(11) Since, the wave number
k=72.1, then wavelength,

_2E_2% _0087m
"k 721

(iii) Since from the given
equation, 2.7t=at, then,
21t 2 rad

= _=2133
®w 27rads™ :



; 1
(iv) Frequency f—? R

: ®
(v) Velocity of the wave v= =

Thus, v—&
72.1radm’

=3.74cms”

(b) Displacement and velocity of
stationary wave motion

Suppose that two progressive waves of

equal amplitude A and frequency f

are traveling in opposite directions, the

displacements y of a wave traveling to

the right and left, respectively, are given as;

y,(x,1) = Asin(@r - kx) (7.35)

_}'E(.t‘,!) = Asin(@t + kx) (7.36)

By the principle of superposition, the
resultant displacement y for equations
(7.35) and (7.36) is given by

y=y+y,
= Asin(@r — kx) + Asin(@r + kx) (7.37)
Applying the trigonometric transformation

for converting the sum of two sines to a
product in equation (7.37), 1.e.,

sine +sin ff = 2sin{a+‘6 )cns(ﬂ}
2 2

you get; -

v(x,1)=(2Acos kx)sin wt (7.38)

Equation (7.38) which has y as a function

of x and r applies for both transverse and
longitudinal stationary waves. The factor
sin@r shows that the wave shape stays
in the same position oscillating up and
down. The factor 2Acoskx shows that

Vibrations and waves

at each instant the shape of the string
is a cosine curve. Therefore, the factor
2Acoskx gives the changing amplitude
of a standing wave. Equation (7.38) can
be written as;

v(x.t)= Bsinwt (7.39)

where B=2Acoskx= ZACQS[QTH}

is the amplitude of oscillations of the

various particles. It is found that when

=0, j A, % etc., B is maximum and

equal to 2A which are the antinodes. In

addition, when ,;r=i E ﬁ etc., B is
4 47 4°

3

minimum and equal to zero which are
the nodes. Henee, equation (7.39) can be
used to find the position of the nodes and
antinodes of a stationary wave.

§  \bumpleriz)

Consider two identical plane progressive
waves travelling in a string in opposite
directions. If the resulting wave is given
by the equation y=8cos(2x)sin(3t).

determine the particle displacement of
the two identical progressive waves.

Solution

Comparing equation (7.38) with the
given equation, A=4, k =2and @ =3,
then, the two identical progressive waves
can be written as;

y,(x.1) = Asin(@r — kx); y, = 4sin(3r — 2x)
and

y,(x.0)= Asin(@r + kx); y, = 4sin(3 + 2x)
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Cexample7.13)

The wave function for a standing wave
in a string is given by

y=0.3sin (O.ZSx)cos(l ZDJI!), where x
is in meters and 7 is in seconds.

Determine the wavelength, frequency,
and amplitude of the superposing waves.

Solution
Comparing equation (7.38) with the
given equation:

Wavenumber k=0.25= ZT“: gives,

A=25.13m

Angular frequency @ = 120n = 2xf;
gives, f =60 Hz

Amplitude 2A=0.3: gives, A=0.15m

Therefore, the wavelength, frequency
and amplitude of the superposed waves
are25.13m, 60Hz, and 0.15m
respectively.

Stationary waves on string fixed at
both ends

A stationary wave generally has no velocity
since there is no energy transmission
between nodes. But, a number of waves
of different frequencies, wavelengths,
and velocities may superpose to form a
group. Motion of such a group is called a
group velocity, which can be considered in
stationary waves produced by a vibrating
strings.

Consider a string of length L stretched
between two fixed supports, then plucked
at the middle point. The wave will travel
in both directions and will be reflected
at each end as shown in Figure 7.23. As

adjacent nodes of a standing wave are %

apart, then, length of the first, second, and
third harmonics of the string is

A2, 34
272" 2

Therefore, if A, is the wavelength of the
n" harmonic, then,

L

Anzé, where n=1,2,3...
n

(7.40)

The frequency f, of the »" harmonic is
given by:
Vv 3
A (7.41)
Ty 2 .
where, v is the velocity of either of the
progressive waves that the wave produced.

From equations (7.40) and (7.41),

ny

- s

(7.42)
2L

From equation (7.42), when n=1, f is
the frequency of the fundamental and is
called the first harmonic.

Therefore, equation (7.42) can be written as;

fo=m,

From equation (7.43), when n=2,
f,=2f,, which is the frequency of the
first overtone or second harmonic, and so
on.

(7.43)

From equations (7.23) and (7.42), the
frequency of the n™ harmonic for a vibrating
string with tension 7 can be written as;

n |T

= |~ 7.44
2L\ z (7.44)

S,
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Figure 7.23: Vibration modes of a stretched

string

Cample7.14)

A thin wire of length 75.0 cm has a
mass of 16.5 g. One end is tied to a nail
and the other end isattached to a screw
that can be adjusted to vary the tension
in the wire. To what tension must the
screw be adjusted so that a transverse
wave of wavelength 3.33 cm makes
875 vibrations per second?

Solution T
From equation (7.23); v= \/g

and v=fA

Vibrations and waves

T f*Am
L
(875 57) %(3.33%10°m) x(16.5% 10 kg)
- (75x I[]‘Im]
T=187N

Therefore, the screw must be adjusted
to 18.7 N in order the transverse wave
of wavelength 3.33 cm making 875
vibrations per second.

C\eampler.1s) =

A piano tuner stretches a steel piano wire
with a tension of 800 N. The steel wire
is 0.40 mlong and has a mass of 3.0 g,
(a) What is the frequency of its
fundamental mode of vibration?

(b) What is the number of the highest
harmonic that could be heard by a
person who is capable of hearing
frequencies up to 10207 Hz?

Solution
(a) From equation (7.42) the
fundamental mode of vibration

f:i E: | 800 Nx0.4m
"2L\u 2x04\ 3x107 kg

=408.25 Hz

Therefore, the fundamental mode
of vibrations is 408.25 Hz.

(b) From equation (7.42), number of
harmonics is given as;

21f
- f.fzwnﬁ
1% T

=2x04 mx10207 Hzx\/

3x107 kg
0.4 m x800 N

=25
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Therefore, there are 25 harmonics that
could be heard by a person who is
capable of hearing frequencies up to
10207 Hz.

CEvample7.16)

A string of length 2m and mass
6.0x10™ kg, fixed at both ends, is
under a tension of 20 N. It is plucked
at a point 20 cm from one end. What
would be the frequency of vibration of
the string?

Solution

The plucked string will make an
antinode A at the plucking point and
each end of the string will be a node
N. The AN (distance between A and
N ) is given as:

‘.J.L,"i‘,l=.A_'f.'.=_.2_L_.1 where A =E
4 4n &
Thus, n= L _ 2m .
2AN 2x02m

Therefore, the string will vibrate in the
third harmonic.

From equation (7.44), the frequency of
vibrations is

f_i_i_ 5 20Nx2m
" 2L\ 2x2m\6.0x10" kg

=322.7 Hz

N Evample7.17)

A string under a tension of 129.6 N
produces 10 beats/second when it
vibrates with a tuning fork. When the
tension of the string is increased to
160 N, it vibrates in unison with the
same tuning fork. Calculate the frequency
of the tuning fork.

Solution

From equation (7.44), the frequency of
vibration can be written as f mﬁ :
thus, frequency of the tuning fork f,
relates to the frequency of vibration of
the string f, as,

T (129.61\1
g —— -'= _}:0.9 »
) szf‘ leon =00k

Using equation (7.27) and a given
frequency of beat f, =10beat/s the
frequency of the tuning fork is.
L=f,+f,=10Hz+0.9f;,
f, =100 Hz

Therefore, the frequency of vibration
of the tuning fork is 100 Hz .

& Exercise

1. Describe the distinguishing features
between travelling (progressive)
waves and stationary (standing)
waves.

2. Two waves travel on the same
string. Is it possible for them to have
different wavelength? Explain your
answer.

3. Energy can be transferred along a
string by wave motion. However,
in a standing wave on a string, no
energy can ever be transferred past
a node. Why?

4. One of the harmonic frequencies for
a particular string under tension is
325 Hz. The next higher harmonic
frequency is 390 Hz. What is next
higher harmonic frequency after the
harmonic frequency 195 Hz?

T



. A nylon guitar string has a linear
mass density of 7.20 gm ™' and is
under tension of 150 N. The fixed
supports are at a distance of 90.0 cm
apart. The string is oscillating in
third harmonic mode. Calculate:
(a) The speed;

(b) The wavelength: and

(c) The frequency

of the travelling waves whose
superposition gives this standing
wave.

. What is the fastest transverse wave

that can be sent along a steel wire? For
safety reasons, the maximum tensile
stress for steel is 7.00x10° Nm™.
The density of steel is 7800 kgm .

. A block of mass 5 kg is hanging
vertically from a free end of the rope
of length 10 m. A transverse pulse
of wavelength 0.05 m is produced
at the lower end of the rope. What is
the wavelength of the pulse when it
is 2 m below the vertical support?

. Aprogressive and a stationary simple
harmonic wave each has the same
frequency of 250 Hz and the same
velocity of 30.ms ', Calculate:

(a) The phase difference between
the two vibrating points on the
progressive wave which are
10 em apart;

(b) The equation of motion of
the progressive wave if its
amplitude is 0.03 m;

(¢) The distance between nodes in
the stationary wave: and

Vibrations and waves

(d) The equation of motion of the
stationary wave if its amplitude
is 0.01 m.

9. The displacement equation of a

10.

1.

12

transverse wave on a string is
y=2.0 mm xsin({ZD m " )x— (600 s")).
The tension in the string is 15 N.
(a) What is the wave speed?

(b) Find the linear mass density of
this string.

A string fixed at both ends is 8.40 m

long and has a mass of 0.120 kg. It

is subjected to a tension of 96.0 N

and allowed to oscillate.

(a) What is the speed of the waves
of the string?

(b) What is the longest possible
wavelength for a standing
wave?

(¢) Find the frequency of this wave.

A string that is stretiched between two

fixed supports separated by 75.0 cm

has resonant frequencies of 420 Hz

and 315 Hz, with no intermediate

resonant frequencies.

(a) What is the lowest resonant
frequency?

(b) What is the wave speed?

A piano string having a diameter

of 0.90 mmis replaced by another

string of the same material but with

diameter 0.93 mm. If the tension of

the wire is the same as before,

(a) what is the percentage change
in the frequency of the
fundamental note?

(b) what percentage change in the
tension would be necessary to
restore the original frequency?
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7.3 Sound waves

The most important waves in your everyday life
are sound waves. The reason is that, the human
ear is tremendously sensitive and can detect sound
waves even of very low intensity. Sound waves are
longitudinal waves in amedium and can be described
in terms of pressure fluctuation. Sound waves travel
through gases and liquids in the form of compression
and rarefactions (Figure 7.24 (a)). Sound can travel
in solids as both longitudinal waves and transverse
waves. They usually travel out in all directions from
the source of sound, with an amplitude, frequency,
and wavelength that depends on the direction and
distance from the source. The displacement and
pressure on the particles in a medium is as shown
in Figure 7.24 (b) and (c), respectively. At the nodes
N, the particles are at the minimum displacement
with maximum pressure, whereas at the antinode A,
the particles possess maximum displacement with
minimum pressure. Examples of sources of sound
waves include sounding brass, pipes, and tuning
forks. In this section, you will learn how to derive
velocity of sound in materials, determine velocity
of sound in air, and describe the applications of
mechanical vibrations and waves.

Sound Compressions Rarefactions
‘itlurce /\_
—P
(a) Sound
propagation
“—r
3
(b) = * Distance
B
A |

Pressure

Figure 7.24: Sound wave in a material

7.3.1 Velocity of sound in
materials

The speed of sound depends
on both an inertia property u of
the medium (to restore kinetic
energy) and an elastic property 7
of the medium (to store potential
energy). Thus, the speed of
sound v can be generalized as,

(7.45)

=[N

(a) Velocity of sound in solids
When sound waves travel in a
solid medium, the particles in
the medium are subjected to

varying stresses, with resulting

strains. Thus, the speed of sound
wave is governed by the Young's
modulus of elasticity ¥ and the
inertia property which depends
on the density p “massiveness”
of a bulk of a medium. Hence,
equation (7.45) can be written as;

(7.46)

Equation (7.46) can be verified
by the method of dimensional
analysis.

(b) Velocity of sound in liquid
The velocity of sound in liquid
is also govern by equation
(7.45), where elastic property
is the bulk modulus K of the




liquid and the inertia property is the density P of the
liquid. Hence, using equation (7.45), speed of sound
in liquid can be written as;

K (7.47)

(e) Velocity of sound in gas

The velocity of sound in a gas can be determined using
equation (7.45), where the elastic property is the bulk
modulus of the gas with pressure P, and the inertia
property is the density P, of the gas. Experiments
show that when a sound wave propagates through a
gas, the temperature of the gas changes and therefore
the propagation of a sound wave in a gas is an adiabatic
process. Under the conditions in which a sound wave
travels in a gas, the bulk modulus K is given by,
K=yP , where y is the ratio of its specific heat
capacities. That is,

e

eyl
7 c

where ¢, and ¢ are the specific heat capacities of a gas

at constant pressure and constant volume, respectively.

Hence, using equation (7.45), the speed of sound in
gas can be written as;

i JTE (7.48)
p
Thus, the velocity of sound at S.T.P in a

gaseous medium of density p_=1.29kgm™,
P=760 mmHgand y=14 is;

o |YP _ [14x0.76 mx13600 kgm ' x9.8 ms
p 1.29 kgm ™

~332ms™
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Now, consider one mole of an
ideal gas having volume V
and pressure P at temperature
T . From the ideal gas equation
PV = RT, where
R is a constant and M is the

of state,

molar mass of the gas, density

is given as; p= -tf—f =%.

From equation (7.48), the

speed of sound in a gas can
be written as;

(7.49)

Since Y, R and M are

constants for a given gas, it
follows that, the velocity of
sound in a gas is independent
of pressure, if the temperature
remains constant. Then,

vee T

Therefore, the velocity of
sound in a gas is proportional
to the square root of its

(7.50)

absolute temperature.

Note that, sound travels faster
in liquids than in gases and
even faster in solids than in
liquids because molecules are
much closer in solids than in
liquids and closer in liquids

than in gases.
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—\evampler.1s) =

The velocity of sound in a material
depends on the Young’s modulus Y and
density P of the material.

(a) Use the method of dimension
analysis to obtain the relationship
between v and Y.

(b) Use the relation from (a) above to
find the velocity of sound in
(i) asteelofdensity 7800 kgm “and
elasticity of 2.0x 10" Nm™.
(ii) waterof density 1000 kgm " and
bulk modulus 2.04x10 * Nm .

Solution

(a) Using method of dimension, v = ¥

p
11 =g
0 @) v=[* = |20 T
p 7800 kgm

=5064 ms ™'
- K [2.04x10" Nm™
(i) v=_|—= =
p 1000 kgm
=1428.3ms™

Therefore, the velocities of sound in
a steel and water are 5064 ms™' and
1428.3 ms™', respectively.

“\esample7.15)

Calculate the velocity of sound in air at
100°C if the density of air at S.T. P. is
1.29 kgm™, the density P of mercury
at 0°C is 13600 kgm * and the ratio
of heat capacities of air, ¥ is 1.41.

Solution
From equation (7.48), the velocity of
sound in air v, at 0°C;

v :J},P:J}'hp’“{g
! p pm'r

_[1.41x0.76 mx 13600 kgm ™ x 9.8 ms™
1.29 kgm™

=332 ms™

From equation (7.50), the velocity of
sound in air at 100°C is;

T 73K
o= #%xv{;J%xSSZ.? ms "'
0

=389 ms '

Therefore, the veloeity of sound in air
at 100°C is 389 ms™.

Cevanple7.20) —

The wavelength of the note emitted by
a tuning fork with frequency of 512 Hz
in air at 17°C is 66.5cm. If the
density of air at S.T.P. is 1.293 kgm ",
calculate the ratio of the two specific
heat capacities of air. Density of
mercury at S.T.Pis 13600 kem .

Solution

From equations (7.50) and (7.48)
v= fA, the ratio of two specific heat
capacities of air 7 is

,}, o pﬂa‘r(lf):?;!
P o heT

_ 1.293 kgm ™' % (512 Hzx 0.665 m)* x 273 K

0.76 m x 13600 kgm *x 290 K x9.8 ms *

=1.39

Therefore, the ratio of two specific heat
capacities of air is 1.39.



7.3.2 Determination of the velocity of
sound in air

When a tuning fork is struck and placed
immediately over the opening of a tube
of suitable length opened at one end, and
whose position in the water can be raised
or lowered (Figure 7.25 (a)), a point is
reached where the column of air in the
tube vibrates with the fork and a loudest
note is heard. At this point, the frequency
of vibration of air column is equal to the
frequency of the fork. This phenomenon
is known as a resonance. The motion of air
in the tube is a succession of plane wave
pulses sent from the fork and reflected
at the water surface. The condition for
resonance is that the reflected wave must
be out of phase with the emitted wave by
n-radians. The resonance will be most
powerful if the time the pulse takes to
travel to the water surface and back to the
fork is exactly half the periodic time of
the vibration of the fork.

mee— <« Tuning fork

—
A . C__' .A |
y o * Antinode H
————— -— ALY
T #— Moving tube - [] ¢ \/
N
L Hollow tube
Air column
Node
—Walter
B85 S8 / \
(a) (b)

Figure 7.25: Measuring speed of sound
using resonance tube

The pulse travels along the tube with
constant velocity of sound in air. The

Vibrations and waves

condition for resonance in this case, is
that, length of the air column is equal
to the quarter wavelength of the sound
waves (Figure 7.25 (b)). That is,

(7.51)

Equation (7.51) may not be obviously
accurate since the air at the open end
of the pipe is free to move, causing the
vibrations at the end of sounding pipe
to extend a little to air outside the pipe
(Figure 7.25 (b)).

A correction should be done for the
open end of the pipe. Introducing this
correction, equation (7.51) becomes,

A
c="=
L,

where C is the end correction.

(7.52)

Similarly, the first overtone (second
harmonic) of the same tuning fork can be
written as,

34
L!+C_T

Subtracting equation (7.52) from equation
(7.53) you get;

(7.53)

§ =% (7.54)

Thus, the velocity of sound in air column
(v= fA) is written as,

v=2f(L,-L) (7.54)

Therefore, knowing the length L, for
fundamental and L, for first overtone
(second harmonic) of the air columns,
and the frequency of the tuning fork,




Physies for Advanced Secondary Schools

the velocity of sound in air can easily be
determined.

Note that, the end correction C is the
length that must be added on to the length
of the pipe to take account of antinodes
extending beyond the open end of the
pipe. Thus, for the closed pipe the length
of the pipe together with its end correction
is givenby L. = L+C.

Experiments show that C =0.6r, where
ris the radius of a pipe. Thus, the above
equation can be written as L. = L+0.6r.

For an open pipe the length of a pipe will
be L. = L+2C=L+1.2r.

Aim: To determine velocity of
sound in air

Materials: Tuning forks of different
known frequencies, large

glass jar, glass tube, water

Procedure
(a) Fill three quarter of the large glass
jar with water.

(b) Immerse the glass tube in the glass
jar with water such that air column L
can be created within the glass tube.

(c) Strike and hold the tuning fork over
the open end of the glass tube.

(d) Lower or raise the tube until a loud
note is heard.

(e) Measure and record the length at which
the note is loudest (Figure 7.25 (b)).

(f) Repeat procedure (a) - (e) with the
forks of different frequencies to
obtain six different measurements.

(g) Tabulate your results as shown in
Table 7.1.

Table 7.1: Frequency of tuning fork and

length of air column

Frequency of = Lengthof | |
tuning forks = air column 7(-‘1 )

f(H2) )

Questions

(a) Use your results to plot a graph of
the length L of the air column against
1

7“ .

(b) Find the slope of the graph.

(¢) The velocity of sound in air column
for forks of different frequencies is

governed by equation, [ = %— C.

Find the velocity of sound of air.

(d) Find the value of L-intercept and
suggest its physical significance.

The resonant tube treated in the preceding
discussion can be considered as a closed
pipe resonator. A closed pipe or organ
consists of a metal pipe closed at one
end Q. When a blast of air is blown
into it at the open end P (Figure 7.26
(a)), a sound wave travels up the pipe to
Q. and is reflected at this end down the
pipe. So. a stationary wave is formed by
superposition between the two waves.

R EEEEEEET——
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Figure 7.26: (a) Closed organ pipe, and
(b) fundamental mode of closed pipe

The end Q of the closed pipe must be a
node N since the layer in contact with Q
must be permanently at rest. The open
end P, where the air is free to vibrate,
must be an antinode A (Figure 7.26 (b)).
The distance between node and antinode
(Figure 7.26 (b)) can be written as;

=2

7.56
2 (7.56)

From equation (7.56), the frequency,

- .
f= 7 of the note can be written as;

Vv

=— 7.57
4L %7

f=1
Equation (7.56) is the frequency of the
lowest note of a closed pipe termed as
fundamental frequency f; orfirst harmonic.
Thus, the velocity of sound in a closed pipe
for the frequency f, is:

v=4Lf (7.58)

If a stronger blast of air is blown into a
closed pipe. notes of higher frequency
called overtones which are simple
multiples of the fundamental frequency,
f,, can be obtained. Consider an overtone
formed when air is blown into a closed

Vibrations and waves

pipe at high frequency. The length Lcan
be written as;

RY)
L="—"1 7.59
2 (7.59)
Since f= Y, then, from equation (7.59),
A
the frequency f, can be written as;
3v
=— 7.60
h=31 (7.60)
From equations (7.57) and (7.59),
frequency f, can be written as;
=37, (7.61)

Equation (7.61) is called first overtone
or third harmonic of a closed pipe and is
represented by Figure 7.27.

34
e 2 »
" L »

Figure 7.27: First overtone of a closed pipe

Similarly, the frequencies of the second,
third, fourth (and so on) overtones of a
closed pipe can be showntobe 5f,, 7f,,
9/,, and so on, which are odd multiples
of the fundamental frequency. Generally,
for a closed pipe, the overtone of the
higher frequencies f, is given as:

f,=@2n+D) (7.62)

where n is the number of overtones, that
is n=1,2 3..., and 2pn—1 are the n
harmonics.

h
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Then, it follows that the velocity v of
sound of overtones of wavelength 4 in
a closed pipe in general is given as:

v=02n+1)fA,

C\xample721)

(a) Draw a sketch diagram showing the
position of nodes and antinodes for
the vibration of an air column in a
pipe closed at one end when giving
the second overtone. Calculate the
frequency of this second overtone
if the effective length of the pipe is
72 cm. Use velocity of sound in air
as 340 ms™.

(b) A small loudspeaker is placed near
the open end of a pipe of length
400 mm closed at its other end. The
minimum frequency at which the
pipe resonate is 215 Hz.

(7.63)

(i) Estimate the speed of sound in the
pipe.

(i1) Calculate the next highest frequency
for resonance.

Solution

(a) For second overtone, n=2, and
substituting equation (7.57) into
(7.62), the frequency f, is

_ 5y 5%340ms™
2 4L 1.4%0.72m
=590.28 Hz

(b) (i) Using equation (7.58),
v=4x04mx215s"
=344 ms™

(11)The next highest frequency occurs
at the first overtone (n=1). Using

equation (7.60), frequency of the
first overtone is,

_3v
4L
3% 344 ms™

= =645 Hz
4x400x 107 m >

f,

When air is blown into an open pipe (pipe
open at both ends), a wave M travels to
the open end Q, the wave is reflected in
the direction N on encountering the free
air (Figure 7.28 (a)). A stationary wave
is therefore set up in the air within the
pipe. The two ends of the pipe are both
antinodes and the nodes midway of the

pipe (Figure 7.28 (b)).
Q
| - A
N (i 2
M !
(a) (b)

Figure 7.28: (a) Open organ pipe and,
(b) fundamental mode of open

pipe

The length L of the pipe which is the
distance between consecutive antinodes
(Figure 7.28 (b)) can be written as;

A

L== (7.64

5 )

Then, frequency, f =% of the note can
be written as;
Vv

A (7.63)

A



Equation (7.65) gives the frequency of
the lowest note of an open pipe termed
as fundamental frequency f, or first
harmonic. Thus, the velocity of sound in
an open pipe for the frequency f is

v=2Lf, (7.66)

If a stronger blast of air is blown into an
open pipe, notes of higher frequencies
called overtones can be obtained which
are simple multiples of the fundamental
frequency f,. Consider an overtone formed
when air is blown into an open pipe at a
high frequency. The length, L is given by:
L=A4 (7.67)
From equation (7.65), the frequency f
can be written as;
'l!
A=y

From equations (7.65) and (7.68) frequency
J, can be written as;

fi=2f

Equation (7.69) is called first overtone or
second harmonic of an open pipe and is
represented by Figure 7.29.

(7.68)

(7.69)

Figure 7.29: First overtone of an open pipe

Similarly, the frequencies of the first,
second, third, and so on, overtones of an
open pipe are; 2f,, 3f,, 4f,, and so on.
Generally, for an open pipe, the overtone

Vibrations and waves

of the higher frequencies f, is given as;

f,=n+1)f, (7.70)
where n is the number of overtones,
that is n=1.2,3... and n are the n"
harmonics.

Then, it follows that the velocity, v of
sound for overtones of wavelength 4_in
an open pipe is given as;

v =(n+1)fA, (7.71)

In summary, for a given length of a pipe,
the open pipe frequency is twice that of
the closed pipe frequency and an open
pipe gives more harmonics (odd and
even) than a closed pipe (odd only).

Cenample7.22)

An open pipe 30cm long and a
closed pipe 23 cm long both of the
same diameter, each sounding its first
overtone and are in unison. What is the

end correction of the pipes?

Solution
Since the two pipes are in unison, then
the frequency of first overtone f, of an
open pipe is equal to the first overtone
f; of a closed pipe. Then, from
equations (7.68) and (7.60), then,
v v

L+2C 4L +C)
Thus, the end correction C is
" 4L .-3L,

2

(4x23 cm)—(3x30 cm) 1

= =1cC

C

m

2

Therefore, the end correction is lcm,
where L_ is the length of the closed pipe
and L, is the length of the open pipe.
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Cevample7.23)

Two open ended organ pipes are sounded
together in their first harmonics and
are heard. If the first pipe is of length
0.80 m, what is the length of the other
pipe? Ignore any end corrections and
take speed of sound in air as 320 ms™.

Solution

From equations (7.68) and (7.69), the
frequency f, of the first pipe of length
L is

nv 1%320 ms™'

= =200 Hz
2L 2x0.8m

f\::

and for the second pipe f, with length

L is
1 nv 320
ﬁ:—}{—:—
2 L 2L

From equation (7.27), and given beat
frequency f, =8beats/s, f - f =f,
equivalent to

320 ms™'

200 s7' - =8; L,=083m

1
Then, the length of the second pipe is
0.83 m.

7.3.3 Applications of sound waves
Sound waves have wide applications in
daily life. For example, forced vibrations
are used to tune musical instruments such
as piano, guitar, using beats between
string frequencies.

Also, the architect when designing a
building has to consider its acoustical
demands. For example, when planning

|

for construction of a hotel or a radio
station, one should ensure the penetration
of sound from one room to the other is
negligible.

Similarly, in case of an auditorium, it has
to be ensured that the sound is properly
diffused and there is no echo. It is a
common experience that a sound produced
in a building is reflected repeatedly by
its walls and takes some time to die out.
This persistence of audible sound after the
source has ceased to emit it is called the
reverberation. The time taken by a sound to
die out after the source has ceased to emit
it is called the reverberation time. A long
reverberation time can make a building
sound loudy and noisy. Thus, conference
halls, mosques, churches, and lecture halls
should have short reverberation time. The
value of this time is large in an unfurnished
room compared to a furnished one. The
reverberation time can be reduced by
applying sound absorbing surfaces on the
walls and the ceiling.

In a musical concert, it can easily be
experienced that a slight reverberation
provides richness to music. Reverberation
in a room can be controlled by having the
walls covered with absorbent materials, a
few open windows, a good audience and
a good amount of furniture in the room.

Other important conditions for good
acoustical designs of rooms is the shapes
of the walls and the ceilings. Curved walls
should be avoided because they cause
focusing of sound, thereby concentrating
it at one point.




l Exercise 7.4

. Explain the conditions necessary for
the formation of stationary waves in
air.

. Under what conditions are beats

heard? Derive an expression for their
frequency.

. Calculate the frequency of the sound
emitted by an open ended organ
pipe 2 m long when sounding its
first overtone. Speed of sound in air
v=340 ms .

. Calculate the shortest length of a
closed organ pipe which resonate
with a 440Hz tuning fork,
neglecting any end correction. Speed

of sound in air is 350 ms .

. An organ pipe has two successive
harmonics with frequencies 1372 Hz
and 1764 Hz.

(a) Is this an open or a closed pipe?
Explain.
(b) What is the length of the pipe?

. Two organ pipes (both ends open)
give 5 beats/s at 10°C. How many
beats will be heard per second at
I5°C7

. A uniform 165N bar is supported
horizontally by two identical wires,
A and B. A small 185 N cube of
lead is placed three quarters of
the way from A to B. The wires
are each 75.0 cm long and have
a mass of 5.50 g. If both of them
are simultaneously plucked at the
center, what is the frequency of the
beats that they will produce when
vibrating in their fundamental?

Vibrations and waves

8. (a) If the velocity of sound in air
at 15°C is 342 ms™', calculate
the velocity at 0°C and 47°C.

(b) What is the velocity if the
pressure of the air changes from
75 cm to 95 cm of mercury, the
temperature remaining constant
at 15°C?

9. An observer looking due north sees
the flash of a gun 4seconds before
he records the arrival of the sound.
If the temperature is 20 °C and
the wind is blowing from east to
west with a veloeity of 48 km/hr,
calculate the distance between the
observer and the gun. Speed of sound
in airat 0.°C is 330 ms™.

10. A tuning fork vibrating with a
sonometer wire 20 cm long produces
5 beats per second. Given that the
beat frequency does not change if
the length of the wire is changed to
2lcm, calculate the frequency of
the tuning fork.

7.4 Electromagnetic waves

What is light? This question has been
asked by humans for centuries, but there
was no answer until when electricity
and magnetism were unified into
electromagnetism by Maxwell. Through
the Maxwell’s equations, it became clear
that a time-varying magnetic field acts as
a source of electric field and that a time-
varying electric field acts as a source of
magnetic field. These fields sustain each
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other, forming an electromagnetic (EM)
wave that propagates through space.
Examples of electromagnetic waves
include: visible light from different sources,
waves produced by TV, and radio stations,
X-rays, and y-rays.

Unlike waves on a string or sound waves
in a fluid, electromagnetic waves do not
require a material medium. Nonetheless,
electromagnetic waves and mechanical
waves have much in common and are
described in much the same language. In
this section, you will learn the nature of
EM-waves and describe their propagation.

7.4.1 Nature of electromagnetic
waves

Electromagnetic (EM) waves are waves
that are related to both electricity and
magnetism. These waves travel in space
and are made up of time-varying electric
and magnetic fields produced by the
acceleration of electric charges, such as
electrons. An electromagnetic wave is
radiated by an accelerating or oscillatory
charge in which a varying magnetic field
is the source of the electrie field and a
varying electric field is the source of the
magnetic field. These waves can travel
through a vacuum or through various
media, including air, water, and solids.
The electric and magnetic fields oscillate
perpendicular to the wave’s direction of
travel, thus, they are transverse in nature.,

Electromagnetic waves span a broad
spectrum of frequencies and wavelengths,
collectively known as the electromagnetic
spectrum. This spectrum includes various

types of waves from low-frequency radio
waves to high-frequency gamma rays.

7.4.2 Propagation of
electromagnetic waves

Based on Ampere’s law and Faraday’s law
of electromagnetic induction, a varying
E -field produces B field varying with
time and a varying B field produces E
-field varying with time. This implies that
whenever there is a change in E -field with
time, then a B field changing with time are
produced in space. Similarly. the produced
B field will produce varying E -field and
so on. The result of alternating £ and B
-fields will result in an electric-magnetic
disturbance that propagates through space.

Figure 30 shows a typical example of a
plane electromagnetic wave propagating
along the z direction. The electric field E
is along the x-axis, and varies sinusoidally
with z, at a given time. The magnetic field
B is along the y-axis, and again varies
sinusoidally with z. The electric and
magnetic fields £ and B are perpendicular
to each other, and to the direction z of
propagation. We can write £ and B as
follows:

—

E = E sin(kz —wr) (7.72(a))

B = B,sin(kz —wr) (7.72(b))

2
Where k=r§£, and w = ck

The speed of EM-waves in free space
1

(vacuum), ¢, 1s given as: ¢= 5
\‘lullEl.}
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where g, =4nx 107 Hm "' and &, =8.854x10""* Fm™' are the respective permeability

and permittivity of free space.

Thus,
|

C=
J4mx107Hm ' x8.85%10™ Fm

-1 = 3.0x 103 ]]15“I

Therefore, the speed of electromagnetic wave in space is 3.0x 10" ms™'. The calculated
speed of EM-waves match precisely with the measured speed of light in free space
(vacuum). In this case, light is an electromagnetic wave.

X F

Figure 7.30: Propagation of electromagnetic waves

7.4.3 Electromagnetic spectrum

As already seen earlier, EM-waves exist in wide range of frequencies or wavelengths
constituting a series known as the electromagnetic spectrum as shown in Figure 7.31.
The spectrum includes gamma rays, X-rays, ultraviolet waves, visible spectrum
(light), infrared. microwaves, and radio waves. A spectrum of interest is the visible
spectrum which consists of seven spectral lines, namely; violet, indigo, blue, green,
yellow, orange, and red (Figure 7.31).
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400 nm 500 nm 600 nm 700 nm

Figure 7.31: Visible light spectrum
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7.4.4 Applications of electromagnetic
waves

Radio waves are electromagnetic
waves which vary in wavelength from
a few millimeters to several kilometers.
These waves are very useful in global
communication. Microwaves are also
used in communication, for example in
mobile phones, and in radar, electron
spin resonance studies, and in heating.
Ultraviolet radiations cause fluorescence
and ionization, promoting chemical
reactions, affect photographic films,
and produce photoelectric emissions.
Visible light is due to electron transition
in atoms. It affects a photographic film,
stimulates the retina in the eye, and used
in photosynthesis. Infrared radiation is due
to small energy changes of an electron
in an atom or molecular vibrations; it is
used for heating, both in homes and in
hospitals, and used in devices that emit
infrared beams such as camera. X-rays
are used in dentistry and medicine, for
example checking damaged or fractured
body parts: and gamma rays are used to
destroy cancer cells.

1. Differentiate between mechanical
and electromagnetic waves.
2. Explain the nature of electromagnetic

waves.

3. Describe how electromagnetic waves
propagate.

4. Explain the applications of

electromagnetic waves.

|

5. Find the speed of EM-in a medium
if the relative permeability and
permittivity are 1.0 and 2.25,
respectively. If the speed of

EM-wave in medium is given as
|

¢ = ———, where c is the speed
'umEm

of EM waves in vacuum, and #

and € the relative permeability and
permittivity of medium, respectively.

7.5 Physical optics

Optics is a branch of physics which
involves the behaviour and properties of
light including its interaction with matter.
Physical opties deal with the physical
properties and behaviour of electromagnetic
waves and their interactions with matter. In
physical optics or wave optics, we study
interference, diffraction, and polarization
of light. In this section, you will learn
interference, diffraction, and polarization.
You will learn how to treat light as waves
rather than as rays leading to a satisfying
description of such phenomena.

75,1

The colour seen in thin films of oil,

Interference of light

soap bubbles, and roads are due to light
undergoing interference. Thus, interference
refers to any situation in which two or
more waves overlap in space. This section
explains the necessary conditions for
interference of light and the determination
of the wavelength of monochromatic
light. It also investigates production of
interference by thin films.




Finally, itidentifies the applications
of interference of light.

(a) Necessary conditions for
interference of light

Interference of light occurs when
the waves are monochromatic, that
is, single wavelength. Also, the
sources are coherent, this means
that they must maintain constant
phase with respect to each other.
Therefore, they must have the
same frequency of nearly or equal
amplitude. The interference of
light can either be constructive
or destructive.

(i) Constructive interference
of light

Consider two coherent sources
of light. §; and §, in space and
that, a point P is at a distance r,
from §, and a distance r, from §,
(Figure 7.32). If waves that leave
S, and §, are in phase, they arrive
at P in phase. When the waves
reinforce each other, the amplitude
of the resultant wave 1s the sum
of the amplitudes of individual
waves. This is called constructive
interference. It requires that the
crest of §, overlaps with the crest
of §,. Similarly, the trough of §,
overlaps with the trough of §, . For
this to happen, the path difference
r, =1 for the two sources must
be an integral multiple of the
wavelength A4, that is,

(7.73)

Figure 7.32: Coherent wave interfering at a point in space

(ii) Destructive interference of light

If the waves from S, and S, (Figure 7.32) arrive
at point P out of phase, say, exactly a half-
cycle out of phase, the crest of one wave arrives
at the same time as the trough of the other. The
resultant amplitude is the difference between
the two individual amplitudes. If the individual
amplitudes are equal, the resultant amplitude is
zero. This cancellation or partial cancellation
of the individual waves is called destructive
interference of light. The condition for destructive
interference is thus,

n—r=nm+Hi (7.74)
where n=0,1,2,3,...

(b) Wavelength of monochromatic light

The wavelength of monochromatic light can be
obtained using Young’s double slit or Newton's
rings method. Light from a single source can be
split so that parts of it emerge from two (or more)
regions of space forming two (or more) coherent
secondary sources.
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(i) Young’s double slits experiment

One of the first demonstrations of the
interference of light was done by Thomas
Young in his experiment called double slit
experiment in 1801. Young placed a source §
of a monochromatic light in front of narrow
slits §, and §, close to each other. Patterns
of bright and dark regions called fringes were
observed on the screen (Figure 7.33). The
structure of these fringes is known as double
slit interference pattern.

5 Rc;:m
WhLi‘t
» I
- rin Lb
Monochromiatic f g
0
source e
Single slit
. lrlnuu
Double slit
Screen

Figure 7.33: Interference by double slit

The interference pattern at any point from the
double slit may be observed with a micrometer
eyepiece or by placing a screen in the path of the
waves. To obtain good pattern, the separation
between double slits should be less than 1mm
and each slit should have a width of about 0.3
mm. The distance between the double slits
and the screen should lie between 50 cm and
100 cm. The source and the double slits must
be parallel to produce the optimum interference
pattern. The formula relating the dimensions of
the apparatus and the wavelength of light may
be proved as shown in Figure 7.34.

Py

—— Screen

Figure 7.34: Double slit experiment

Consider the triangle S,PR and
S,PT . using Pythagoras theorem it
follows that.

2

d]‘
:.rn+_
2

|

3 2 d
(SP)’ =D+ b —EJ

(5,P)' =D+ (7.73)

(7.76)

“ N

Subtracting equation (7.75) from
(7.76),

(S,P) —(S,PY =[.\; +%T -[.\'.r-g]: (7.77)

Simplifying equation (7.77) gives,

(S,P+8,PXS,P—S P)=2dy, (7.78)

Note that, if the screen is at a very
far distance D from the slits as

compared to the slit separation d, then,
the triangle §,5,P is very thin and

therefore, S,P+ S5 P=
Thus, equation (7.78) becomes

dy

S,P—8§,P=—& (7.79)
: D

The quantity S,P—S§ P gives the
path difference for the two sources

S, and §,.

Using equations (7.73) and (7.79),
you gel,

~n — pj. then,




For bright fringes,

g =MD (p=012.....)
W=

(7.80)

Similarly, using equations (7.74) and
(7.79), you get,

then for dark fringes,

[n+lJﬂ.D
o\ 2)
A F;

(7.81)

where n=0,1,2,... of which the first dark
fringe is obtained and so on.

The fringe width (fringe spacing) which is
the distance between any two consecutive
bright fringes or two consecutive dark
fringes can be obtained from Figure 7.32
as follows: If Pis the position of the n”
bright fringes, then, §,P—5 P=nA. In
practice, §,8, is very small compared to
PQ, it then follows that, angle PQO =
angle S,S N =6.

From triangle §,5,N : sin@= S,V = ﬁ
) 5.3 d

=2

and from triangle PQO;

b0, Y,

tan@ = 00 D

Since @ is very small, tanf =sinf — 60
Therefore,

, = DAD (7.82)

Vibrations and waves

If Ris the neighboring (n—1)" bright
fringe, then,

=(n—1)D;L

yn—l d (? 83)

The separation y=y —y, , between

successive fringes is obtained by subtracting
equation (7.83) from (7.82), that is,

(7.84)

Therefore, the wavelength of the
monochromatic waves used in the Young's
experiment 1s

_yd
D

Ceampler.24) — =

Young’s experiment is performed with
a light of wavelength 502 nm. Fringes
are measured carefully on a screen
1.20 m away from the double slits, and
the center of the 20" bright fringe is
found to be 10.6 mm from the centre
of the central bright fringe. What is the
separation of the two slits?

i (7.85)

Solution
The separation of the two slit can be
obtain from equation (7.80) as;

_nAD
)’ﬂ'
~20%502%107 mx1.20 m

106107 m
=1.14x107 m

d

Therefore, the separation of the two slit
is 1.14x107 m.
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—\example7.25)

Coherent light with a wavelength
of 600 nm passes through two very
narrow slits and an interference pattern
is observed on a screen. The first order
bright fringe is marked as Pon the
screen. What wavelength of light will
the first order dark fringe be observed
at point P?

Solution

Since the bright and the dark fringe is
observed at the same point P, equation
(7.78) 1s equal to equation (7.79); then,

|
H.FLID_.["-'-ZJAED
d d ‘

The wavelength A, of light of the first
order fringe at point P is

nA,  1x600x107 m

A, =
n+1 0+l
2 2
=1.2%10° m

Where n =1 for first order bright fringe
and n=0for fist order dark fringes.
Therefore, the wavelength of light
in which the first order dark fringe
observed at paint P is 1.2x107° m.

Coarsen light A=51000A in a Young's
double slit experiment gives 12 fringes
in 1.8 cm on a screen at 1.5 m. Find
out the distance between the coherent
sources.

Solution
Using equation (7.83), the distance
between the coherent sources for n
fringes is

1D,

}?
_12x1.5mx5100x10""m
1.8%x107m

=5.10x10" m

Therefore, the distance between the
coherent sources for 12fringes is
5.10x107 m.

Fringe shift

Consider a thin transparent plate of
thickness 7 and refractive index ubeing
introduced in the path of one of the interfering
waves (Figure 7.35).

& Ttanspafﬁﬂt
5.?5_’ place PT
&

& X
P T R |

{ e S S e O

5, = Screen
| D T

Figure 7.35: Fringe shift experiment

The effective path in air is increased by
(,u—l)r due to the introduction of the
plate. Therefore,

path difference = SEP—[SIP+(,u— l)r],
SEP—-S'P-[p—])r ='3—(p-l)r

For maxima, path difference = nA, where
n=0, 1,2, ... position of n™ maxima is now;



%{u(u—l)rz ni, x, =§[nﬂ.+(p—l)r]

D
Fringe width,B=x ,—x = Fh In the

absence of the plate (i.e., r = 0), the position

. nDA
of the n™ maxima is: x, =——.

d

Displacement of fringes is now given by;
D nDA
Ax =F[ml+(y— l)r]—[ = }

M=§(p—l)r

Therefore, with an introduction of the
transparent plate in the path of one of the
slits, the entire fringe pattern is displaced

istance, 2 By
a distance, E(.,L[A]),r or l(# 1)!
towards the side on which the plate is

placed providing a shift in the interference
pattern given as;

D

Ax = F[u—l)r

(ii) Newton’s rings experiment
Newton’s rings are interference patterns
first studied by Isaac Newton. On the basis
of wave theory of light, the rings were first
correctly accounted for by Thomas Young.
A convex lens is placed on a plane glass
plate, and a thin film of air i1s enclosed
between the lower surface of the lens and
the upper surface of the plate. The thickness
of the air film 1s very small at the point of
contact and gradually increases outwardly
(Figure 7.36).

Vibrations and waves

Figure 7.36: Set up for Newton s rings

A horizontal beam of light falls on glass
plate B inclined at 45°. The glass plate
Breflects part of the incident light
towards the air film enclosed by the
lens Land the plane glass plate G. The
reflected beam from the air film is viewed
with @ microscope M. The interference
between the light reflected from the
lower surface of the lens DPE and the

- upper surface of the glass plate G results

into interference pattern observed as
circular fringes. Therefore, the two rays
of light have net path difference of 2t
where t = PA. The phase change adds an
extra path of half a wavelength (that is,
a crest is reflected as a trough) because
there is a phase change of 180° when the

wave-train is reflected at the top surface
of the glass slide G. Therefore, the path
difference between the two wave trains at

Pis 2r+% where A is the wavelength of
the light. A bright fringe is formed at P
when 27 = (2n— I)% and the dark fringe

is formed if; 2t=nA.
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Therefore, the central spot (for which
1 =0) appears dark instead of bright as
the geometrical path difference is zero.
The dark spot occurs because one of the
interfering rays has undergone a phase shift

n equivalent to % The theory of radius of

Newton’s rings can be used to determine
the wavelength A4 of light source if the
radius of curvature a of the lower surface

of the lens is known (Figure 7.37).
D

= —
2 7 = 9

.

Figure 7.37: Radius of Newton's rings

From the theorem of intersecting chords

(TO)x(0OD) = (QO) x (OP) which gives,
(7.86)

2at—t* =1’

But 1* is very small compared to 2af as a
is large, then (7.86) becomes 2ar = r* and

2r=1_ (7.87)
al

oF =l (7.88)
da

where r is the radius of the ring and D
is its corresponding diameter. Combining

-

equation 2r=nA and 2:=£, the dark

a
fringes can be obtained when,

2

"
nA =--
a

where n=1,2,3,

(7.89)

Combining equations 21 = (Zn— 1)% and

#
2t=
a

, bright fringes can be obtained

when,

-

A_m,
{2::—1)5———

€

(7.90)
where n=1,2,3...

In this measurement, the diameters of
the rings are used rather than their radii
because it is difficult to locate the exact
center of the central spot. In addition, on
counting the order of the dark rings, the
central ring (spot) is not counted. Using
equations (7.87), (7.88), and (7.89),

D?=4aAn (7.91)

If DH: for several rings are plotted against
n . then, the wavelength 4 of light can
be determined from the slope of the plot
(Figure 7.38). The value of a can be

measured with a spherometer and this value
is used with that of slope, to calculate A.

Slope = 4ad

0

Figure 7.38: A plot to determine 7 from

measurements on Newion's rings




(c) Production of interference by thin
films

Easily observed interference effect
is produced by reflections from thin
transparent film like soap bubbles and oil
films. The observed bright colours are due
to interference. The interference of reflected
light from the front and back surfaces of
soap films in a loop is shown in Figure 7.39.

Figure 7.39: Thin film of a soap bubble

The films are very thin at the top where
it appears dark and increases in thickness
towards the bottom where the interference
fringes are obtained. The loop is kept
vertical so that the film is slightly wedge-
shaped due to its own weight. A source of
monochromatic light is placed behind the
camera during taking the photograph in
Figure 7.39. The incident light is placed
nearly at right angle to the film surface.

The light from the soap film arrives at the
camera after reflection from the film’s front
and back surface. Two features may be
observed: firstly, there is no reflected light
from the top area of the film which appears
black, secondly, horizontal interference
fringes occur below the dark region.

Vibrations and waves

Consider reflections which occur at the
two surfaces of the film. Figure 7.40 (a)
indicates a light beam at nearly normal
incident on a transparent film with air in
either side. The incident beam (1) is split
into two beams at the film’s front surface,
a reflected beam (2), and transmitted
beam (3). The transmitted beam (3) split
into two beams at the back of the film:
reflected beam (4) and transmitted beam
(5). Thereflected beam (4) is furthersplit to
obtain transmitted beam (6) and reflected
beam not indicated in the diagram. Beam
(2) and beam (6) are coherent since they
originate from one beam, and they have
the same wavelength.

Incident ray To camera

(b)

Figure 7.40: Reflections from the front and

hack surfaces of a film
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From Figure 7.40 (b), ¢ is the thickness of
the air wedge at P. Since the incidence ray
at P is nearly normal, the path difference
between rays at P is 2f. At M where the
thickness is zero dark fringes followed
by alternate bright and dark fringes are
obtained.

For dark fringes 2r=nA, where
n=0,1,2,3..., it follows that when n=0
first dark fringe, n =1second dark fringe,
n = 2 third dark fringe and so on.

For bright fringes 2::{:1—%};{. where

n=123..., it follows that for n=1 first
bright fringe, n=2second bright fringe

and so on.

The angle € of the wedge can be obtained
by taking the tangent of the angle at the
point where the fringe is formed. For the

s !
dark fringe at P, tanf=—, When the

X
1
angle @ approaches zero, tané = 8 hence
I
g=—.
X

1

Consider the 7" and (n+k)" dark fringes
at P and Q, respectively.

20x, = nA and 26x,=(n+k)A.

Subtracting the two equations results to,
20(x, —x,)= kA if k=1 x,—x =@
where @ is the width of fringe, then,
20w =A.

Therefore, the wedge angle, @ = %

C evample7.27) =

A piece of wire of diameter 0.050 mm
and two thin glass strips are available
to produce the air wedge. If a total of
200 fringes are produced, what is the
wavelength of the light used?

Solution
The wavelength of the light is given by

_ 2t _2x0.05x 10" m

n 200
=5.00%x107 m

A

Therefore, light of wavelength
5.00%107 m was used.

Cevample7.28) =

An air wedge is made by separating two
plane sheets of glass by a fine wire at
one end. When the wedge is illuminated
normally by a light of wavelength
590 nm, a fringe pattern is observed in
reflected light. The distance measured
between the centre of the first bright
fringe and the centre of the eleventh
bright fringe is 8.1 mm. Calculate the
angle of the air wedge.

Solution %
Using vector resolution, tanf =—,
X
where h= ﬂ.
2
Therefore,
6 =tan™' Ll
2x
i 10%590x 10" m 00510
2x8.1%x107m)

The angle of the air wedge is 0.021°,



“rample7.20]

In a Newton’s rings experiment, the
diameter of the 15" dark ring was
found to be 0.59 cmand that of the
5" ring was 0.336 cm. If the radius of
curvature of the Plano-convex lens is
100 cm, calculate the wavelength of
the light used.

Solution
Using equation (7.91) for a given n
and m fringes;

D? = 4a,1(n.+ m)

i

Then,
D’ -D?
A = n4-m n

dma

(0.59x102m)’ ~(0.336x10m)’

4x10x100x107% m
= 588%x107" m

Therefore, the wavelength of light used is
5.88x107 m.

C \ample7.30)

In a Newton's rings experiment, the
diameter of the 12" dark ring changes
from 1.50 cm to 1.35 ¢cm when a liquid
is introduced between the lens and the
plate. Caleulate the refractive index of
the liquid.

Solution

The refractive index M of liquid can be
obtained by taking the ratio of the square
of the change of diameter of curvature of
the ring D’ before introducing the liquid

Vibrations and waves

to that of the liquid p_after introducing.

2 2
D) (150m

s, p=| == | =| =2 =1.23
Lo B {DJ {1.35111]

Therefore, the refractive index of the
liquid is 1.23.

(d) Applications of interference of light
One of the most spectacular applications
of interference is the hologram. Light from
a laser, which is completely coherent,
falls on an object and is reflected in all
directions. Some of the reflected light lands
on a photographic plate, where it interferes
with light coming directly from the laser.
This interference produces a complex set of
fringes of maxima and minima, recorded on
the photographic plate. To see the hologram,
light of the same wavelength is allowed
to fall on the developed photographic
plate. This produces further interference,
allowing you to see a three-dimensional
image of the original object. Holograms are
used extensively in scientific measurement
and data recording, but their striking three-
dimensional images have made them
important in art and design. They are on
most credit cards.

The phenomenon of light waves interference
at oily or filmy surfaces has applications in
areas relating to optics: sunglasses, lenses
for binoculars or cameras, and even visors
for astronauts. In ecach case, unfiltered light
could be harmful or at least inconvenient for
the user, thus, the destructive interference
eliminates certain colours and unwanted
reflections.
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A Exercise 7.6

/

Explain the effects on the fringe
spacing (width) when the following
happens in Young’s double slit
experiment:

(a) The Young's apparatus is
immersed in water;

(b) The distance between the slits
1s reduced;

(c) The source of light is moved
closer to slits;

(d) The screen is brought closer to
the slits; and

(e) Athin transparent plate is placed
in front of one of the slits.

A Young’s double slit experiment
is carried out with the light of
wavelength 5000 A. If the distance
between the slits is 0.2 mm and the
screen is at 200 cm from the slits.
Calculate the distance of the third
bright fringe and third dark fringe
from the central bright fringe.

The distance between the two
consecutive dark fringes is 8.0 mm
when light of wavelength 630 mm is
incident on a pair of slits. A second
monochromatic light is used and the
dark fringes are 7.0 mm apart. What
is the wavelength of second light?

In Young’s double slit experiment, a
total of 23 bright fringes occupying
a distance of 3.9 mm were visible
in a travelling microscope. The
microscope was focused on a plane
which was 3 em from the double slit
and the wavelength of the light being

used was 5.5x 107 m. What was the
separation of the double slit?

. Coherent light that contains two

wavelengths, 660 nm , and 470nm
passes through two narrow slits
0.300 m apart. The interference
pattern is observed on a screen
5.0 m from the slits. What is the
distance on the screen between the
first order bright fringes for the two
wavelengths?

. In an experiment using Young’'s slits

the distance between the center of the
interference pattern and the length
of the bright fringe on either side is
3.44 cm and the distance between
the slits and the screen is 2.00 m.
If the wavelength of the light used
is 5.89 %107 m, determine the slit
separation.

. When monochromatic light is

reflected from two flat glass plates
with a wedge-shaped air film of
small angle between them, a pattern
of bright and dark lines can be seen.
Explain in detail:

(a) Why this pattern is produced:

(b) How the separation of the lines
depends upon the angle of the
wedge: and

(c) The effect of filling the space
between the plates with a
transparent liquid.

. An air wedge is formed using two

optically plane glass plates of length
15 cm each by placing a human
hair of diameter 0.006 cm at one
of their ends. When the air wedge

T



is illuminated by a monochromatic
light of A=5890 A, fringes are
formed. Calculate the fringe width.

9. InNewton's rings experiment, rings
are formed by reflected light of
wavelength 5895 A with a liquid
between the plane and the curved
surface. If the diameter of the 5th
bright ring is 3 mm and the radius
of curvature of the curved surface
is 100 cm, calculate the refractive
index of the liquid.

10. A set of Newton's rings was produced
between one surface of a biconvex
lens and a glass plate using green
light of wavelength 5.46x 10 cm.
The diameters of particular bright
rings of orders of interference m and
m+ 10, were found to be 5.72 mm
and 8.10 mm, respectively. When
the space between the lens surface
and the plate was filled with
liquid, the corresponding values
were 4.95mm and 7.02 mm,
respectively. Determine the radius
of curvature of the lens surface and
the refractive index of the liquid.

7.5.2 Diffraction of light

Diffraction is the ability of a wave to spread
out in wave-fronts as it passes through
a small aperture or around a sharp edge
(Figure 7.41). The light that comes out from
anarrow torch head shines a very wide area.
Also, sound that comes out of a very thin
whistle is heard over a very wide region
due to diffraction phenomenon. Diffraction

Vibrations and waves

can be described as the spreading of
light when it strikes a barrier that has an
aperture or an edge. The spreading of
light becomes more pronounced when
the size of the obstacle’s edge or aperture
is comparable to the wavelength of light.
The amount of diffraction increases with
increasing wavelength and decreases with
decreasing wavelength. In fact, when the
wavelength of the waves is smaller than
the obstacle, no noticeable diffraction
occurs. This section explains the necessary
conditions for diffraction of light to occur
and the principle of diffraction grating.
It also describes how to determine the
wavelength of monochromatic light by
the diffraction method. Finally, it describes

the applications of diffraction of light.

Obstacle with

single slit

HHH}))))

Figure 7.41: Diffraction of waves

Difiracted

waves

(a) Necessary conditions for
diffraction of light

Diffraction of light occurs if the size of
obstacle is comparable to the wavelength
of light (4x10"m to 7x107"m). If the
size of opening or obstacle is close to this
limit, diffraction of light can be observed.
If the source and obstacle are kept far apart

from each other, the incident wave-fronts
on the diffracting obstacle are plane.
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A plane wave can also be produced by using
aconverging lens. This diffraction is called
Fraunhofer diffraction. On the other hand,
if the source and the screen are close to each
other, the wave-fronts are spherical and the
wave-front leaving the obstacle are also
spherical. This diffraction is called Fresnel
diffraction. However, in this section, you
will deal only with Fraunhofer diffraction.

Fraunhofer diffraction occurs when
the light source and the screen are
effectively at infinite distances from
the aperture or obstacle causing the
diffraction such that all rays are
considered parallel (Figure 7.42 (a)).
A distant source can be used to provide
the incident wave fronts, but it is often
more convenient to use a source which is
placed at the focal point of a converging
lens (convex) to obtain the parallel rays

(Figure 7.42 (b)). Likewise, a converging |
lens is used to converge parallel rays onto 1

d nearer screen.

Single slit

A

(a)

Single slit

1
|
|
{

ﬂ

Source
S

(b)

Figure 7.42: Fraunhofer diffraction

(b) Determination of wavelength using
Fraunhofer diffraction

Consider a slit of width, a, splits into two
2n (where n=1,2,3...) equal parts of width

4 (Figure 7.43).
2n
- Converging lens
Diffracting  focyses lightat P Sereen
slit | | [

Plane wavefronts incident on slit

Figure 7.43: Fraunhofer diffraction by single slit

If A is the wavelength of the light used

and @ is the direction to the normal such

that, AN=£, the wave from A will be
completely out of phase with that from C.
Thus, waves from Aand C will interfere
destructively at point P on the screen.
Similarly, light from each point between
Aand C, and that from corresponding
point between Cand D will interfere
destructively. This happens for every pair
of sections such as DE and EF. Hence,
the light will not diffract in those directions

0, which are such that, AN =% that is,

ACsinf= i then,

a .
—sinf =

> . therefore, a condition for
n

SRS




dark fringe is

asin@ =+nA (7.91)

where n=1,2,3... and the * sign shows
that there are symmetric dark fringes
above and below point P.

Note that, equation (7.92) may be used for
the other segment of the slits. The sin@ =0
corresponds to a bright band, where light
from the entire slit arrives at P isin phase,
giving the central maximum. The positions
of other maxima are placed approximately
mid-way between the minima, and they
are less intense than the central maximum.

From Figure 7.32, tan@ = % and for small
angle @, tan@ =sinf — 0 then,

_nAD
d

Equation (7.93) is valid when y <<< D,

—\ample73y)

A laser light of wavelength 633 nm is
passed through a narrow slit and the
diffraction pattern on a screen 6.0 m
away, shows that distance between
centre of the first minima on either side
of the central bright fringe is 32 mm.
Calculate the width-of the slit.

v, (799

Solution
Using equation (9.93), the slit width is;

nAD _1x633x10” mx6 m

n %XIO‘3 m

d

=24%x10"m

Therefore, the slit width is 2.4x 10~ m.

Vibrations and waves

| (c) The principle of diffraction grating

Diffraction grating is an arrangement of
a large number of closely spaced parallel
slits, all with the same width and equally
spaced between their centre, ruled on
glass or polished metal. The lines scatter
the incident light and are mostly opaque,
whereas the space between them transmit
light and acts as a slit. For a grating of N
slits, where each slit is narrow compared
to the wavelength A of the incoming plane
wave, its diffraction pattern spreads out
nearly uniformly. If the slits are equally
spaced and the wave from one slit is in
phase with that of adjacent slit, then, the
wave is also in phase with those from other
slits.

Suppose, a plane wave of monochromatic
light of wavelength A falls on a transmission
grating in which the grating spacing (slit

| separation) is d (Figure 7.44).

Grating

]

Monochromatic
light

Figure 7.44: Diffraction grating

Consider wavelets coming from points A
and B at an angle @. The path difference
AC between the wavelets is dsin#.

Therefore, for constructive interference,
dsin@ = ni (7.94)
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where nis an integer giving the order of the spectrum. = Therefore, the angles to the
For n=0, 68=0,then, the central maximum is  normal of first order and second
observed (zero order image). The first order, second = order principle maximum are
order, and so on, are given by n=1,2,3..., but these | 17.1°and 36.1°, respectively.
are less bright than for n = 0 (Figure 7.45). The number

of lines per metre of the gratings is given by; N = = | \Example7.33] |
A special grating has 1000
lines per cm. Determine the
maximum number of orders
one can get when light of
A=6328 A falls ‘on the

. grating.
Incident n=1
beam Solution
= p—n=0

Using (7.94), maximum value
of nis obtained for sinf =1,
therefore,

1

LY N2

NA

S

Grating .

~1000x 100 m~' x6328x 10" m
=158
Therefore, since n must be

BT AN« integer, then the maximum

Light of wavelength 5890A is incident normally number of order is 15.
on a grating with a spacing of 2.00%10°m. What

is the angle to the normal of;  \Example7.34/

(a) first order principal maximum,

Figure 7.45: Orders of images produced by diffraction grating

i, . A diffraction grating produces
(b) a second order principal maximum? a second order maximum at
50.6° to the normal when
being illuminated normally
with light of wavelength
(a) The first order principle maximum, n=1is; 644 nm. Calculate the number
of lines per millimetre of the

=10
9=Sm_,[%ﬂ,}=sin_l(Ix5890><10 mJ=17.1° grating.

Solution
Using equation (7.94),

2x10° m
Solution
(b) The second order principle maximum, n =2 The number of lines per mm
A 2x5800x107" m fth : e
6 =sin™’ i =sin™! =136.1° ot the grating, N = 1s
( d J [ 2%x10° m } d



1 sin@
N:—:—

d nA
3 sin(S[}.ﬁ")
T 2x644x107° mx 1000

= 600lines permm

The number of lines are
600 lines per mm.

(d) Wavelength of monochromatic
light by diffraction method

The wavelength of a monochromatic
light can be measured by a combination
of diffraction grating and spectrometer.
Once the angular position, @, of one of the
principal maxima (produced by grating)
is measured and the grating spacing
d is known: then, the wavelength of
monochromatic wave can be determined,

—hdiviza )

Aim: To measure wavelength of
light by using diffraction
grating

Materials

Source of monochromatic light (e.g.,
Sodium lamp), spectrometer, and
diffraction grating

Turntable  Telescope

Meonochromatic light
| Collimator

Vibrations and waves

Procedure

(a) Adjust the eyepiece of the telescope
so that the cross-wires are sharply
focused.

(b) Focus the telescope for parallel light
using a distant object. (There should
be no parallax between the image
seen in the telescope and the cross-
wires seen through the eyepiece).

(c) Place the sodium lamp in front of
the collimator.

(d) Level the turntable of the
spectrometer, if necessary.

(e) Looking through the telescope, focus
the collimator lens and adjust the
width of the slituntil a clear narrow
image is seen.

(f) Place the diffraction grating on the
turntable at right angles to the beam.

(g) Move the telescope to the right until
the cross wires are centered on the
first bright image. Take the reading
@, from the scale on the turntable.
(Use magnifying lens and lamp to
see the scale more easily).

(h) Move the telescope back through
the centre and then to the first bright
image on the left. Take the reading
6, from the scale. The setup of the

experiment is shown in Figure 7.46.

n=1

Diffraction grating

Figure 7.46
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Questions

From the obtained readings,
1. Calculate;

(a) @Qusing, = 0,-9,

(b) the distance d between the slits

using d =%, where N is the

number of lines per metre on
the grating

(c) the wavelength of the
monochromatic light using
equation (7.94)

2. Repeat this for different orders n
and get an average value for the
wavelength.

Applications of diffraction

The knowledge that light undergoes
diffraction has found a number of uses
in science and technology. For example,
the knowledge of diffraction is used
in production of three dimensional
holograms (3D). Discovery of X-rays
diffraction provided the means for
studying the atomic structure of crystals
and polymers. In 1952 scientists used
X-rays diffraction to phetograph DNA.

[ ",-Q\ Exercise 7.7

1. Diffraction effects for sound waves
and water waves are readily observed
but not for light. Explain.

2. Why is a diffraction grating better
than a two slit set up for measuring
wave lengths of light?

3. A laser light of A=6328A
illuminates a 0.4 mm wide slit. Find

the width of the central maxima on
a screen kept at a distance of 16m.
Parallel rays of light with wavelength
620 nm pass through a slit covering
a lens with a focal length of 40.0cm.
The diffraction pattern is observed
in the focal plane of the lens, and
the distance from the centre of
the central maximum to the first
minimum is 36.5 cm. Calculate the
width of the slit. Do not use small
angle approximation.

. Parallel beams of two wavelengths

5890 A and 896 A of sodium vapour
lamp fall on a diffraction grating
having 6000 lines/cm. Estimate the
dispersion produced by the grating
on the two wavelengths, in the first
order spectra.

. Light consisting of two wavelengths

which differ by 160 nm passes
through a diffraction grating with
2.5% 10’ linespermetre. In the
diffracted light, the third order of one
wavelength coincides with the fourth
order of the other. What are the two
wavelengths and at what angle of
diffraction does this coincidence
occur?

. Light of wavelength 600 nm is

incident normally on diffraction
grating of width 20.0 mm on which
10.0x 10" lines have been ruled.
Calculate the angular positions of
various orders.

. A rectangular piece of glass

2cmx3cm  has 18000 evenly
spaced lines ruled across its whole




surface, parallel to the shorter
side, to form a diffraction grating.
Parallel rays of light of wavelength
5x107cm  fall normally on the
grating. What is the highest order
of spectrum in the transmitted light?

9. Light of wavelength 535 nm falls
normally on a diffraction grating. Find
its grating spacing if the diffraction
angle 35° corresponds to one of the
principal maxima and the highest
order of spectrum is equal to 5.

10. In a certain experiment using normal
incidence, the readings for the angle
of diffraction in the second order
spectrum for the two sodium D
lines were, D,=42° D, =42%
If the wavelength of D, line is
5896 A, find the number of lines
per centimetre of the grating D, line
and the wavelength of the D, line.

7.5.3 Polarization of light

Polarization is a characteristic of all
transverse waves. If all the vibrations of a
transverse wave are in a single plane which
contains the direction of propagation of
the wave, such a wave is said to be plane-
polarized (or linearly polarized). Therefore,
polarization is the process of making waves
vibrate in only one plane. Observations and
experiments show that light is a transverse
electromagnetic wave and therefore, it can
exhibit polarization.

As discussed previously (section 7.4.2), an
electromagnetic wave is due to fluctuating
electric £ and magnetic B ficlds that are

Vibrations and waves

perpendicular to each other and to the
direction of propagation. The vibrations of
E and B fields of light can be restricted in
particular direction in a plane perpendicular
to the propagation of light. This process is
called polarization of light.

(a) Methods of producing plane
polarized light

There are different ways of producing

polarization. These include use of polaroid,

reflection, double refraction, and scattering.

(i) Polarization by polaroid

The most common method of polarization
is the use of polaroid filters (Figure 7.47).
Polaroid filters are made of materials which
are capable of blocking one of the two
planes of vibration of an electromagnetic
wave. When unpolarized light strikes the
filter, the parallel vibrations are allowed

to pass through the polaroid while the
~perpendicular vibrations are absorbed.

For this case, polaroid used to polarize
light is called a polarizer. The intensity of
the polarized light transmitted through the
polaroid varies as I = I cos’ ), where /,
is the intensity of unpolarized light and ¢ is
the angle between the polarization direction
of the incident light and the transmission
axis of the polaroid. When unpolarized
light is incident normally on a polarizer, the
intensity of the emerging beam from the

; . o e %
polaroid sheet is % This is because the

vibrations of electric vector E which are
parallel to the polaroid transmission axis
are allowed to pass, while the perpendicular
ones are absorbed.
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Unpolarized Polaroid — 5 Polarized
light filter light

++._,.

Figure 7.47: Polarized light by polaroid

(ii) Polarization by reflection
When unpolarized natural light is incident on a
glass surface at an angle, each of the vibrations of
the incident light can be resolved into a component
parallel to the glass surface and a component
perpendicular to the surface. The light, due to the
components parallel to the glass is reflected, but the
remainder of the light is refracted into the glass. If
metallic surfaces are used, the light reflected vibrates
in various planes and hence, the light will continue in
its unpolarized state. On the other hand, non-metallic
planes (glass) will reflect most of the vibrations at a
single plane parallel to the plane of incidence. When
light hits the material and crosses the interface, the
atoms absorb the light temporarily and the electron
starts vibrating in the direction of the electric field of
the refracted ray. This gets re-emitted with an electric
field vector which is perpendicular to the direction of
propagation of the wave. Thus, light reflected by the
glass is plane polarized (Figure 7.48).

Reflected
polarized light

Unpolarized
incident light

Figure 7.48: Plane polarized wave by reflection

Polarization of light by reflection is done by reflecting
off the unpolarized light in a non-metallic reflecting
surface. The amount of polarization will depend on
the angle of incidence of the light and the composition

of the material used for
the reflecting surface. The
reflection coefficient of light
will go to zero between the
angles of 0°to 90°, since the
electric field goes parallel to
the plane of incidence. At this
angle, the reflected light will
become linearly polarized.

Unpolarized light can also
undergo polarization by
reflection off non-metallic
surfaces. The extent to
which pelarization occurs is
dependent upon the angle at
which the light approaches the
surface and upon the material
that the surface is made of.
Metallic surfaces reflect light
with a variety of vibrational
directions; such reflected light
is unpolarized. However,
non-metallic surfaces such as
asphalt roadways, snowfields,
and water reflect light such that
there is a large concentration
of vibrations in a plane parallel
to the reflecting surface. A
person viewing objects by
means of light reflected off
non-metallic surfaces will
often perceive a glare if the
extent of polarization is large.
Fishermen are familiar with
this glare since it prevents
them from seeing fish that
lie below the water. Light
reflected off a lake is partially
polarized in a direction
parallel to the water’s surface.




Fishermen know that the use of glare-reducing
sunglasses with the proper polarization axis allows
for the blocking of this partially polarized light.
By blocking the plane-polarized light, the glare is
reduced and the fisherman can easily see fish located
under the water.

(iii) Polarization by double refraction

Polarization can also occur by the refraction of
light. Refraction occurs when a beam of light
passes from one material into another. At the
interface of the two materials, the path of the beam
changes its direction. The refracted beam acquires
some degree of polarization. Most often, the
polarization occurs in a plane perpendicular to the
surface. The polarization of refracted light is often
demonstrated by using a unique crystal that serves
as a double-refracting crystal. The light is split into
two beams when entering the crystal (Figure 7.49).

Unpolarized incident light

Double refracted polarized light

Figure 7.49: Polarization by double refraction

If an object is viewed by looking through the
crystal, two images will be seen. The two images
are the result of the double refraction of light.
Both refracted light beams are polarized; one in a
direction parallel to the surface and the other in a
direction perpendicular to the surface.

Since these two refracted rays are polarized with
a perpendicular orientation, a polarizing filter can
be used to completely block one of the images.

Vibrations and waves

If the polarization axis of the
filter is aligned perpendicular
to the plane of polarized light,
the light is completely blocked
by the filter; meanwhile, the
second bright image appears. If
the filter is then turned 90° in
either direction, the second image
reappears and the first image
disappears.

(iv) Polarization by scattering
The scattering of light off air
molecules produces linearly
polarized light in the plane which
is normal to the incident light.
When light strikes the atoms
of a medium, it will often set
the electrons of those atoms
into vibrations. The vibrating
electrons then produce their
own electromagnetic wave that is
radiated outward in all directions
(Figure 7.50).

Unpolarized light

4 .
_w 1 Air
molecule
A A .. -
¥ - v
) '
e
-
e
l"
J.__"
F
-'I'
pé

Figure 7.50: Polarization by scattering

The generated wave strikes
neighbouring atoms, forcing
their electrons into vibrations
at the same original frequency.
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The vibrating electrons in turn produce another
electromagnetic wave that is once more radiated
outward in all directions. The absorption and reemission
of light waves cause the light to be scattered about the
medium. If the observer in Figure 7.50 is looking
straight up perpendicular to the original direction of
propagation of light, the vertical oscillations of the
charges send no radiation toward the observer. The the
observer sees light which is completely polirized in
the horizantal direction. Polarization by scattering is
observed as light passes through the atmosphere. The
light that is partially polarized by scattering contributes
to the blueness of the skies.

(b) Brewster’s Law

Polarization can be achieved by allowing the light
ray to fall on a surface of a transparent medium in
such a way that the reflected ray makes an angle of
90° with the refracted ray. This is the Brewster law
named after a Scottish physicist, Sir David Brewster,
who first proposed it in the year 1811.

When a light ray is incident on a surface at an
angle i , (called Brewster angle), part of the ray is
fully polarized by reflection at an angle i, called
polarization angle and another is partially polarized
by refraction to an angle r=90°~i (Figure 7.51).

Unpolarized incident light Totally plane polarized

reflected light

Medium |

Medium 2

Partially plane polarized
refracted light

Figure 7.51: Polarization by reflection

Applying Snell’s law;

1,sini, =1, sinr

where 1, and 7, are the
refractive indices of media 1
and 2, i and rare the
polarizing and  refracted
angles, respectively.

i, +90°+r=180°

therefore, r =90°— ip.

So,
mysini, =1,sin(90° -1 )
=T1],c0si,
n, Sini
==-—2UL=tani_ (7.95)
n, cosi, :

- From equation (7.95), if
-~ medium 1 is air or vacuum

n, =1, then,

n,=tani, (7.96)

Equation (7.96) is Brewster’s
law. The law states that,
“Maximum polarization of
reflected beam occurs for an
angle of incidence i, given by
tani, =1, refractive index of
glass.” For a glass of refractive
indexn, =n,=15, i, = 57",

Therefore, at the incident
angle of 57°, the light which
is reflected from the surfaces
of glass is plane polarized and
at angles of incidence other
than 57°, the reflected light is
partially plane polarized.




(c) Optical activity of solution

Vibrations and waves

The concentration of solutions (e.g., sugar) can be measured using a saccharimeter. This
is done by measuring the refractive index or the angle of polarization of optically active
solution. The saccharimeter consists of a polarimeter. A polarimeter is an instrument used
to measure an optical activity. The optical activity depends on various factors including
the concentration of the solution, temperature, length of the tube containing the solution,

and wavelength of the light passing through the solution (Figure 7.52).

Polarized light

Light
source

Unpolarized polaroid
light

Optically active
sample

Viewer

Analyzer

Figure 7.52: Saccharimerer

Saccharimeter is used in food processing,
brewing, and alcohol industries. The
sample of the solution is placed in the tube
T, and unpolarized light emerging from the
light source falls on the polarizer P. The
polarizer P produce polarized light that get
into the optically active solution in tube 7.
The viewer can observe the polarized light
by the solution through the analyzer A.
Note that, the optical activity measurement
is carried out in a dark room.

(d) Applications of polarization

Polarization has wide applications in various
fields, including glare-reducing sunglasses,
transparent plastics, and entertainment
industry. When light is reflected from a
flat surface (e.g., water), it tends to become
horizontally polarized. Watching at such
polarized (glare) light become annoying
and reduce visibility. Polaroid sunglasses
provide a superior glare protection. The
sunglasses contain a special filter that

blocks such reflected polarized light,
hence reducing the glare and improving
visibility. However, polaroid sunglasses
may not be required when skiing down hills
as they may block light reflected from ice
patches. In addition, sunglasses may reduce
visibility of images displaced on liquid
crystal display (LCD) or light-emitting
diode display (LED) found on a dashboard
of some cars or teller machines.

In industry, polaroid filters are used to
perform stress analysis tests on transparent
plastics. As light passes through a plastic,
each colour of visible light is polarized
with its own orientation. If such a plastic
is placed between two polarizing plates,
a colourful pattern is revealed. As the top
plate is turned, the colour pattern changes
as new colours become blocked and the
formerly blocked colours are transmitted.
In addition, three Dimensional (3D) movies
are produced and shown by means of
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polarization. Movies are (3D), actually
two movies being shown at the same time
through two projectors. The two movies
are filmed from two slightly different
camera locations. Each individual movie
is then projected from different sides of the
audience onto a metal screen. The movies
are projected through a polarizing filter. The
polarizing filter used for the projector on the
left may have its polarization axis aligned
horizontally, while the polarizing filter
used for the projector on the right would
have its polarization axis aligned vertically.
Consequently, there are two slightly
different movies being projected onto a
screen. Each movie is cast by light that is
polarized with an orientation perpendicular
to other movie. The audience then wears
glasses that have two polaroid filters. Each
filter has a different polarization axis; one
is horizontal and the other is vertical. The
result of this arrangement of projectors and
filters 1s that the left eye sees the movie
that is projected from the right projector,
while the right eye sees the movie that
1s projected from the left projector. This
gives the viewer a perception of depth (3D
perception).

E Exercise 7.8

1. Calculate the polarizing angle of
glass, water, and diamond with
refractive indices; 1.53, 1.33, and
2.42, respectively.

2. (a) Whatis meant by polarization
and angle of polarization?

(b) Calculate the angle of
polarization for water of
refractive index 1.33.

3. Explain what is meant by double
refraction. Describe how you could
demonstrate experimentally that two
refracted beams produced from a
single beam by a piece of calcite
are plain polarized at right angles
to each other.

4. Explain why polaroid sunglasses are
effective in reducing glare.

5. (a) Use a sketch diagram te show

how you would demonstrate that
a beam of light is completely
polarized.

(b) A parallel beam of unpolarized
light is incident at an angle of
58° on a plane glass surface and
the reflected beam is completely
polarized. What is the refractive
index of the glass, and the angle
of refraction of the transmitted
beam?

7.6 Doppler Effect

Perhaps you have noticed how the sound of a
vehicle’s horn changes as the vehicle moves
past you. The frequency of the sound you
hear as the vehicle approaches you is higher
than the frequency you hear as it moves
away from you. This apparent change in
pitch, due to the relative motion between the
source and the observer, was first explained
by an Austrian scientist, Christian Doppler
and is known as Doppler effect.

Doppler effect in sound is different from
that in light. In the case of light, the Doppler
effect is symmetric i.e., the apparent
frequency is the same for the two cases,
either when a source moves towards a
stationary observer or when an observer




moves towards a stationary source. In this
section, you will compare the Doppler
effects in sound and light and discuss its
applications in real life.

7.6.1 Doppler Effect for Sound

When either sound source or observer
moves, or both of them move, the
observer will notice a change of pitch of
sound. From this effect the observer can
determine whether the source of sound
is approaching or receding. Then, the
speed of either the source or observer can
be estimated. Doppler effect has many
important applications as it depends on
things moving. It can generally be used
to determine the apparent frequency of an
object approaching to or receding from an
observer.

(a) Source moving towards a stationary
observer

When the source of sound moves, the
waves in front of it are compressed while
those behind it are stretched. Therefore,
a moving source affects wavelength of
the wave. Consider a source § moving
towards the stationary observer O, with
velocity w, , the frequency, f of the
sound is compressed in smaller distance
per second, (v—u) because S moves a
distance per second, u, towards O per
second (Figure 7.53).

vV—u ——»
i

SN

f-waves

Figure 7.53: Source moving towards stationary
observer

Vibrations and waves

Then, it follows that, the apparent

v—=u

¥

wavelength, A" = If vis velocity

of sound in air, the apparent frequency
f is given as,

(7.97)

Since (v—us) is less than v, then, the
apparent frequency f” is greater than the
frequency of the sound f. Thus, there is
an apparent increase in frequency when
a source is moving towards an observer.

(b) A source moving away from a
stationary observer

In this case, the sound wave ( f wave)
is moving away from O per second,
oceupying a distance (v+us) as shown
in Figure 7.54.

Iu’+H‘

=) ) ) ) )8

Figure 7.54: Source moving away from a

stationary observer

The wavelength A* of the waves at O

is therefore, j_’:p+u*, hence, the
f
apparent frequency, is
v v
== (7.98
f ! [v+ur]f (7.98)

Since v+u, is greater than v, then, the
apparent frequency f* is less than the
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frequency of the sound f: thus, there is
an apparent decrease in frequency when a
source is moving away an observer.

 \Example7.35) |

A train standing at the outer signal of

a railway station blows a whistle of

frequency 400 Hz in still air.

(a) What is the frequency of the whistle
for a platform observer when the
train;

(1) approaches the platform with a
speed of 10 ms™'?

(ii) recedes from the platform with
a speed of 10 ms™?

(b) What is the speed of sound in each
case? Speed of sound in still air is
340 ms ™.

Solution

(a) Source is moving

(i) Since the train (source) is approaching
the observer, therefore, the source
moves in the direction of the waves,

)
V—u,

-1
F= 340 ms %400 Hz
(340-10) ms
=412 Hz

(i1) Since the train recedes away from
the observer. therefore, the source
and the wave move in opposite

directions.

H b4
! _[v+u‘)f’

= 340 ms™
(340+10) ms™
=388.6 Hz

x 400 Hz

(b) The speed of sound in either case will
be 340 ms™' as it does not depend
on either the motion of the source
or the observer or both.

(c) An observer moving towards a
stationary source

In this case, the velocity of the sound

wave relative to O is given by,

v+u, (Figure 7.55). Hence, the apparent

frequency f” is given by f’= v;“" -
where A=—,
thus,
f’=( l!+H" ]f (?99)
v

— ‘I’+H

1)) )

Figure 7.55: Observer moving toward

.S'H]ff{?.'lﬂr_\' source

Since (1-’+H”) is greater than v, then,
the frequency f"heard by the observer
is higher than f. This implies that the
listener moving towards the stationary
source hears a frequency that is higher
than the source frequency.

(d) An observer moving away from
stationary source

In this case. the wavelength of the waves

reaching O is unchanged and is given

by Y The velocity of the sound waves

relative to O is now v—u_(Figure 7.56).

»
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RS

Figure 7.56: Observer moving away from
stationary source

Hence, the apparent frequency f* is

V-

iven by f’= Y% where A= £ th
iven = £ where . then
. J A f

(7.100)

Since (t’huﬂ) is less than v, then, the
apparent frequency f”is less than the
frequency of the sound f, thus. there is
an apparent decrease in frequency when a
source is moving away from an observer.

Cample7.36)

Two stationary sources A and B
each emit notes of frequency 392 Hz.
A listener is between the two sources
and is moving towards B with a speed
of 15 ms™'. What is the beat frequency
detected by the listener? Velocity of
sound in still air is 340 ms™".

Solution |
The frequencies detected by a listener
away from A and towards B are

fA:[E—T_u.i)f and fﬂ=[v+u"]f.
Vv Vv

respectively.

The beat frequency f* is given as;

e f"=[

2u
v

Js

Vibrations and waves

_2x15ms™
340 ms'

Therefore, the beat frequency detected
by a listener is 34.6 Hz.

%392 Hz =34.6 Hz

(e) Both source and observer moving

In this case, both wavelength and
frequency will be affected as both
source and observer are moving. When
source and observer are moving towards
each other, the apparent wavelength is

="l
f

v'=v+u :then,

eV o N
L

v_u.?

and change in velocity,

(7.101)

Since (v+u") is greater than (v—u_g).
then, the frequency f° heard by the
observer is higher than the frequency
f of the source. This implies that the
listener hears a frequency that is higher
than the source frequency.

When source and observer are moving
away from one another, the apparent

& aw T
wavelengthis A" = 7 :

and V'=v—u;

therefore,
| i _ L un
U T (1’+u5]f

Since v—u_is less than v+ u_, then, the
apparent frequency f”is less than the
frequency of the sound f . Thus, there is
an apparent decrease in frequency when
a source and observer are moving away
from each other.

(7.102)
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When both observer and source are moving
in the same direction with source behind
the observer, the apparent wavelength
! p= u\.‘ . .
A= ~, then the change in velocity

f

V=v—u.

(]

Therefore,

,_1_"= v—u,
f TR {vﬁu‘)f

The apparent frequency [’ heard by the

(7.103)

V=,

observer depends on the value of e If
v—u
¥

u, is less than u_, then, apparent frequency

f”will be greater than the frequency f of
the source. On the other hand, if u is
greater than «_, then, apparent frequency

f"will be less than the frequency f of

the source. When both observer and the
source are moving in the same direction

with source in front of the observer, the
v+
apparent wavelength 1’ = 7 L then,

apparent frequency,

fr= v+u, .
A
Therefore,

(7.104)

,_iz v+ Uy
f_;t.' (erqu

The apparent frequency f“ heard by the
v+u,

observer depends on the value of =
v+u,

If u,is greater than w_ , then, apparent
frequency f“ will be greater than the

frequency f of the source. On the other

hand, if u,is less than u_, then, apparent
frequency f° will be less than the
frequency fof the source.

() Source moving at an angle to the
line joining the source and the
observer

If the source moves at an angle to the
observer, the apparent frequency changes
continuously. The frequency heard by
the observer depends on the situation of
source at the time of emission and not at
the time of hearing.

Consider a source moving along a line
AB while the observer O is stationary
(Figure 7.57).

0

Figure 7.57: Obligue Doppler effect

When the source is moving at an angle € to

the line joining the source and the observer,

r— s@
the apparent wavelength 4" = ﬂ,

then, the apparent frequency:

- v
f'= [ v—u‘COSGJf

Since v is greater than v—u_cos@, then,
the frequency f* heard by the observer
is higher than the frequency f of the
source. This implies that the listener hears
a frequency that is higher than the source
frequency.

(7.105)




When the source reachesP ., the
component of wu is u cos@ away from
stationary observer. Thus, when the
source is moving at an angle € away
from the stationary observer, the apparent

wavelength A’:M, then, the
apparent frequency,
1}
Y P — (7.106)
/ [v+u¥c059Jf

Since vtu, cos@ is greater than v, then,
the frequency f”heard by the observer is
less than the frequency f of the source.
This implies that the listener hears a
frequency that is lower than the source
frequency.

Note that, the motion of the observer
affects only velocity v of the waves
arriving at the observer, while the motion

of the source affects only the wavelength |

of the waves reaching the observer.

—Wampler37)

A police car’s siren emits a sinusoidal
wave with frequency 300 Hz. The
speed of sound is 340 ms™' ~and the
air is still. Find the wavelength of the
waves in front of and behind the siren

if the car is moving at 30 ms™.

Solution
The source in front of the observer
provides the value of wavelength,

V—u
— E

A=
f

_ (340-30) ms™'

=1.03m

1’

300 s

Vibrations and waves

The wavelength of the observer behind
the car is given as:

s v+uj'
f
-y
1,2(340+3011ms —123m
300s

Therefore, the wavelength of the waves
in front of and behind the siren are
1.03 m and 1.23 m, respectively.

N evampler.35)

Ahorn of frequency 900 Hz is sounded
by a car travelling towards a cliff and
normal to the eliff with a velocity of
20 ms . Caleulate the beat frequency
of the hern sound as heard by the
car driver. Velocity of sound in air is
320 ms .

Selution
The car driver will hear beats with

frequency, f, due to the actual frequency

of the horn, f, and the frequency, f,, of
the reflected sound from the cliff. Since

. V=
the apparent wavelength is 4’ = e,

then, the apparent frequency is:

YV _[
f_}l' [v—ui]f’

_ 320ms’
(320—-20) ms™

=960 Hz

%900 Hz

f’

The frequency f, is the one that
reaches the cliff. This “frequency”
will be reflected back to the car driver.
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Therefore, the cliff acts as a source of
sound and the car driver is the listener.
The apparent frequency f, heard by
the driver from the cliff is:

f,_,=(v+u"Jf'.
Vv

_(320+20) ms™

7iA = %960 Hz
= 320 ms
=1020 Hz
Li=dy=Ts

£, =1020 Hz-900 Hz =120 Hz

Therefore, the beat frequency of the
horn sound heard by the car driver is
120 Hz.

7.6.2 Doppler Eifect for Light
The theory of the Doppler’s effect in light

is different from that in sound. In the case |

of light, the Doppler effect is symmetric
1.e., the apparent frequency is the same for
the two cases, either when a source moves
towards a stationary observer or when an
observer moves towards a stationary source.
Doppler effect for light waves depends on
only one velocity, the relative velocity v
between source and observer measured
from the reference frame of either.

Suppose a star is moving with a velocity
v away from the earth and emits light
of wavelength A. If the frequency of
the vibrations is f (cycles per second),
then, f waves are emitted in one second,
where ¢= fA and cis the velocity of
light in vacuum. Owing to the velocity v,
the wave of frequency foccupy a distance

per secod (c+v). Thus, the apparent
wavelength A’ to an observer on the
earth in line with the star’s motion is,

, ¢+v [c+v )
A= ={ },11 212"

7 c c
A —d=—i (7.107)
"
, +v ' i A"
Since >1, it follows that, A" is

&
greater than A when the star is moving
away from the earth, i.e., there is a shift or
displacement towards the red end of the
spectrum.

If the star is moving towards the earth
with a velocity v, the apparent wavelength
A is given by

A,zc_-_i,z[ﬁ._v)A’ ,1.':[1—1}1
of ¢ c

# 1?
oln A'_ A =—
P
. c—V . .
Since <1, it follows that, A is less

c
than A when the star or planet is moving
towards the earth, i.e., there is a shift or
displacement towards the blue end of the
spectrum.

7.6.3 Applications of Doppler Effect

The Doppler effect has a number of
applications with regard to the sensing of
movement. For instance, Meteorologists use
Doppler radar to track movement of storm
systems. By detecting the direction and
velocity of raindrops or hail, for instance,
Doppler radar can be used to determine
the motion of winds and, thus predicts
weather patterns that will follow in the




next minutes or hours. Moreover, Doppler
radar can do more than simply detecting
a storm in progress. Doppler technology
also aids meteorologists by interpreting
wind direction, as an indicator of coming
storms. The radar also uses radiowaves to
determine the location and velocity of the
distant moving objects, such as aeroplanes,
jets, etc. for navigation purposes. Police
officers use Doppler effect to calculate the
speed of moving cars by measuring the shift
in frequency of microwaves reflected by it.
Consider a car (observer) moving with
the speed v towards a stationary police
(source). The frequency, f’ received by

the car is given by,
c+v

Fr=t—%r
c

This frequency is reflected by the car as the
moving source of velocity v towards the
stationary police (observer). The frequency
noted by police is given by,

C—V

Substituting equation (7.108) into (7.109)
gives,

f.fi:(

(7.108)

(&

(7.109)

c+v

)X f

c=v
The change in frequency Af observed by
the police is,

Af=f"-f (7.110)
which results to,

Afy N2y

R v

Since v is very small compared to ¢, then,
(c=v)=c

f c—)1=2f (7.111)

Vibrations and waves

Similarly, physicians and medical
technicians apply it to measure the rate
and direction of blood flow in a patient’s
body, along with ultra-sound. A beam of
ultrasound is pointed towards an artery,
and the reflected waves exhibit a shift in
frequency, because the blood cells act as
moving sources of sound waves.

Consider a ultrasonic transducer
emitting waves of frequency, f and
velocity, v incident on the blood
vessel of cross-sectional area, Aat an
angle @ with the vessel in which blood
cells flow with speed. was shown in

Figure 7.58.
Ultrasonic transducer
{emitter/receiver)

Coupling medium

Reflected
frequency

F=ftA

‘+— Incident frequency

=

Y o
.

.

p

Blood vessels Blood cells

Figure 7.58: Blood flow measurement

The speed, wuof blood cells is given

by: =YY where Afis the shift in
2f
frequency.

If the speed, u is resolved along the
direction of the ultrasonic transducer, the
equation becomes,

vAf vAf

=-— . sothat, u=———
ucos@ T so that 3 feosd

The blood flow rate, Q is such that
0= Au
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“example7.39)

In the measurement of blood flow in
a patient, ultrasound of frequency of
10.0 MHz is incident at an angle 3(°
to the blood vessel and a Doppler shift
in frequency of 8.8 kHz is observed. If
the velocity of ultrasound can be taken
as 2.2 kms ' and the diameter of blood
vessel is 0.8cm. Calculate:

(a) Blood flow velocity: and

(b) Volume flow rate of blood.

Solution
vASf
2 fcos@

_22x 10°ms ' x8.8x10'Hz
2x10x%10°cos30°

Therefore, the blood flow velocity is
1.12 ms™

(a) From, y=

=1.12 ms™

(b) Volume flow rate,

2

nd
:A; —
Q=Au; Q 2

_3.14x(8%x107)'m* x1.12 ms™’
4

=5.63x10"m’s"

Therefore, the volume flow rate is

5.63%10°m’s™

Xu

0

Bats use the Doppler effect phenomena
to hunt for prey. Note that as a bat flies,
it navigates by emitting whistles and
listening for the echoes. When it is chasing
down food, its brain detects a change in
pitch between the emitted whistle, and
the echo it receives. This tells the bat the
speed of its prey, and the bat adjusts its
own speed accordingly.

The Doppler effect in light can also be
used to determine the speed of distant
stars and extra solar planets by using the
measurement of the wavelength of the
spectral lines they emit. If the shift is
towards the red, the star is receding from
the earth: if it is towards the blue, the star
is approaching the earth.

The Doppler effect has also been used
to measure the speed of rotation of the
sun. Photographs are taken of the east
and west edges of the sun; each contains
absorption lines due to elements such
as iron vaporized in the sun and also
some absorption lines due to oxygen
in the earth’s atmosphere. When the
photographs are put together so that the
oxygen lines coincide, the iron lines are
displaced relative to each other. This
shows that in one case, the edge of the
sun approaches the earth and in the other,
the opposite edge recedes from the earth.

The Doppler effect in light can also be
used to measure plasma temperature. At
plasma temperatures, molecules of the
glowing gas move away and towards
the observer with very high speeds and,
owing to Doppler effect, the wavelength
A of aparticular spectral line is apparently
changed.

One edge of the line corresponds to an
apparently increased wavelength 4, and
the other edge to an apparent decreased
wavelength A,. The line is thus observed
to be broadened. If v is the velocity of the
molecules, then,

4 = c+y 2 and A, = c—Vv 1
1 p *N e




Thus, the width of line is given as;

2\»1
c

A—-A,=

The width of the line can be measured by
a diffraction grating, and as A and c¢ are
known, the velocity v can be calculated.
From kinetic theory of gases, the velocity
v of the molecules is roughly the root

3RT

Vi
where T is the absolute temperature, R is
the molar gas constant and M is the molar
mass of one molecule.

mean square velocity, v=vy =
Fs

Therefore, the absolute temperature of
the plasma can be found.

T evample7.40) =

Two stars of equal mass move in a
circular orbit of radius r about their
common centre of mass. Observations
in the plane of the orbit show that the
wavelength of a spectral line from one
of the stars varies between 599.9 nm
and 600.1 nmin the course of one
revolution.
(a) Calculate the speed v of the star in
its orbil.
(b) If the orbital period 7 of the stars
is 3.5%10° s, calculate the orbital

radius r.
Solution
(a) Using the relation A—4 - 2"1
5
7 N
v= &5
24
(600.1-599.9) nm .
= x3x% 10" ms
2 %600 nm

=5x10* ms™

Vibrations and waves

(b)r T 5%10" ms™' x3.5%10° s
21: 21

=2.78%10"m

[ \Example7dl/
The wavelength of the yellow sodium line
5896 A emitted by a star is red-shifted to
6010 A. What is the component of the
star’s recessional velocity along the line
of sight? For small recessional speeds,
you may use a formula for Doppler effect
analogous to that of sound (speed of light
is3x10° ms™).

Solution
In this case,

, (o™ (x-2
;L_.( ¢ }L P_( A

_(6010-5896)x10" m
5896x 107" m

=5.8x10° ms™

%x3%10° ms™

Therefore, the star’s recessional velocity
vis 5.8%10° ms™.

1. Two sources of sound are emitting
waves of wavelengths 5m and

5.5m. If the velocity of sound is
340 ms ', what is the number of
beats that will be produced?

2. Suppose that a source at rest is
emitting sound having frequency
of 800 Hz.Calculate the frequency
observed when a listener moving
with a velocity of 25 ms™ is
(a) approaching, and
(b) receding from the source.
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. A source is emitting a sound with
a frequency of 400 Hz. A listener
hears a sound with a frequency of
380 Hz. If the speed of sound is
342 ms™', what is the speed and
direction if;

(a) the source is in motion, and
(b) a listener is in motion?

. Asound source and a listener are both
at rest on the earth, but a strong wind
is blowing from the source towards
the listener. Is there a Doppler effect?
Explain.

. A red shift is observed in the
light received on earth from some
galaxies.

(a) Explain what a red shift is and
how it occurs.

(b) What useful information can be
obtained from the red shift of a
particular galaxy?

. Many bats use the Doppler effect for
detecting obstacles and prey. State
what could be deduced about the
obstacle if a bat detected a reflected
wave of frequency less than that
emitted.

. Alight of wavelength 6560 A comes
from a hydrogen atom in a distant
star. Find the speed and direction of
the star if there is to be an increase
of 10% in its observed wavelength.

. Show that when a source emitting
sound waves of frequency f moves
towards a stationary observer with

velocity u, the observer hears a note
H

of frequency ( )~where vis the

v—uUu

velocity of sound.

Revision exercise 7

1

Compute the velocity of waves on
a string under a tension of 36 N
and having a linear density of
6.25% 107 kgm ™',

A stationary observer is standing at
a distance / from a straight railway
track and a train passes with uniform
velocity v sounding a whistle with
frequency f,. Taking the velocity of
sound as i, derive a formula giving
the observed frequency fas a function
of time. At which position of the
train will f = f 7 Give a physical
interpretation of the result.
Determine which gaseous source
would have less Doppler broadening, a
mercury lamps at 200°C or a Krypton
lamps at 0°C. Relative atomic mass of
mercury is 200, relative atomic mass
of Krypton is 84.

A police car chases a speeder along
a straight road towards a cliff. Both
vehicles move at 160 km/h. The siren
on the police car produces sound at
a frequency of 100 Hz. Calculate
the Doppler shift in the frequency
heard by the driver in a car behind
the police car, moving at 120 km/h
towards the cliff. (Velocity of sound
in air is 330 m/s)

5. A train approaches a stationary

observer alongside the railway line
while blowing a whistle of frequency
1000 Hz. After passing alongside
an observer, the apparent frequency
changes in the ratio 14:15. Estimate

T T



the speed of the train given that the
speed of sound in air is 340 m/s.

6. It has been found experimentally

that, the frequency of a fundamental
note produced by a resonant tube is
affected by the end correction r and
the air temperature 6. Show that the
frequency is related to r and @ as;

J 0 .
1+ , where v, is
AL+r) 273

!

the velocity of sound at STP and L
is the length of the resonant tube.

. Interference can occur in thin films.

Why is the line between “thin™ and
“thick™ important with regards to the
film? Explain your reasoning.

. Newton’s rings are formed with

light of wavelength 5.89x 107 cm
between the curved surface of a
plane convex lens and a flat glass
plate in perfect contact. Find the
radius of the 20" dark ring from
the centre if the radius of curvature
of the lens surface is 100 em. How
will this ring move and what will
its radius become if the lens and
the plate are slowly separated to a
distance of 5.00% 10~ ¢m apart?

. A two-slits Young’s experiment is
done with a monochromatic light
of wavelength 6000A. The slits
are 2 mm apart and the fringes are
observed on a screen placed 10 cm

away from the slits and it is found that
the interference pattern shifts by 5 mm

10.

Vibrations and waves

when a transparent plate of thickness

0.5mm is introduced in the path of

one of the slits. What is the refractive

index of the transparent plate?

Explain why;

(a) light can be polarized but sound
cannof.

(b) itis necessary to use satellite for
long distance TV transmission.

. Describe an experimental

arrangement to observe interference
of light. How would you use this
experiment to determine a value for
the wavelength of the light used?

12. An air-wedge is formed between two

13.

glass plates which are in contact at
one end and separated by a piece
of thin metal foil at the other end.
Calculate the thickness of the foil if
30 dark fringes are observed between
the ends when light of wavelength
6x 10" m is incident normally on
the wedge.

A person of mass 50 kg stands on
a platform. The platform oscillates
with a frequency of 2Hz If
the amplitude of oscillations is
0.05 cm, calculate the maximum
and the minimum weight of the
person recorded by a machine of

the platform.

. Calculate the bulk modulus of air

from the fact that the speed of sound
inairis 331.5 ms™. The density of
air is 1.3 kgm ™,




15.

16.

17.

18.
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The wavelength of mercury green
light is 5461 A in vacuum. If
this light meets a glass surface
and is partly reflected and partly
transmitted, what is the frequency
and wavelength of reflected and
transmitted light? The velocity of
light in vacuum is 2.998x10° ms™'
and that in glass is 1.898x 10* ms ™',

The transverse displacement of a
string (clamped at both ends) 1s given

by: y(x,r) = 4cos( %] sin(40m'),

where xisin ¢cm and 71in s.

(a) Does the function represent a
travelling wave or a stationary
wave?

(b) Interpret the wave as a
superposition of two waves
travelling in opposite directions.

(c) What are the wavelength,
frequency, and speed of
propagation of each wave?

(a) Explain why the note emitted
by a stretched string can easily
be distinguished from that of a
tuning fork with which it is in
unison.

(b) Explain thecolour of a thin film
in a white light and show that
films which appear bright in
reflected light, appear dark in
transmitted light.

(a) If a displacement of oscillating
particle at any time is to be
given by an equation
y=asinwt + bsinwt. Show
that the motion is SHM.

19.

20.

2%

22.

(b) If a=3cm, b=4cm, and
@=2rads”'. Determine the
period, amplitude, maximum
velocity, and acceleration of the
motion in (a).

Determine how fast you would have
to go through a red light to have
it appear green. Take 620 nm. as
wavelength of red light and 450 nm
as the wavelength of green light.

A whistle emitting a sound of
frequency 440 Hz istied to a string
of 1.5 m lengthand rotated with an
angular velocity of 20 rad s™' in the
horizontal plane. Calculate the range
of frequencies heard by an observer
stationed at a large distance from the
whistle. Take velocity of sound to be
330 ms ™.

A mass of 0.5 kg is vibrating in
a system in which the constant of
the spring used is 100 N/m. The
amplitude of vibration is 0.2 m.
Determine:

(a) The energy of the system;

(b) The maximum velocity;

(c) The potential energy and kinetic
energy when x=0.1m; and

(d) The maximum acceleration.

A simple pendulum has a period of
4.2 seconds. When the pendulum is
shortened by 1 m, the period is 3.7
seconds. From the measurements,
calculate the acceleration due to
gravity and original length of the
pendulum.




Electrostatics

Introduction

Electrostatics provides a fundamental understanding of the behaviour of
electric charges at rest, which forms the basis of many practical applications in
technology and engineering. Mastery of electrostatics is useful in the desien and
optimisation of electronic devices such as capacitors, transistors, and integrated
circuits, which are crucial for modern technology. In this chapter, you will learn
about theories and principles of electrostatics that include electric field, electric
potential, and capacitance. The competencies developed will help vou to solve
various problems related to electrostatics in daily life.

}

A J

Technology without clm@smﬁc»& )

8.1 Electric field

To visualize how a charge, or collection
of charges, influences the region around
it, the concept of an electric field is
used. The electric field E is analogous
to the acceleration due to gravity, g
which in reality is gravitational field.
Hence, electric field is a region around a
charged particle or object within which a
force would be exerted on other charged
particles or objects. A charge Q sets up
an electric field in the space around it.
If another charge g is brought near Q;
then. electric field of Q exerts a force
on g. It is important to note that, charge
is quantized (exist in discrete units) and
is obtained from ne. where n i1s number
of electrons and e is elementary charge.
Therefore, the electric field due to a point

charge Q is defined as “the space around
the charge in which any other charge
experiences an electrostatic force.” The
concept of electric field is described by
a quantity called electric field intensity.
The electric field intensity at a point is the
force experienced by a unit test charge
placed at that point. In this section, you
will deal with different aspects of electric
fields. These include Coulomb’s law,
electric field intensity of a point charge,
and electric field intensity of simple
symmetrical charge distribution.

8.1.1 Coulomb’s Law

Experiments show that charges interact
by exerting forces on each other. A general
rule called fundamental law of charges
states that, “Like charges repel and unlike
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charges attract.” Charles de Coulomb investigated
the interaction forces of charged particles and
found out that, “The electrostatic force between two
point charges is directly proportional to the product
of their magnitudes and inversely proportional to the
square of the distance between their centres.”

Consider two point charges @, and Q, held at a
distance r apart in a medium (Figure 8.1).

0, 0,

21 O e @— F, Like charges
Q| Fy ‘Flz Q:
*~—> - seereeeeeeo-—@  Unlike charges
r

Figure 8.1: Interactions between point charges

From Coulomb’s findings,

.00,
rl

F=12% (1)
r

where k is a constant of proportionality called
electrostatic force constant whose numerical value
depends on the nature of medium_into which
the charges are placed. Its value and SI unit is
approximately 9.0x10” Nm°C™ in a free space or
a vacuum, and the constant k is given by,

e

dre,

where €, is another constant called permittivity of
free space with a value of 8.854x10"* C°'N 'm™.
Therefore, Coulomb’s Law can now be written as,

F=_Q,Q_21 (8.2)
dre r*
For a non-free space material. we have relative
permittivity given by,
permittivity of material(sm)

Relative permittivity| £ )=
g ty( ) permittivity of free space(su)

Vector form of Coulomb’s
Law

Consider Figure 8.1. Let F,,

be force on Q,due to Q,, Fn
be force on Q, due to Q,, and
r be unit vector pointing
from Q to Q,. According to
Coulomb’s law,

F= kQ‘—%F (8.3)
r

where r= Therefore,

P It

equation (8.3) becomes

F=k21-%-i' . le., force
=
Fy=—F, =F

Experiments show that when
two (or more) charges exert
forces simultaneously on
another point charge, the total
force acting on that charge is
the vector sum of the forces
that the two (or more) charges
would exert individually.

This property is called the
superposition principle. The
net force acting on one point
charge due to a number of
interacting charges is given
as, F=F,+F,+F,+..+F,.

Generally, the magnitude of
net force acting on a point
charge is given by,

F=|(ZEN+(ZF)
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How many electrons must be removed
from a piece of metal to give it a
positive charge of 1x107C?

Solution
Using the relation that, Q = ne, then,
0 1x107 C

e 16x107"C

=6.25x 10" electrons

“Neampies2)

The distance between the electron
and the proton in a hydrogen atom is
5.3%107"" m. Calculate the electrostatic
force of attraction between them.

Solution
From Coulomb’s law,

F=k2%
=

9.0x10° Nm*Cx(1.6x10™ €)°

[5.3x10'“ m)2
=82x10% N

CVeampiess)

Two point charges are located on
the x—axis of a coordinated system:
Q, =+1.0nC is at x=+2.0 cm, and
Q,=+3.0nC at x=+4.0 cm. What is

the total force exerted by Q, and Q, on
a charge 0, =+5.0nC at x=0cm?

Solution
Figure 8.2 (a) shows the condition for
the problem,

Electrostatics

o, 0, Q,
— o—
O 20cm Ji=x:
«— 40cm ——»
(a)
it :
F, F,
31 2 (b)

Figure 8.2: Point charges

Let F;, beelectrostatic force on Q, due

to Q, and F,, be eleetrostatic force on

0, dueto Q,.

00
From Coulomb’s law, F,, =k——:
thus, his)
7. 9x10 Nm’C?x1x10™ Cx5x10™ C
. 2
4 (20107 m)
=LI13x107* N
and F, = kalgi :
(1)
3.0x10°Cx5x10° Cx5x10" C

=9x10" Nm’C™ x

(4.0x10° m)’
=8.44%107° N

From free body diagram for Q, in
Figure 8.2(b);

ZF: Fo+ Fy,s
Y F=844x10"° N+1.13x10* N
=1.97x10™ N

Therefore, the total force exerted by Q,
and Q, onacharge Q, is 1.97x107 N
to the left of Q.
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Three point charges of 2 pC, 3 puC, and 4 pC are placed on the vertices of an
equilateral triangle of side 0.2 m. Calculate the magnitude of force on the 4 uC
charge due to other charges.

Solution
Consider Figures 8.3 (a) and (b),
q=3pC q=3uC

20 cm

g=2uC

20 cm

Figure 8.3: Point charges at vertices of an equilateral triangle

The free body diagram for the 4 uC charge is shown in Figure 8.3 (b), ﬁ 1s the

electrostatic force on 4 uC due to 3 uC, F‘z is the electrostatic force on 4 yC due
to 2 uC.

Considering the magnitudes:
Net force vertically,

> F,=—F sin60°+ F,sin0° =—F, sin60°

—6 —6
=-9%10° NmEC‘lx“m sz’flo Csinfsn“
(0.2m)"

oY F =-156}

Net force horizontally,
Y F, = F,cos60°+F,

4x10° Cx2x10°Cxcos60°+3x10° Cx4x10° C
(0.2 m)

Y F.=9x10" Nm’C* x

~ Y E=36N

F:J(Zﬂ)z +(ZF_‘,)2, F=\(((3.6 N) +(~1.56 N))2 =3.92N

Therefore, magnitude of the force is 3.92 N.




8.1.2 The electric field of a point
charge

The strength of an electric field at a point
in space is determined by placing a small
charged body (positive test charge) at the
point. If the charge experiences a force,
then, there is an electric field at that point
and its strength is given by,

E (8.4)
q

E=

where F is the electrostatic force
experienced by a test charge, ¢ is the
magnitude of the test charge and E is
the strength of the electric field at a point
where ¢ is placed. This field is produced
by charge other than g. Thus, the electric
field strength at a point is defined by
equation (8.4) as the electric force per
unit test charge experienced by a charge
at that point,

Electric field lines

Electrostatics

For example, a source charge g, is at O
in space, a test charge ¢ is at point P at
distance r from 0 (Figure 8.4).

qu q E

e o —>—r
e——— ro—

0 P

Figure 8.4: Relationship between electric field
and electrostatic force

The magnitude F of the force is given by
Coulomb’s law;

4,4

;
dne r-

Pz

From equation (8.4), the magnitude E of
the electric field at P is,

E= H s Iqﬂ'ql - qﬂ
q 4mer’q 4meg’

(8.5)

The electric field vector, E is in the
direction of the force on a unit positive
lest charge.

An electric field line is a path along which a positive test charge would move if it is
free to do so. Electric field lines always originate from a positive charge and terminate
at a negative charge. The tangent to the line at a point gives the direction of the electric
field intensity at that point. Thercfore, electric field lines are sometimes called electric
lines of force see (Figure 8.5). The electric lines of force never cross each other, leave
and enter the surface of a conductor at right angle. The field lines are far apart where
the field is weak and close together where the electric field is strong. This arises from
the proportionality of number of lines per unit area and the magnitude of electric field.

Field lines

% %
(a) (b)

Field lines

(c)

Figure 8.5: Electric field lines
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Aim: To locate the magnitude
and direction of the
electric field

Materials: Point charge (e.g.,

small charged sphere),
cardboard, fine iron filings,
transparent cover (e.g.,
plastic sheet), small brush
or straw, power source
(e.g., battery), connecting
wires

Procedure

1. Locate the point charge at the centre
of the cardboard.

2. Sprinkle a thin layer of iron filings
evenly over the surface of the paper.

3. Cover the setup with the transparent
material to prevent disturbances.

4. Connect the point charge to the
battery to create an electric field.

5. Observe the pattern formed by the
iron filings as they align along the
electric field lines.

6. Repeat step 1-5 with different
arrangement of the point charge.

Questions

(a) How do the iron filings align
themselves in the presence of the
electric field?

(b) Describe the way the patterns are
formed by the iron filings.

(c) How does the spacing between field
lines relate to the magnitude of the
eleetric field?

(d) How does changing the distance or
charge of the point charge affect the
electric field lines?

(e) How are the number of field lines
living the positive charge related to
those where terminate at negative
charge?

“Veampless )

Two point charges 2 nC each are placed
20 cm apart. What i1s the electric field at
the midpoint on the line connecting them?

Solution

Consider Figure 8.6.
Q, E, P E, o,
R - a > e

'y
=
v

Figure 8.6: Two point charges

The net field E, is given as
Y E=E+(-E,)=E,—E,.

ZE=£*%—kQ:.bUt Q,=Q,and r,=r,
%

hence Q =0, =0

The net electric field at point P is

Y E=0.

A point charge of 3.3nC is placed in a
medium of relative permittivity of 5.
Calculate the electric field intensity at
a point 10cm from the charge.

Solution
Using the relation that:

£
g =-= then, € € =¢
r £ o r m

o

e _ Q0 _ ko

= _= =
dre r’  AdmeEer’ Er’

33%1067° C

E=9x10" Nm’C™ x .
5%(10.0%10 m)

=594 NC™'

The electric field intensity is
E=594 NC™.
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Four point charges of —4 uC, +2 pC,
—2uC, and +4pC are placed on
corners ABCD of a square, respectively.
Determine the strength of the electric
field at the centre of a square of side
2m.

Solution
Figure 8.7 (a) shows four point charges
at corners of the square.

ASIC

+2 w? B

S

E =
KONz

v
(b)

Figure 8.7: Four charges placed at the corners
of a square

From the free body diagram for point O
in Figure 8.7(b),

Vertically,
Y E =(B,~E_)sin0+(E,-E,)sin@
Y E =(E,—E.+E,—E,)sin®

po

r

0,+0,)-(¢.+0,))

where r= \/Z_m, @ =45" and
k=9%10" Nm’C™

Electrostatics

Substituting variables by the numerical
values, you get

D E =12728 NC"'
Horizontally,
Z E = ( E,- EB)C{)EQ—(EA i Ef.')cu'se

N E =(E,+E.~E,-E,)cos0

>E=%%0 +0.-0,-0)

r2

Substituting variables by the numerical
values, you get

Y E ,=0NC"

Y E= (NS HZE)

E, = J[u NC') +(12728 NC)

2

=12728 NC™

The net electric field at O will be
12728 NC™" upwards.

8.1.3 Electric field due to

continuous charge distribution
In practical, scenarios charge distribution
on bodies are considered to be either
along a line, over the surface, or volume.
One can speak of linear charge density
4, surface charge density o, and volume
charge density p, given by:

_ charge dQ charge  dO
length dl’ surface area  dA
and p= charge _ d0

volume dV
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These quantities describe the amount of
charge per unit length, per unit area, and
per unit volume, respectively. In calculating
electric field caused by continuous charge
distribution, it is necessary to consider that
the distribution consist of an infinitesimal
charge elements dQ.

(a) Electric field due to a line of charge
The electric field of a line of charge is
found by superposing the point charge
fields of infinitesimal charge elements
dQ. Consider the diagram in Figure 8.8.

Td@

b
'\'.

0
a

|

Figure 8.8: Llectric field due to a line of charge

>+

The electric field at point P, due to the
charge element dQ is given as,
dE =k dQ

2

”
The net horizontal field at P is given by
dE_= dEcos@. Thus,

dE®% k22 {iJ

rl r

where dQ = Ady, A =linear charge density.
The net vertical field component at P is zero
(0), due to field cancellation effect when

elements of charge are considered from
both sides of the line, about O.

The total field at P is given by,
b b xdy
E =] dE=ki| ——

3
(x* + y*)?

Using calculus techniques to integrate the
equation, it follows that,

Eﬂ =ki b + a

1 1
(X +b) (P +a’)?

(8.6)

As the limits a and b approach infinity,
equation (8.6) approaches the infinite line
of charge expression given as,

E =ﬂ or E = A

i " 2nex

Electric flux and Gauss’s Law
From the discussion on electric field lines,

it was shown that electric fields can be
- described by the lines of force. Since the

density of lines increases near the charge
where the electric field strength (E) is
high, then E at a point can be given as the
“number of lines per unit area™ through a
surface perpendicular to the lines of force
at that point. Consider Figure 8.9,

E

m

Figure 8.9: Electric flux through an area A due
to a positive point charge

The number of lines of force crossing
normally a given surface give the values




to a quantity called electric flux, denoted
as ¢. Therefore, flux is given as,

¢p=E-A
¢= EcosfA4

(8.7)
(8.8)

where @ is measured from a normal to
surface.

Therefore, the maximum flux is obtained
when the angle between E and A is zero,
that is, when E and A are parallel. If the
electric field E is not uniform or if A is
part of curved surface, then, the surface is
divided into small area element dA and
the equation (8.8) is integrated to obtain
the total flux as:

tp:_L Ecos@dA (8.9)

The integral in equation (8.9) is called
surface integral of the component E over
the area, or surface integral of E.dA.

C\bampess ) )

A disc of radius 0.10 m is oriented with
its area vector at 30° to auniform electric
field E of magnitude2.0x 10 NC™',
Calculate the electric flux through the
disc.

Solution
Figure 8.10 shows condition for the

problem.

ano
LT

Y

Figure 8.10: A4 disc in a uniform electric field

Using equation (8.8),
9=(2.0x10" NC"')xxx(0.1 m)* x cos 30°

=54 Nm’C™'

= :
Electrostatics

Gauss’s Law

Gauss’s law establishes a relationship
between the total electric flux passing
through a closed surface (known as a
Gaussian surface) and the net charge
enclosed within surface. In other words,
the net total electric flux depends on the
charge inside that surface.

Gauss’s law states that, “The rotal
electric flux through any closed surface
is proportional to the net electric charge
inside that surface per unit permitivity
in a free space.” i.e., The electric flux
through any closed surface is equal to the
total charge inside divided by £,,.

Suppose the surface encloses several
charges “@40,,....0,. Let O, be the
total charge enclosed by the surface:
Q,=0 +0,+..+Q,. Also, let E be the
total electric field at the position of the
surface element dA.

Then, Gauss’s law can be written in
mathematical form as,

(8.10)

Combining equations (8.9) and (8.10)
gives the general form of Gauss’s law:

(ﬁEcos@dA — %

(4]

If the electric field and area vector are in
the same direction #=0 and cosf=1

then, § E. di="2
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When using Gauss’s law, there are some

important steps to follow:

(i) Draw an imaginary surface called
Gaussian surface to enclose the
charge. This charge may be a single
point charge, a collection of point
charges or a given charge distribution.

(ii) Divide the Gaussian surface into
smaller area element dA such that
dAand E at that particular position
are parallel.

(iii)

Carry an integration over the entire
surface to get the total electric flux.

Gauss’s law is useful in determining
electric fields when the charge distribution
is characterized by a high degree of
symmetry. The following examples show
ways of choosing the Gaussian surface
over which the surface integral is applied

to determine the electric field. In choosing

the surface, always take advantage of the
symmetry of the charge distribution so
that you can remove E from the integral
and solve for iL.

(b) Electric field due to a sphere
of charge

When charge is distributed over a sphere
of radius R, the electric field due to that
charge will have spherical symmetry.
However, the flux passing through any
closed surface of any shape is always equal
to E‘Q_ That is, the field will have the same
valu[:}z at equal distance r from the centre of
the sphere. For a solid insulating sphere,
the electric field inside and outside are

different. Consider a uniformly charged
non-conducting (insulating) solid sphere
with centre O, radius R, volume charge
density P and total charge Q.

(i) Electric field outside the insulating
sphere (r > R)

Consider Figure 8.11 where charge
distribution is spherically symmetric. If ris
the radius of a spherical Gaussian surface,
concentric with the sphere then, the electric
field intensity outside the solid sphere, a
distance, r from centre of the surface of
the sphere can be found.

d ;

B

e oo \ Gaussian
' surface

E

Figure 8.11: Electric field outside the

insulating sphere

Since it is an insulating sphere, charge
will reside entirely in the volume. The

4
net charge Q=§?IRBP- Since E is

constant and normal to the spherical
Gaussian surface of radius r, the surface

integral equals, Ex4nr’. Therefore,
Exdnr’ = 2 At a distance r> R, the
£

0
electric field is identical to that of a point

charge, Q at the centre of the sphere.

Hence,

0

4ne r-

E= (8.11)




(ii) Electric field inside the insulating
sphere (r < R)
Since the sphere is not conducting
material, a charge Q" will reside inside
the sphere as well. For a radius 7 <R,
Gaussian surface will enclose less than
the total charge and electric field will be
less (Figure 8.12).

Gaussian
surface

Figure 8.12: Electric field inside an insulating
solid sphere

Therefore, the field E atadistance r from |
the centre of the sphere is still spherically”

symmetric and is given by,

Qa’

E= =
4re r-

Note that, the charge Q” is obtained from
the ratio of volumes as follows:

o Q; QEQ then, (j_.‘;’:“'li’_’r3

[ZRT: Vv R’
_ Qr
_ 4qe R (8.1%)

(c) Solid conducting sphere
Consider a thin spherical conducting (metal)

shell of radius R charged uniformly with
charge Q. Electric field E can be obtained

Electrostatics

by considering outside and inside the
sphere as follows:

(i) Electric field outside the sphere
(r>R)

Since charges reside entirely on the
surface of a solid conductor, the electric
field will have spherical symmetry and
will be given by equation (8.11) same
as for point charge. This implies that, £
outside a uniformly charged conducting
sphere is the same as if charge were
concentrated as a point charge at the
centre of the sphere.

(ii) Electric field inside the sphere
(r<R)

Since there is no charge within a concentric
spherical Gaussian surface of a conducting
charged shell, then the net flux equals
zero from Gauss’s law. From symmetry,
therefore, the electric field is zero inside the
spherical charged shell. Hence, the electric
field due to uniformly charged sphere is
zero at all points inside the sphere.

(d) Hollow conducting sphere
Consider a hollow sphere of inner radius

R, and outer radius R, charged uniformly

with total charge Q (Figure 8.13). The
electric field at any point, a distance r
from the centre can be determined by
considering two conditions:

(1) Electric field outside the sphere
(r>R,).
From Gaussian,

Q kQ

Ex4nr’==; E=
£

(2]
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(a) (b)
Figure 8.13: Electric field variation inside and
outside a hollow sphere
Therefore, the electric field will
resemble that of a point change for
same reason that the charge resides
entirely on the surface of a sphere and
the field will have spherical symmetry.
(11) Electric field inside the sphere
(r<R,). The field will be zero.

No net charge can reside inside a
conductor.

(e) Hollow insulating sphere
Consider a hollow insulating sphere with

uniform charge density P. Its inner and

outer radii are R, and R,, respectively.
The expressions for the magnitude of the
electric field in the regions are:

(i) Electric field outside the sphere
(r>R,). The field will be given by
equation (8.11) for similar reasoning.

(i) Electric field inside the sphere
(r<R,). Because of the spherical
symmetry of the charge distribution
and because the net charge inside
the surface is zero, application of
Gauss’s law shows that £ = 0 in the
region .

(111) Electric field within the sphere
(R, <r<R,). From Gauss's law,

E x 4mr’ =i7|:x(r3—R|3)p,

3E,

_Q
Ay o
3 (R=R)

1 (r-R))
dme,r” (R - R’

but P=

Therefore, E =

(f) Electric field due to plane charge
distribution

Consider an infinity plane sheet with charge
Q distributed uniformly. The electric field
intensity at a distance, d from the sheet
of charge can be obtained by choosing
Gaussian surface, say cylindrical surface
with radius, r (Figure 8.14 (a)).

(b)

Figure 8.14: (a) Electric field due to infinity

plane sheet of charge and

(b) Parallel sheet of charges

There are three surfaces, two end surfaces
(A, and A)) and one side surface, A,.

LERLEIRL
1 LT



Therefore, the total flux is given by;

0= @4 EdA, cos6, + gS‘ EdA, cos0, + 95* EdA, cos,

where 8, =0, =0°, 8,=90°, also,

A = A, = A, which is a circular area.

Then from Gauss's law,

0 _

=2 E§ da
hence,
Q o xra =2 -7 13
Eu 2A£¢J 280

Equation (8.13) shows that electric field
intensity due to infinity sheet of charge is
independent of distance from the sheet.
But it depends on the density of charge
distribution only.

Consider the two parallel sheets with
charge densities o, and o, (Figure 8.14

(b)). Electric field intensity due to two
parallel infinity sheet of charge at three |

regions (LILIII) is as follows;

The electric fields due to two sheets is the
vector sum of that of individual sheets:

Region I: Two vectors acting in negative

direction
E=E +E,
-0 - -1
2e, \2e 2£'”( +0))

Region I1: Two vectors acting in opposite

directions
E=E +(-E,)
+0, -0,
s P P (0,-0,)

28, 2e, 2¢

Electrostatics

Region I1I: Two vectors acting in the
positive direction

E=E +E,
c, O
E=—L+—2= (0'1+O'.,)
2, 2e 2& :

Special case: When the charge distribution
is the same, i.e., 0,=0,=0:

Region I: Two vectors acting in the

negative direction
-0 -0 -0
E= o+ =
26, 2 ¢

() a

Region I1: Two vectors acting in opposite

directions
o -0
E=—+—=0
280 A€,

Region III: Two vectors acting in the
positive direction
.0, 0 _0O
2e, 2¢e, &,
Note that, A parallel plate capacitor which
is an arrangement of metal plates connected
in parallel and separated from each other
by some distance, behaves like a plane
with charges distributed uniformly and
its electric field can be calculated using
the concepts applied in the plane charge
distribution.

Exercise 8.1

1. Explain the following observation
in relation to electrostatics:

(a) The free electrons in a metal
are gravitationally attracted
towards the earth. Why do they
all not settle at the bottom of the
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conductor like sediment settling
at the bottom of a river?

(b) Bits of paper are attracted to an
electrified comb or rod even
though they have no net charge.
How is this possible?

2. Two small plastic spheres are given

positive electrical charges. When
they are 15.0 cm apart, the repulsive
force between them has a magnitude
of 0.220 N. Find the charge on each

sphere,

(a) if the two charges are equal.

(b) if one sphere has four times the
charge of the other.

. A negative charge of —0.55 uC

exerts an upward force of 0.20 N

on an unknown charge which is

0.30 mdirectly below it.

(a) What is the unknown charge
(magnitude and sign)?

(b) What is the magnitude and
direction of the force that the
unknown charge exerts on the
—0.55 nC charge?

. (a) A small insulating sphere is
given a charge of +15 uC and
a second sphere of equal size is
given a charge of —10 puC. The
two spheres are allowed to touch
each other and then separated
20 em apart. Assuming air as
the medium, what force exists
between them?

(b) Two identical copper spheres A
and B are situated at a distance
of 6 cm apart and each carries
a charge of +6 pC. A third

identical copper sphere C is
first touched with A and then
with B. Thereafter, sphere C
is placed 2 cm from sphere
B. Find the resultant force on
sphere C.

. Two identical small spheres with

mass m are hang from silk threads
of length L. Each sphere is given a
charge Q. Show that when the two
charged spheres are at equilibrium,
the distance d between their centers
Is given as,

1

2r N3

d:[ O°L J
2ne, mg

State any assumption made.

6. Two charges, one of 2.5 uC is

placed at the origin and the other
of =3.50 pC is placed 0.60 m on
the x-axis. Find the position on the
x-axis where the net force on a small
charge +¢ would be zero.

. A point charge Q of +8nC is

placed at the origin of the x — y
coordinate system. Determine the
electric field strength at a point
P(x, y)=(1.2m,~1.6m).

. Two tiny spheres, of mass 6.80 mg

each carry charges of equal
magnitude, 72.0 nC but opposite
sign. They are tied to the same
ceiling hook by light strings of
length 0.53 m. When a horizontal
uniform electric field E directed to
the left is turned on, the spheres hang
at rest with the angle # between the
strings equal to 50°,

(a) Which sphere has a positive

charge?

T
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(b) What is the magnitude of the
electric field?

A particle of mass 1kg and charge
0.01 C is placed on an inclined
plane making an angle 30° with the
horizontal. The incline and the charged
particle are placed in a uniform
horizontal electric field of 100 NC™.
What should be the coefficient of static
friction for the particle not to slide
down the incline?

. ABC'is an equilateral triangle whose

side is 1 m. Two point charges of
2 uC and —2 pC are placed at corner
A and B, respectively. Determine
the magnitude and direction of the
electric field E at corner C.

Two horizontal parallel plates 10 mm
apart have a potential difference
(p.d.) of 1000 volts between them,
the upper plate being at positive
potential. If a negatively charged oil
drop of mass 4.8x107" kg is held
stationary between the plates, find
the number of electrons on the drop
(Use e=1.6x10" C).

. Show that the magnitude of the electric

field atany point perpendicular to the
plane of an infinite plane sheet of

charge is givenas E = Zi where
£

o is the surface charge der:sity.

A small charge ¢ is placed at a
midpoint on the line connecting two
other charges of equal magnitude
and sign. The charge ¢ is displaced
along the line and released. Prove
that it performs simple harmonic
motion.

Electrostatics

8.2 Electric potential

Just like a mass has potential energy in
the gravitational field, electric charge
has electrostatic potential energy in
the electrostatic field. That is, there is
electric potential energy associated with
interacting charges. Electric potential is
a scalar quantity. This scalar nature of an
electric potential provide useful altenative
approches of calculating and analysing
phenomena compared electric field in
electrostatic problems.

When a positive test charge Q is moved
in an electric field against such field, work
has to be done to overcome the electrostatic
repulsion. The work done to move a unit
positive test charge from infinite to a specific
point in space is called the electric potential.
Therefore, an electric potential characterises
the energy associated with the charged
particles at particular point in space.

 8.2.1 Electric potential due to a point

charge

Consider a point charge +Q such as proton
placed at point O as shown in Figure 8.15.
This charge sets up an electrostatic field
which extends up to infinity. Suppose a
unit positive test charge ¢ is at a point P a
distance r from O. If ¢ is moved from point
B to point A, work has to be done.

P A B
o l | — Infinite
0 :} —dpe point
— r —>

Figure 8.15: Electric potential due to a point
charge

The work done by an external agent on
moving charge g a small distance dr from
B towards A is equal to the work done by




f'Il_'-'u'r.\' for Advanced Secondary Schools

electrostatic force 7 on moving
a charge from A to B if charge
Q does not accelerate.

_ A qu
W,,==| Fdr, where p= 221

P
Thus, W,, = —quJ: 2 dr

The negative sign is important
because it implies that the test
particle loses potential energy
when moving to r=0.

From the definition of electric
potential,

_wm_ ol
v —?——RQLr dr

BA

Therefore,
Vi = kQ[L—i] (8.14)
r.vl r.H

Equation (8.14) gives the
electrostatic potential difference
between points A and B. Itis the
work an external agent has to do
to carry a unit positive charge
from B to A.

When calculating electrostatic
potential, a reference point is
always chosen at infinity where
the electric potential is zero.
Therefore, if point Bis at infinity,
equation (8.14) changes to:

rA
The unit of potential and
potential difference is volt (V)
or JC™'. It should also be noted
that electrostatic potential is a
scalar quantity and therefore,

the potential of a point due to a group of point charges
is the algebraic sum of the (separate) potentials due
to each charge. Remember that, potential due to a
positive charge is positive and that due to a negative
charge is negative.

Electrostatic potential energy (U) of a point in the
electrostatic field is numerically equal to the work
done in bringing a positive charge from infinity to
that point. That is,

v, =W,

A

(8.16)

However, electric potential is potential energy per
unit charge. Thus,

U m=‘lv‘[/ﬂm=qf‘r*’4m—)L-"A=qr1-"l,l

A

~ U =qAV (8.17)

N bampless )

Two point charges +20 pC and —20 pC are placed
20 cm apart. Caleulate the electrostatic potential at a
point midway on the line connecting the two charges.

Solution
Consider Figure 8.16.
0, P Q,
@ e -®
k r I

Figure 8.16: Point charges

Using the principle of superposition of electric
potentials,

_ kQ, kO
V-" _VQI +VQ:’ VF :1TI+TI'

2 2

).

2k
hence V =—(Q1+Q
-r’ r -
_2x9x10° Nm’C™?

- x(20x10° C+(-20x10° ©)) =0V
20%10~ m

Electrostatic potential at a point midway is OV.
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P GEEITEEETA Using the principle of superposition of

lectric potentials.
Three charges of 2uC,-3puC electric potentials

and 4 uC are placed on the three V=¥V, 3V
corners A, B, and C of an equilateral

triangle of sides 2 m, respectively. k k k
gie pASHIAANE . V.= IQ*‘+ QB+ Qc;whf:re
Determine the electric potential at By r, r.

a point half way between AB.

Solution ! ‘
Figure 8.17 shows the conditions 0,=0,, 0,=0,,and Q0. =0,
of the problem.
B e V =k Q_+Q_+&
e i o

2x10° C  —3xX1%C 4x10°C
ne +
Im Im \ﬁ m

=9x10’ Nm’C"[

=11784.6 V

Q@=2uC

Therefore, the electric potential at the

Figure 8.17: Point charges placed at ) .
midway of AB is 11784.6 V.

corners of a triangle

N bamplegay)

Two positive point charges of 10 pC and 8 pC, respectively, are 10 cm apart. Find
the work done in bringing them to a separation of 6 cm.

Solution
Suppose the 8 pC charge is fixed in position. Then, the potential difference between

6 cm mark and 10 cm markis, AV =V, -V, then,
Msz[L_LJ

By 73

Therefore, the work done in moving charge ¢ =10 pC up to a distance 6 cm is,
1
v fob i -1

A rB

AW =9x10"Nm’C”* x8x10°Cx10x10™°Cx l_, - ]_, =48]
6x10"m 10x10" m

Hence, the work done in bringing the charge a distance 6 cm apart is 4.8 J.
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" \eamplesiz)

Two charges of 3 nC and -3 nC are fixed in positions 3 cm apart. A dust particle
with a mass of 5 g and a charge of 2 uC starts from rest and moves in a straight
line from a point 1.0cm from the3 nC charge to a point 1.0 cm from the -3 nC.
What is the speed of the dust particle at the second location?

Solution

Figure 8.18 shows the conditions for the problem.

@=31C a b Q=-3nC
@ |- -o—>» - -} @
| <€ >| < >| < >
| cm | cm l cm

Figure 8.18: Two charges at fixed positions

From conservation of mechanical energy, K, +U, = K, +U,, where K _and U, are
kinetic and potential energies respectively. Since the particle start from rest K, =0.

1 4
Kb= Uu - Ub' Kf’ = E?nhhhz Uﬂ' _Uh where Uu = Ub = q(Vﬂ - Vb)

_ |2aV.=Y) :
ol E— (i)

Solving for V, and V,;

> s l _1
V. =9.0x10" Nm°C*x3x107Cx —+ —— [=1350 V
4 1.0x107° m 2.0x107° m
V, =9.0x10° Nm*C *x3x10™ Cx : —+ _]_, =—1350 V
; 20x10°m  1.0x107% m
V. -V, =1350.V - (-1350 V)=2700 V (ii)
-6
From equation (i), V = hesiadil ix ]y =1469.69ms .
5x10°kg

Therefore, velocity of a dust particle at b is about 1469.69ms ™.

" NI,



Relationship between electric field and
electric potential difference

When electric field at a point is produced
by a charge distribution, the electric
potential at the point in that field can
easily be calculated using the expression
of E at that point. Suppose a test charge,
g, n a uniform electric field, £ is moving
from point ato b (with constant speed)
distance dr apart. The work done on ¢,
along displacement ab by electric force
is given by,

—JF dr = —Jqu dr.

b
Thus, the potential dLﬁ‘erence I
The work done per unit charge is given as,
W
P A
ql]
h —
VH—'Vb:——JE dr (3‘{8)

Therefore, the general relationship between
electric potential and electric field intensity is

V,~V,=-|Ed or dvV =—Edr

If the electric field is in the same direction
as dr, equation (8.18) will be positive.
Consequently, the angle between force on
charge and the displacement of charge is
180°. The angle between the two vectors is
180°, thus, —E - dF =—Edrcos180° =+ Edr.

Setting the potential at b to be zero (b at
infinity) the potential at a point is given by

V=-[E-dr.

Electrostatics

8.2.2 Electric potential due to
charge distribution

Electric potential at a point due to continuous
charge distribution depends on the geometry
of distribution. The electric potential due to
uniform distributed charge can be obtained
by using the relation V -V, = —I Edr. In
practice, there exists a variety of distribution
geometries, for example along a line and
over a surface or volume.

(a) Electric potential due to infinite
line of charge

The electrostatic potential due to an
infinite line of charge is calculated

using the relation V =V, = *J- Edr. But

the electric field due to a line charge

A

2ne r

distribution is given by, E=

The electric potential is then,

dr

V™ V#_J 2?I:Er

W W In{iJ
; ; 2?{8” r

i

(8.19)

The expression of equation (8.19) can be
used for a conducting cylinder of charge.
Suppose R is the radius of such a cylinder,
then, the potential at a point A, distance
r from the axis of a cylinder for which
r>Ris

V =V(r)=V(R) but, V(R) =

—J;Edr=— Al

R 21Ir£n

dr

A r A R
V=—F[In(r)]ﬁ= - ln(—] (8.20)




f'fl_'-'u'r\' for Advanced Secondary Schools

Therefore, inside the conducting cylinder,
E=0, and V=0 as on the cylinder’s
surface.

(b) Electric potential due to finite line
of charge

Consider electrostatic potential due to a
finite line of charge. Suppose a positive
electric charge Q is distributed uniformly
along a line of length 24 as shown in
Figure 8.19.

P
bl
%
b
"
T \.‘
\\
A
3

»
++++++++ )

2a >/

Figure 8.19: Electric potential due to finite line

of charge

The electric potential at point P 1is,

V = -”udeQ' where r=(_v2+x2);.

(b)

Then,

v=["x Ady

P = ‘!.
(e

Using integration techniques, then,

A fu Ja*+x* +a (8.21)
"2, \ Vit +x-a .

(¢) Electric potential due to charged
conducting sphere

Suppose a total charge Q is placed on

the solid sphere of radius R (Figure 8.20

(a)). The electrostatic potential at a point

distance r, such that »> R is given by,

..

r

% (8.22)

This is because for a sphere of charge,
an electric field at a point outside such a

- sphere resembles that of a point charge.

Inside a conducting sphere, V =V,

That is the electric potential inside is the
same everywhere and is equal to its value

kQ

on the surface which is, V =?.

Figure 8.20: Variation of electric potential with distance inside and outside a charged sphere




Equipotential

An equipotential is a three dimensional
region in space where every point in it is
at the same electric potential. In practice
there are equipotential surfaces and
equipotential volumes. A line that traces
all points on an equipotential is called an
equipotential line.

(i) Itis important to note that equipotential
lines are always perpendicular to
electric field lines. No work is required
to move a charge along an equipotential

since AV =0.

Electrostatics

(i1) Equipotential lines never intersect or
touch each other.

That means that at a particular region the
electric potential (V) is constant which
creates an equipotential surface.

The quantity j—v shows how the potential
r

changes with distance, and is called the
potential gradient. The diagram in

Figure 8.21 shows equipotential and
electric lines of force for point charges
(dashed lines are equipotential lines
while solid lines are electric field lines).

. . . 44
== WX TAS s>
el e
ol 10\
" Vol % /
(a) Constant electric field (b) Positive point charge (c) Electric dipole

Figure 8.21: Equipotential and electrie field lines of capacitor; point charge, and dipole

8.2.3 Motion of a charged particle in a uniform electric field

When a particle of mass mand charge Q is placed in a uniform electric field of strength
E. the field will exert force QF on the charge. If it is the only force on the particle, the
particle will accelerate uniformly. Note that, if the particle is negatively charged. it
will accelerate in the direction opposite to that of the electric field. If the particle has a
positive charge, its acceleration will be in the direction of the electric field (Figure 8.22).

i T
3 % % % 'l'/li/ y
LY sud

I

=) R S -

Y L

- -

.l
>




f'Il_'-'u'r.\' for Advanced Secondarv Schools

Suppose that an electron of charge -e
is projected horizontally into a uniform
electric field (Figure 8.22) with an initial
velocity w. Then, using Kkinematics
equation in two dimensions:

Case 1: Vertical motion
The electron experiences electrostatic force
in the vertical direction

E L =eE= ma,
eE
g, = == (8.23)
Y m

From first equation of linear motion

v, =u,+at
Since the electron is horizontally projected:
u,=0. Therefore,

't'_‘. = ﬂ_‘.f

Substituting v _in equation (8.23), gives

s
v,=|— |t
: m

From second equation of motion

y (8.24)

2 m

Case 2: Horizontal motion
From first equation of motion

v =u +at, where u =u, a =0
Hence, v_=u implying constant velocity

From second equation of motion,

|
S,=xX=ut+—al butu =u, a =0,

—_

then,

X=ut (8.25)

Combining equations (8.24) and equation
(8.25) gives,

1 eE ,
= X

y=-
2 mu-

Since e, E, m, and u are constants, then,

y=hkx’ (8.26)

Hence, the trajectory of the charged
particle in the electric field is a parabola.

Note that, for a charged body to move
undeflected in electric field mg = EQ.

“Neemplesis)

An electron enters horizontally in the
region of a uniform vertically downward
electric field with a velocity of
3.0x 10°ms ™, The electric field strength
Eis 200NC™" and the horizontal width
of the field is 0.1 m.

(a) Find the acceleration of the electron

while it is in thefield.

(b) Find the time it takes the electron to
travel through the field.

Solution
(a) Using equation (8.23)

4 = 1.6x107" Cx200 NC™
9.11x10™" kg

=3.51x10"ms™

Therefore, acceleration of the electron
while in the field is 3.51x 10" ms™.

(b) Using equation (8.25)
W 33t
u 3.0x10" ms

Hence, the time taken by the electron
through the field is 3.33x107"s.



. Expalin why there is a need of
studying electric potential.

Briefly explain why electric-field
lines must be perpendicular to
equipotential surfaces.

. Form five Physics students are
having a debate; group A argues
that electric field lines point from
high to low potential while group
B argues otherwise. As an expert in
electrostatics, conclude the debate
by giving out your reasoning.

. A conducting sphere is to be charged
by bringing in positive charge a little
at a time until the total charge is Q.
The work required for this process is
assumed to be proportional to Q°. Is
this correct? Explain.

. A high voltage d.c power line falls

on a car. So, the entire metal body
of the car is at a potential of 10.0V
with respect to the ground. Explain
what happens to the passengers:

(a) When they are sitting in the car;
and
(b) When they step out of the car.

. If the electric field is zero throughout

a certain region of space, is the
potential necessarily zero in that
region? If not, what can be said about
the potential?

. Two concentric spheres of radii R
and r had similar charges with equal
surface charge densities. Determine
the electric potential at theircommon
centre.

. An electron is accelerated through
a potential difference of 100 V.
Calculate its speed.

9,

Electrostatics

An infinite plane sheet of charge
density 10°Cm™ is held in air.
In this situation, how far apart are
two equipotential surface whose
potential difference is 5 V?

10. Three charges Q.+¢q, and +gq

L

14.

are placed to the vertices of an
equilateral triangle of length L. If
the actual electrostatic energy of the
system is zero, find the value of Q.
Electric field strength at.a point
due to a point charge is 70 NC™'

and electric potential at that point is
10 JC™'. Calculate the magnitude of
the point charge.

. A point charge Q=240 uC is

held stationary at the origin.
If a second point charge
Q, =—4.34 C moves from the point
(.r. y)=(0-15 m, 0 m) to the point
(x.y)= (025m.025m), how
much work is done by the electric
force on Q,?

. An electric dipole of charges

+2.0nC and +2.0nC separated
by a distance of 0.1 mm is placed
in vacuum. Calculate the electric
field strength and electric potential
at point P on the perpendicular
bisector of the dipole such that P is
10 cm from the centre of the dipole.
Calculate the work done on placing
a charge of +2 nCat point P.

Two point charges @, =2.4 uC and
Q,=-6.5 uC are +0.10 m apart.
Point A is midway between them;
point B is 0.08 m from @, and
0.02 m from Q,. Calculate the work
done by the electric field on charge
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Q,=2.4 uC that travels from point
B to point A.

15. A small sphere with a mass of 1.50 g
hangs by a thread between two
parallel vertical plates 5.00 cm apart.
The plates are insulated and have
uniform surface charge densities +o
and —o. The charge on the sphereis
@ =8.9 uC. Calculate the potential
difference between the plates that
will cause the thread to assume an
angle of 30° with the vertical.

16. A point charge Q is located at the
centre of a thin ring of radius R with
uniformly distributed charge -Q.
Find the magnitude of the electric
field strength E at a point lying on
the axis of the ring at a distance x
from its centre, if x>> R.

8.3 Capacitors

Capacitors are electric circuit components
used for storing charges or energy. To store
energy in a capacitor, electrons (charges)
are transferred from one conductive plate to
the other so that one plate has a net negative
charge and the other has an equal amount
of positive charge. This process is called
charging of a capacitor.

It requires energy to do the work of moving
these charges through the resulting potential
difference. The work done is stored as
electric potential energy in the capacitor.

Note that, at each instant of time, the net
charge of a capacitor is ideally zero.

8.3.1 Types of capacitor
A capacitor is a device consisting of two
or more parallel conductive (metal) plates

not connected or touching each other, but
are electrically separated either by air or
by some form of a good insulating material
such as waxed paper, mica, ceramic, plastic,
or some form of a liquid gel. The insulating
layer between the plates is commonly called
a dielectric. Capacitors range from those
with very small size in storage capacity like
those used in oscillators or radio circuits, up
to large capacity type, used in high voltage
power correction and smoothing eircuits.
The comparisons between different types of
capacitors are generally made with regards
to the dielectric material used between the
plates.

Types of capaeitors include air capacitor,
paper capacitor, electrolyte capacitor, and
mica capacitor (Figure 8.23). For example,
a paper capacitor uses paper dielectric,
while an air capacitor uses air as dielectric
material. Capacitors can have fixed or

~_variable capacity value. Figure 8.24

shows symbols of fixed and variable
capacitors. Variable capacitors are used in
tuned circuits such as in AM radios. A basic
fixed value type of capacitor consists of
two plates made from metallic foil that are
separated by different insulating materials,
having good dielectric properties.

!!\

\\

Figure 8.23: Tipes of capacitor
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Figure 8.24: Symbols of fixed and variable capacitors

Capacitance of capacitors

The amount of charge a capacitor can
store depends on the value of capacitance
of the capacitor. The capacitance C of
a capacitor is defined as the ratio of the
magnitude of the charge on either plate to
the magnitude of the potential difference
between the plates. It is the amount of
charge required to raise a unit potential
difference between its plates. Capacitance
C i1s measured in Farad (F).

| Farad =lcoulomb/volt.

Other units of capacitance are just
multiples of the farad. For example,
microfarad (1 uF =10""F ) and picofarad
(lszlU_le). Seme capacitors are
designed to store significantly higher energy
(large number of charges) ranging from few
farads to even thousands of farads. These
capacitors are termed as supercapacitors,
ultracapacitors, or double layer capacitors.

A capacitor can be neutral, charging, or
discharging. Suppose a capacitor with
plates M and N is connected to a battery
of e.m.f, V. When the switch S is open

as in Figure 8.25, the capacitor plates are
neutral. When the switch is closed, the
electrons from plate M will be driven by
the battery and start accumulating on plate
N. This movement of electrons creates
potential difference between plates M and
N. The motion will stop only when the
voltage across capacitor C (V_) becomes

- equal to V, less the potential difference

across K.

VWA

Figure 8.25: Capacitor charging circuit

It should be noted that the energy required
to transfer electrons from one plate to the
other is provided by the battery. It is this
energy which the capacitor stores between
its plates. The electrons do not cross the

gap between plates due to presence of
dielectric material between the plates.
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Experiments show that the quantity of
charge Q on a capacitor C in Figure 8.25
is linearly proportional to the potential
difference between the conductors; that
is, Qo< V. Therefore, Q =kV where k
is a constant of proportionality called
capacitance; denoted by C,

(8.27)

Capacitance of a parallel plate capacitor

Consider a capacitor consisting of two
parallel conducting plates, each of area
A separated by a distance d that is small
compared to the dimensions of plates. When
the plates are charged, the electric field
between the plates is uniform (Figure 8.26).
Each plate is connected to one terminal of a
battery, which acts as a source of potential

difference. Let us assume the plate acquire

charge Q.

+Q E ©
_+—b-
+ —p-
+—-
+ — -

+— -

L:'.'rl + — -
.1_

%— i —>
Figure 8.26: Charged plates of a parallel plate
capacitor

The magnitude of the uniform electric
field due to charge Q on the plate with
o_0Q

surface area A is given by; E=—=——.
Eil AEﬂ

Since the field is uniform, the potential
difference between the plates is V = Ed.

It then follows that; V = E
Ae
Then,
A
2 = A€, (8.28)
V d

Comparing equations (8.27) and (8.28)
you will get,
Ag
C =—=

d

If the capacitor is made of any N parallel
plates, then,

(8.29)

(V-1)4e,
d

Thus, the capacitance of a parallel-plate
capacitor is directly proportional to the area
of its plates and inversely proportional to
the plate separation.

8.3.2 Factors affecting capacitance
of a capacitor

From equation (8.29), the capacitance of

the capacitor depends on surface area of

the plate, distance between the plates, and

dielectric material used.

(a) Surface area

The capacitance of a capacitor increases
as surface area That is,
capacitance is proportional to the surface

increases.

area of the plate. The larger the surface
area the larger the charge accumulated.
Therefore, the construction of capacitors
is such that, the area of the parallel plates
are large enough.




(b) Distance between the plates

Capacitance of a capacitor is inversely
proportional to the distance between the
plates. That is, the larger the distance
between the plates, the smaller the
capacitance of the capacitor and vice versa.

(¢) Dielectric material

Capacitance of a capacitor depends on the
dielectric constant of the material used
between the plates. Dielectric constant
of the material is the ratio of capacitance
of a capacitor with dielectric material to
capacitance without dielectric material
(with air or vacuum).

o0

Without dielectric material, C,= and

with dielectric material, C = %.Therefore,

dielectric constant, € = L3 £ = 5
stant, €, C y B, c .
Also, £ 1s called the relative permittivity
of the dielectric material. Some materials
offer less opposition to field flux for a given
amount of electric field force. Materials
with a greater permittivity allow for more
field flux (offer less opposition), and thus
a greater collected charge for any given

amount of field force (applied voltage).

Action of dielectric material

If a dielectric material contains polar
molecules, they will generally be in
random orientation when no electric field
is applied. Application of electric field
polarizes the material by orienting the
dipole moments of the polar molecule.
The dipoles are aligned in the direction of
the field, and the electrons in the opposite
direction (Figure 8.27).

Electrostatics

+Q -Q
+ = » -
+— . + = -
+ | & gl
- i o
+ = > -
i + =
+ - > -

Figure 8.27: Effect of a dielectric on
capacitance of @ capacitor

Thus, each polarized molecule has an
excess of positive charge on one end, and
an excess of negative charge on the other
end. These charges are of opposite signs
to the charges on the plates, and so reduce
the potential difference between the plates
(compare Figures 8.27 and 8.28).

+Q -Q

Bl e e =

+ f— > <

+ ]

+ - +P-
< [ —»

- d —>

Figure 8.28: Capacitor with partially filled
dielectric

The induced electric field E, reduces
the electric field between the plates and
therefore, reduces the potential difference
eventually the capacitance increases.
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Consider the dielectric material of
permittivity £ partially filling between
the parallel plate capacitor as shown in
Figure 8.28. The voltage across the plates
iIs V=Ed . Hence, V=V _ +V

air dielectric®

V = E(d—1)+ E1. Therefore,

V=Ed-1)+ Er
£

r

(8.30)

E . o
where E'_ =— and ¢ is the thickness of
£

r

the dielectric material.

Using the relationship of Eand Q and
simplifying the equation (8.30);
0 Aeg

[

|4 t

(d—1)+—
>

Since Q is the capacitance of a capacitor,

then,

Ag
C — [

[
(d=1)+-
Er
If there is no dielectric material between

the plates (plates in vacuum) ¢ =0, then,
_Ag,
o 7
If the dielectric slab fills completely the
space between the plates that is, d =1,

A€ £
then, C = —2=

N eomplesia)

A parallel plate capacitor having plate area

100 cm®and separation 1.0 mm holds a
charge of 0.12 uC when connected to a
120 V battery. Find the dielectric constant
of the material filling the gap.

hence, C=C g, .

Solution
From equation (8.29),

Ae , ;
C',_ = —= then capacitance with no
dielectric material is,
_ 8.854x10™ C'N''m ™ x100x10* m*

Cﬂ -3
1.0x10 " m
=8.854x10" F
The capacitance with dielectric material,
—5
C=g=0.12x10 C — IX10°F
% 120V
The dielectric constant is;
-9
e=L. 18 _; 5

" C 8854x10"F

Therefore, the dielectric constant of
the material is 11.3.

' 8.3.3 Combinations of capacitors

A capacitor with certain capacitance may
be required in practice although they
may not be commercially available. The
required specification can be obtained by
combining capacitors. Many combinations
are possible, but the simplest combinations
are a series connection or a parallel
connection. In these combinations two or
more capacitors are often involved.

Capacitors in series

A schematic diagram of a series connection
is shown in Figure 8.29. Three uncharged
capacitors of capacitances C,,C,, and C,
are connected across a battery of constant
potential V. Let the charge Q be placed
on the plates of each capacitor.




——
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Figure 8.29: Capacitors in series

It follows that, V=V +V,+V.. From
equation (8.27), it can be shown that:

V:L.Q__f_g.__i_.g.’ V:Q _1-+,l.+,l.
€ & €, g 0 £

4 1 1 |
Q [C C CJ

The quantity, g is the equivalent

capacitance C,, of a single capacitor of

which charge Q and the potential difference

V is the same as for the combination.
Therefore, the combination of capacitors

can be replaced by an equivalent capacitor
of capacitance C, obtained by,

1 't 1 13
€ |8 & £

Generally, for n number of capacitors
connected in series, its effective (equivalent)
capacitance is given by,

For two capacitors in series, the effective
capacitance is,
— CICJ
T C+C,

Electrostatics

For three capacitors in series,

. GGE
“ CC,+C,C, +CC,

Capacitors in parallel

Capacitors are said to be connected in
parallel when their positive terminals are
connected together and their negative
terminals are connected together. In this
configuration, the potential difference
for all individual capacitors is the same.
Figure 8.30 shows the capacitances C,
C,,and C, connected in parallel across
a battery of constant potential V.

Cr’

-
|
|

+ -
|
I

i
I

|
I
C
|
I
c
|
1

Figure 8.30: Capacitors in parallel

Let charge on capacitors C,, C,, and G,
be Q,, O, and Q,, respectively. The total
charge Q of the combination, and thus the
total charge on the equivalent capacitor is

Q=0,+0,+0,

Q=CV+CV+CYV

%=Q+Q+Q

The ity 2.4 1vi
quantity = is the equivalent

capacitance C, of the capacitors. Thus,

C, =C+C,+C,
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Generally, for n capacitors connected
in parallel, its effective (equivalent)
capacitance is given by,

C, =C+C+C+..+C, or

" \Bamplesis)

Two capacitors of capacitances
C,=6.0 uF and C, = 3.0 uF are
connected in series across a battery of
18 V. Find

(a) the equivalent capacitance.

(b) the charge for each capacitor.

(c) the potential difference for each

capacitor.
Solution
C.C,
(a) From equation, C,, = ———;
A Y C+C,

_6x10° Fx3x10° F
“  (6+3)x10°F

=2%x10°F

The equivalent capacitance of the two
capacitors is 2x10™°F.

(b) Using Q=CV,
Q=C,V
0=2%x10"Fx18 V=3.6x10" C

Therefore, the charge of each capacitor
is 2X107%F

: Q
U V==,
(c) Using C'

y_Q _36x107°C _

6x107°
V,:g:—?’ﬁ (l C=12V
- C, 3xI0"F
Therefore, the potential difference
across capacitor C, and C, are
6 Vand12 V, respectively.

—\eemplesie) |

In Figure 8.31, determine (a) the equivalent
capacitance, (b) the total charge on each
capacitor.

6 pF 6 uF 6 uF

o7 G G
IpE
.|
LI
C.

+

Figure 8.31: Capacitors in series and parallel

Solution

(a) From Figure 8.31 capacitors
C,, C,,and C, are in series. Thus,
their equivalent capacitance is

L = i+ L + L It then follows

C" c G €
that,
1 1 1 1 |

— - + — 5
C’ 6UF 6UF 6UF 2uF
hence, C’'=2 uF

Now, capacitors C,, C,, C,, are
replaced by Q'. This will make C”
and C, to be connected in parallel.
Then,

C,=C+C,=(2+3) pF=5uF

Therefore, total capacitance is 5 [F.




(b) Since capacitors C,, C,,and C, are
in series connection; then, they will
have the same charge: Q'. Therefore,
the charge Q' on each of capacitors

C,,C,,and C,is Q'=C'V.
0 =2x10"° Fx10'V=20°C

The charge on capacitor C, is
Q0 =CcV
Q,=3x10"Fx10V =30uC

8.3.4 Energy stored in a capacitor

Once the charging of a capacitor has
begun, the addition of electrons to the
negative plate involves doing work
against the repulsive forces of electrons

which are already there. Equally, the
removal of electrons from the positive

plate requires work to be done against the
attractive forces on the positive charges
on that plate. The work which is done is
stored in the form of electrical potential
energy.

To find the energy stored, suppose that
a capacitor of capacitance C is already
charged to a potential difference Vand that
the charge on its plate is Q. If a small charge
dQ 1s to be increased on the capacitor
plates, the work dW is needed to do the
transfer. Hence,

dW =VdQ

Electrostatics

The total work W needed to increase the
capacitor charge dQ from zero to Q is
such that:

v av-[vag

W= di :g (8.31)
o C 2C

The other expressions for energy stored
in the capacitor are;
cv’® oV

2

W= or W

This work done is stored as electric
potential energy between the plates of the
capacitor.

Therefore, equations for energy stored in

2

L O
*2QV 2C

the capacitor is

Energy density of electric field

The energy density denoted by 5 is defined
as the electric potential energy stored per
unit volume of the electric field (volume
between the plates).

totalenergy stored
volume of electric field

Energy density, 1=

If the plate area is A and the separation
is d, the energy density of a parallel plate
capacitor is

£ A >
1eoy? ( . }EHT
Ad 2 Ad
1 2
sn= EEﬂE' (8.32)
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U Tsksr

Your physics teacher has tasked you to
design a circuit that utilises capacitors in
different configurations (such as series,
parallel, or a combination) to either
maximize energy storage or reduce
charging time. Analyse the designed
circuit to achieve the intended goal.

“eampiesir)

Calculate the magnitude of the electric
field required to store L.00J of electric
potential energy in a volume of 1.0 m’
in vacuum.

Solution

Using equation (8.32),

E= 2_17_ 2%1.0Jm™

g, 8.85%x107" C*'N'm™

=4.75%10° Vm™' |
|

The magnitude of electric field is
4.75%10°Vm™,

—\Bamplesis)

An uncharged capacitor of capacitance

C,=8 uF is connected to a power
supply and charged to a potential
difference V =120V. The power supply
is disconnected. If another uncharged

capacitor of capacitance C,=4 uF is

connected to the capacitor C,, determine:
(a) the final potential difference across
each capacitor;

(b) the final charge on each capacitor;

(c) the initial and the final energy of the
system; and
(d) account for the energy difference.

Solution
(a) From conservation of charges,

CV,+CV,=(C,+C,)V, where

V, is the final common potential

difference.
V. = Msince V,=0; then
& C+C,

_ CV, 8uFxI20V

r7c+C, T (8+4)pF SRR

Therefore, the final potential
voltage is 80 V.,

(b) The final charges on each capacitor,

Q,=C,V, =4x10° Fx80 V=320 uC

The final charges in capacitor C, and C,
are 640 uC and 320 pC, respectively.

(c) The initial energy 1s the one stored

in capacitor C,,
uf.:%qvj:o.s;xsxlo* Fx(120 V)*

=0.0581]
Therefore, the initial energy is 0.058 J.

The final energy is the one stored in
capacitors C, and C,. That is,



I .4
u,=2{c+c)v;

= %(84-4))( 10 Fx(80 V)’
=(.0384

Therefore, the final energy is 0.0384 J.

(d) The final energy U, is less than the
initial energy U, ; this is because the
difference in energy was converted
to other forms of energy like thermal
energy on the connecting wires and
plates of the capacitors.

8.3.5 Charging and discharging a
capacitor

When a voltage is applied across the

terminals of a capacitor, the potential cannot

rise to its final value instantaneously. As the

charge builds up, it tends to repel addition of
further charge. The rate at which a capacitor

can be charged or discharged depends on
its capacitance and the resistance of the
circuit through which it is being charged
or discharged.This fact makes a capacitor
to be a very useful component in timing
circuits needed in variety of circuits ranging
from clocks to computers.

Charging a capacitor

Suppose the capacitor in Figure 8.32
was initially uncharged; then, potential
difference V. across it is zero at t=0.
The switch, § is closed and the capacitor
starts charging and the voltage V.
increases and the potential difference
across the resistor R V, decreases.

Electrostatics

T
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Figure 8.32: Charging of a capacitor

At an instant of timet, V = V.+V, then,

C R RC RC

Note that, current 7 (dQ/ dt) is the rate
at which positive charge arrives at the top
(positive) plate of the capacitor.

_dQ_VC-Q _dQ _ di

] : =
dt 86 VC-Q RC
Integrating both sides:
J'Q dQ _ | fdr
0 '@-VC RC 7o
Q-vC t .
I-H e .
[ v ) RC which gives

¥e-Q _ e k¢ Therefore,
CcV

Q=vc{l-e'ﬁLfJ

Initially, at 1 = 0, Q=VC(1-¢")=0

(8.33)

At an infinity time of charging Q=vC
which is the final maximum charge on
plates of the capacitor when fully charged.
The quantity RC in equation (8.33) is
called the time constant, denoted by 7. It
is a measure of how quickly the capacitor
charges. When 7 1s small, the capacitor
charges quickly, when 7 is large, the
charging takes more time.
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An alternative to equation (8.33) is that
of instantaneous current / instead of
charge Q. Taking time derivative of Q in

equation (8.33),
/= d—Q = EL’_F where -Ez / (this is

dr R
maximum possible current)

I=1g¢ & (8.34)

Equations (8.33) and (8.34) can be
represented graphically as shown in
(Figure 8.33).

(£ ¥ I A

('J-I

0

(a)

Figure 8.33: Variarion of (a) charge versus time
and (b) current versus of charging

(b)

capacitor

Discharging a capacitor

Suppose a fully charged capacitor is
connected to a resistor with an open
switch (Figure 8.34). The switch is closed
at +=0, at this time the charge on the
plates of a capacitor is @Q,. The capacitor
then discharges through the resistor, and
eventually decreases to zero.

7

|+
~
|
e

Figure 8.34: Discharging a capacitor

At an instant of time r; V +V =0,
V. ==V hence, IR:—Q' But current

is the rate of change of flowing charge,

hence, @=——£. [t follows that,
dt RC

joﬂ—— Fi‘inte rating and

0, Q ol

rearranging you get;

Q

(]

0 1 :
In| = |=———. Applyving the exponent
{ RC pplying p
to both sides:

QzQUL,_Rc (8.35)

The instantaneous currents /, 1s the time

derivative of Q in equation (8.35),

DNY-42_ 0 5
dt RC

b

!

i =—I"£‘_‘E‘ (8.36)

Graphically, equations (8.35) and (8.36)
are as shown in Figure 8.35.

oA 1A
QU
i} -1
“ g : /
I

(a) (b)

Figure 8.35: Variation of (a) charge versus
time and (b) current versus time of

a discharging capacitor
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Different media report that various
regions in Tanzania are prone (o
frequent lightning and thunderstorms,
which can occasionally cause damage
to property and loss of life. As an expert
in electrostatics, design and construct
an electric field sensor capable of
detecting and measuring the strength
of electric field.

N Eamples1s) |

A 10 MQ resistor is connected in series
with an uncharged 1.0 pF capacitor and
battery with e.m.f. 12.0 V.

(a) What is the time constant?

(b) What fraction of the final charge is

on the capacitor at 1 =46s?

(¢) What fraction of the initial current

is still flowing at r =46s7

Solution
(a) Time constant:

From? = RC,
T=10x10° Q2 x1.0%x10°F=10s

Therefore, time constant is 10 seconds.

(b) Using equation (8.33),

46
Q=[|_~e'ﬁ]=o.99
cV

The fraction of the final charge on the
capacitor is 0.99.

Electrostatics

(¢) Fraction of the initial current can
be obtained using the relation that

Therefore, the fraction of the initial
current still flowing 1s 0.01.

“\eamples20)

Uncharged capacitor is connected in
series with a resistor and a source with
e.m.f. of 110 V. Just after the circuit
is completed, the current through the
resistor is 6.5x 107 A.The time constant
for the circuit is 5.2 s.

(a) What is resistance of the resistor?
(b) Find capacitance of the capacitor.

Solution
(a) The resistance of the resistor

Initially (at £ = 0), the current through
the resistor is

¥ o V10V
° R I 65x107°A
=1.7%10°R

Resistance of the resistor is
1.7x10° Q

(b) The capacitance of a capacitor.
Since 7= RC; then,

g=te, 228 Gt E

R 17x10°Q

The capacitance of the capacitor is

3.1 F.
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~emplesat)

A 5.0 uF capacitor is charged by a

12V supply and is then discharged

through a 2.0 MQ resistor.

(a) What is the charge on the capacitor
at the start of the discharge?

(b) Find the charge and p.d across the
capacitor after 5 seconds from when
the discharge started.

(c) What is the current in the circuit after
the 5 seconds?

Solution
(a) The charge on the capacitor at the
start of the discharge.

Q =VC,
Q =12Vx5x10™° F=60 uC

Therefore, the initial charge is
60 uC.

(b) After 5 seconds
il
From Q=Q e *¢

5

0=60x10" Cx e‘[ 20510 N 3614 uC

Therefore, the charge on the capacitor
after 5 seconds is 36.4 uC.

Then the p.d. is,

v _0Q_364uC

C o UWF

=73V

(c) The magnitude of the current in the

I

circuit is given by, J =] ¢ k€

5
I=6pAxe '"=3.64 nA

l.

A 500 pF capacitor with a charge

of 300 uC is discharged through a

resistor.

(a) What is the initial discharge
current?

(b) What is the current after 20 s?

Describe the charging and
discharging of a capacitor through

aresistor.

Derive an expression for the energy
stored in a capacitor of capacitance
C having a charge Q on its plates
and hence, or otherwise, deduce
the energy stored by a parallel plate
capacitor per unit volume in terms
of the electric field intensity E and
the permittivity of free space € .

A charged capacitor of capacitance
4 F is connected in series with a
resistance R, micro ammeter, and
key. What do you think will happen
when the key is closed? If the time
taken for the charge to reduce tohalf
its maximum value is found to be
1.3x 10~ seconds, determine;

(a) the circuit time constant.

(b) the time taken for the charge

on the capacitor to reduce to
1.25%107 C from7.5x 10~ C.

Two identical charged spheres of
charge 93 pC are suspended by light

T



inelastic strings of equal length of
29 cm. The strings make an angle
of 40°with each other. When
suspended in a liquid of density
800 kgm™, the angle remains the
same. If the density of the spheres is
2600 kgm*, determine the relative
permittivity of the liquid.

. Two capacitors of capacitances

2 uF and 3 pF are charged to p.d.
of 100 V and 250 V, respectively.
Find:

(a) The energy stored in each
capacitor.

(b) The loss in energy if the
capacitors are connected
together by wires with plates of
similar charges joined. Account
for the loss of energy.

7. (a) (i) Explain what is meant by

dielectric constant?

(i) A sheet of paper 40 mm wide
and 0.015 mm thick between
metal foil of the same width is
used tomakea 2.0 pF capacitor.
If the dielectric constant of the
paper is 2.5, what length of
paper is required?

(b) Two capacitors of capacitances
30uF  and 5.0pF are
connected to form a potential

Electrostatics

divider with a 5.0 uF capacitor
across a 6.0 V battery. If the
input voltage supply is 12.0 V
what are the two possible
amounts of energy stored in a
3.0 uF capacitor?

8. (a) The plates of a parallel plate air

capacitor consisting of circular plates
each of radius 10 cm. placed 2 mm
apart, are connected to the terminals
of an electrostatic voltmeter. The
system is charged to give a reading
of 100 V on the voltmeter scale.
The space between the plates is then
filled with il of dielectric constant
4.9 and the voltmeter reading falls to
24 V. Calculate the capacitance of
the voltmeter. You may assume that
the voltage recorded by the voltmeter
is proportional to the scale reading.

(b) Two capacitorsC, andC, are

connected in series and then
charged with a battery. The battery
is disconnected and C, and C, still
in series, are discharged through an
80 MQ resistor. The time constant
for the discharge is found to be 4.8
seconds. Calculate:

(i) The capacitance of C, and C,
in series; and

(ii) The capacitance of C, if C,

1
has a capacitance of 10 uF.
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I.(a) Calculate the force between two

charged particles each carrying
a charge of 1.0 C when they are
placed in air 1m apart. Use the
result to define the SI unit of
charge.

(b) Two charges q, =2x%107° C
and ¢,=4x10" C are held
at a distance 4 =1 m apart.
Calculate the force exerted by
these two charges on a charge
Q=107 Cif it is placed half
way between them, and locate
the point between the two

charges where the net force
vanishes.

2. (a) Charges 4,4, q;, and 4,

are placed at the corners of
a square of side a=2m. If
4,=9,=¢,=0=1C and
q, =—0. Find the electric field
at the center of the square.

(b)(i) An electric dipole consists of
10 uC and =10 puC charges
separated by 2 cm. Find the
electric field intensity at a
distance of 8 cm from the
—10 puC charge on the coaxial
axis on the side of the 10 pC.

(11) Two point charges A and B are
situated 8 cm apart. Point A
has a charge of -3¢ and B has
acharge of +2¢q. Where should

a particle C having a charge of
—¢ be placed so that it does not
experience a resultant electric
force?

3. The electric field just above the

earth’s surface is known to be
E =130 NC™". Assuming that this
field results from a spherically
symmetrical charge distribution
over the earth, find the total charge
Q, on the earth. (The earth’s radius,
R, = 6400 km)

. Two masses m with equal charges

O are suspended by light strings of
length / from a fixed point. If the
strings hang at @ to the vertical, show
that Q° = (4ne )41’ mgsin’ BtanO

. Acylinder of radius R has uniform

charge density pem™.

(a) Show that the magnitude of
the electric field E directed
anywhere is E(r)= R‘p.

2re,

(b) Plot E as a function of rthe

distance from the axis of the

cylinder.

. Acharge of 5.0 nC is placed at 0 cm

mark of a meter stick and a charge
of —=4.0 uC is placed at the 50 cm

mark.
(a) What is the electric field at the
30 em mark?

(b) At what point along a line
connecting the two charges is
the electric field zero?

R EEEEEEENT————



7. Two large horizontal parallel metal

plates are 2.0 cm apart in vacuum
and the upper is maintained at
positive potential relative to the
lower so that the field strength
between them is 2.5%10° Vm™.

(a) What is the p.d between the
plates?

(b) If an electron of charge
1.6 107" C and mass

9.1x10 "' kg is liberated from
rest at the lower plate, what is
the speed on reaching the upper
plate?

. The force of 3.2x 107N is required
to move a charge of 42 uC in an
electric field between two points 25
cm apart. What potential difference
exists between the two points?

. A charge of 5.0nC is at (0,0) m
and a second charge of -2 nC is at
(3,0) m. If the potential is taken to
be zero at infinity:

(a) What is the electric potential at
point P(0,4)m?

(b) Whatis the potential energy of
a 1.0 nCcharge at point P?

(c) What is the work required to
bring a charge of 1.0 nC from
infinity to point P? and

(d) What is the total potential energy
of the three charge system?

10. Suppose the two plates of a capacitor

11.

Electrostatics

have different areas. When the
capacitor is charged by connecting
it to a battery, do the charges on the
two plates have equal magnitude, or
may they be different? Explainyour
reasons.

Aparallel-plate capacitor is charged
by being connected to a battery and
is kept connected to the battery. The
separation between the plates is then
doubled.

(a) How does the electric field
change?

(b) How does the charge on the
plates change?

(c) How does the total energy
change?

. (a) Explain the differences between

dielectric strength and dielectric
constant,

(b) The dielectric constant of water
is approximately 81 larger than
most insulators. Explain briefly
why water is not commonly used
as a dielectric in capacitors.

(c) Liquid dielectrics that have polar
molecules (example water)
always have dielectric constants
that decrease with increasing
temperature. Why?

. A parallel plate capacitor has

plates with the area of 0.2 m’




14.

15

16.
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and separation of 0.01 m. The
capacitor is charged to a potential
difference of 200V and the power
supply is disconnected. A dielectric
slab (¢ = 4 ) of thickness5 mm
is inserted between the plates.
Calculate:

(a) The final charge on each plate;

(b) The final potential difference
between the plates; and

(c) The final energy in the capacitor.

The area of each plate of a parallel
plate capacitor is 0.6 m®, and the
distance between the two plates is
2 mm.

(a) Calculate its capacitance?
(b) What will be its new capacitance
if half the space between

the plates is filled with mica
(e, =8)?

A parallel-plate capacitor is located
horizontally so that one of its plates
is submerged into a liquid, while the
other is above the liquid surface. The
permittivity of the liquid is equal to
g, its densityisequal to J. Towhat
height will the level of the liquid in
the eapacitor rise after its plates get
a charge of surface density 5?

A parallel-plate capacitor has space
between its plates filled with two

slabs of thickness %and dielectric

i

18.

19.

constants k and k,, d is the plate
separation of the capacitor.

Show that the capacitance of the
capacitor is given by:

C = anA klkl
d |\ k+k,

By considering energy of an isolated,
charged parallel plate capacitor,

obtain an expression for the force
between its plates.

When a capacitor, battery, and a
resistor are connected in series,
does the resistor affect the maximum
charge stored on the capacitor? Why?

Show that the time constant RC has
units of time.

20. The plates of a capacitor of

21.

capacitance 2.0 UF carry opposite
charge of 10 mC. The plates are
connected across a 5.0 MQ resistor.

(a) Find the charge flowing through
the resistor during the time
interval of 2.0s.

(b) Find the amount of heat
generated in the resistor during
the same interval.

(a) What is an equipotential surface?
(b) Sketch the form of the

equipotential surface and the
electric lines of force for:

I
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(1) A point charge; buildings and people are crowded.

(ii) A charged conducting Design a system that is safe and can
sphere; and reduce dust particles in rooms (Hint:
(ili) A pair of parallel Consider electrostatic precipitators).
conducting plates when 23. Soil moisture content is an important

one plate has a negative
charge and the other has
an equal positive charge.

aspect in agriculture. Measurement
of soil moisture content can be done
using capacitors as soil moisture

22.In towns and cities around the sensor. Design a soil moisture sensor

country, dust is one of the biggest and suggest how to calibrate it. (Hint:
challenges in offices and residential Soil moisture can be considered as
houses, especially in areas where dielectric material).

B Poiccvork

Select an area of your interest related to Physics, then design and conduct a project.




Physics for Advanced Secondary Schools

Name Symbol Constant
Acceleration due to gravity g 9.8 ms™
Avogadro’s number N, 6.023x 10" mol™
Boltzmann’s constant kg 1.38x 107 JK™'
Density of air P, _ 1.29 kg/m’
Density of fresh water P, 1000 kg/m*
Electron rest mass m, 9.1x107" kg
Electronic charge e 1.602x10™" C
Gravitational constant G | 6673x10™" Nm’kg™ i
Mass of the earth M, |598x10" kg
Mass of the moon M, 7.35%x10% kg
Mass of the sun M, | 1.99x10" kg
Mean density of earth P: | 5.522x10"kgm™
C?;?lljgl?le;:':;?li”y ofairat C, 29.1JK 'mol ™’
Vol o SCH | .0 2
Permeability of free space U, 4nx10”7 Hm™
Permiltivity of free space & 8.854x 107" Fm™'
Radius of the earth e 6.4x10° m
Radius of the moon "y 1.74x10° m
Radius of the sun T 6.96x10" m
Refractive index of glass n 1.5
Specific heat capacity, water C, | 42klkg”’K

“ S;_Jeciﬁc latent hea? ;f_fllsion, ice f: 1336 k.lk_g"'
f{zzf:lﬁc latent heat of vaporization, L 2268 kJkg
Speed of light in vacuum c 2.998x 10% ms '
Speed of sound in air (at 0°C) v 3.32x10° ms™'
Standard atmospheric pressure Py 7.6x10°> mmHg or 1.013x10" Pa
Stefan-Boltzmann constant o 5.671x10™ Wm~ K™
Triple point of water T 0.01°C=273.16 K
Universal gas constant R 8.31 Jmol 'K




Glossary

Absolute zero temperature
It is zero point (T =0 K or—273.15°C)
temperature at which system of molecules
(such as a quantity of a gas, a liquid, or
a solid) has its minimum possible total
energy (kinetic plus potential)

Accuracy
The degree of closeness between a
measured or calculated value and the true
or accepted value of a quantity

Adiabatic process
Thermodynamic process in which there
is no heat exchange between the system
and surrounding

Alternative hypothesis
A hypothesis that a researcher tries to
prove

Amplitude
The maximum displacement from the
equilibrium position during a cycle of
periodic motion; also, the height of a wave
Angle of contact
The angle made between the contact
surface and tangential line on liquid
meniscus
Angle of projection
An angle made between the horizontal
direction and the initial velocity of a
projectile
Angular momentum
The produet between radius and linear
momentum of a rotating rigid body
Beat
The oscillation of wave amplitude that
results from the superposition of two sound
waves with almost identical frequencies
Blackbody radiation
Radiation emitted by a blackbody at a
given temperature

Capacitance
An ability of a capacitor to store charge
or the ratio of an object’s stored charge (0
its electric potential difference

Capacitor
An electric device used to store charge that
is made up of two conductors separated
by an insulator

Centre of mass
A point at which all the mass of the body
is assumed to be concentrated

Centripetal acceleration
The centre-seeking acceleration of an
object moving in a ¢ircle at a constant
speed

Centripetal force
The net force exerted towards the centre of
the cirele that keeps an object in uniform
circular motion and causes it to have a
centripetal acceleration

Coefficient of friction
The ratio of the friction force to the normal
force

Coefficient of restitution
The ratio between relative velocity of
separation to relative velocity of approach
Command
A word or combination of words that a user
types at a prompt to request a computer
to perform some operations

Composite conductor
A conductor made by joining two or more
conductors

Controlled variable
A variable that is kept constant during an
experiment to ensure that it does not affect
the outcome of an experiment

Crest
High point of a wave
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Critical velocity
The maximum velocity of streamline flow
which when exceeds, the flow becomes
turbulence

Damped oscillation
An oscillation whose amplitude decreases
over time due to dissipation of energy

Dielectric constant
The ratio between capacitance with
dielectric material to that without dielectric
material

Diffraction
A spread out of waves after passing in an
aperture or sharp edge

Diffraction grating
An optical element that disperses light
into its constituent wavelengths, creating
a spectrum of colours

Doppler Effect
The change in frequency due to relative
motion between a source of wave and an
observer

Elastic collision
Type of collision in which its total kinetic
energy is conserved

Elasticity
Ability of a material to retain its eriginal
shape and size after a remaval of deforming
force

Electric field
The region around a point charge in which
a brought test charge can experience
electrostatic force

Electric potential
Work done in moving a unit test charge
from infinity to a point in the electric field

Emissivity
The ratio of the rate of radiation from a
particular surface to the rate of radiation
from an equal area of an ideal radiating
surface at the same temperature

Equilibrium
A state at which the net force and net
torque on an object equal zero

Equipotential lines
Lines that illustrate every point at which a
charged particle would experience a given
potential
Equipotential surface
The surface with the same electric potential
Error
A deviation from exact or true value

Escape velocity
The minimum velocity a body may be
projected so that it escapes from the earth’s
gravitational force influence completely

Excess pressure
A difference between the inside and
outside pressure of a bubble

Expression
A combination of variables, numbers, and
operators used (o represent a value

Extension
An increase in length produced by a
deforming force

Field A property of a region of space that
can affect objects found in that particular
region

Fluid
A substance that can flow such as liquid
and gas

Free fall
The motion of a body when air resistance
is negligible and the motion can be
considered due to the force of gravity
alone

Free-body diagram
A physical model (a picture) that represents
the forces acting on a system

Friction
A force acting parallel to two surfaces in
contact; il an object moves, the friction
force always acts opposite the direction
of motion




Gravitation
The force of attraction between two bodies
that tend to pull them towards each other

Gravitational field The field that surrounds
any objects with mass; equals the universal
gravitational constant, times the mass of
the object, divided by the square of the
distance from the object’s centre

Hypothesis
A proposed explanation of a phenomenon
made out of limited information used as
a starting point for further investigation

Ice point
The equilibrium temperature of ice and
waler at standard pressure

ICT
Stands for Information and Communication
Technology, a set of tools used for
capturing, storing. processing, and
transmitting information

Impulse
The product of force and time or simply
is the change in linear momentum

Inclined plane
A plane oriented at any angle with the
horizontal

Inelastic collision
A collision in which kinetic energy is
not conserved, as oppesed to an elastic
collision, in which the total kinetic energy
of all objects is the same before and after
the collision

Inertia
Ability of a body to resist change of state
of linear motion

Interference
A combination of wave fronts to form
secondary wave fronts

Isobaric process
A thermodynamic process which occurs
at constant pressure

Glossary

Isochoric process
Thermodynamic process which occurs at
constant volume

Isothermal process
A thermodynamic process which occurs
at constant temperature

Lagged conductor
An insulated thermal conductor

Lamina A rectangular sheet
Laminar flow
A steady flow is attained if each particle of
the fluid follows a smooth path and fairly
slowly in straight lines with constant speed
Least count
The smallest value which can be measured
accurately by an instrument

Liquid-in-glass thermometer
The thermometer which uses liquid as
thermometric substance for example,
mercury and alcohol

Measurement
A comparison between an unknown
quantity and a standard

Methodology
A systematic application of tools and
techniques used to address a research
problem

Moment of inertia
Ability of a rigid body to resist change of
state of rotational motion

Momentum
The quantity of motion that an object has,
equal to an object’s mass multiplied by
that object’s velocity

Null hypothesis
A hypothesis that a researcher tries to
disprove

Orbit A circular path described by an object
around another

Oscillation
To-and-fro motion about a fixed point
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Peer review
A process by which proposed research
findings are evaluated by other experts
in a field

Physical quantity
A property of a material that can be
quantified by measurement

Pitch The highness or lowness of a sound
wave, which depends on the frequency
of vibration

Point charge
A charge which is considered to be a source
of electric field

Polarization
A process of restricting transverse waves
to vibrate in one plane

Precision
A characteristic of a measured value
describing the degree of exactness of a
measurement

Program
A set of instructions a computer executes
to solve a task

Progressive waves
Travelling waves that transfer energy from
one point to another

Projectile
A body moving in air or space under the
influence of gravitational force

Prompt
A place provided by asoftware where users
can type commands, usually denoted by
special symbols

Pyrometer
An instrument for measuring high
temperatures using thermal radiations
emitted by a hot source

Radius of gyration
The distance between the axis of rotation

and the point where the mass of a body is
considered to be concentrated so that its

moment of inertia about that point remain
the same

Random error
An error which has an equal chance of
being positive or negative about the mean
value

Restoring force
A force that restores an oscillating object
to its equilibrium position

Rigid body
A body that retains its shape and size when
subjected to external force

Rotational motion
Type of motion for which the particles in
an object follows different circular paths
centred on a straight line called the axis
of rotation

Scientific method
The systematic process of observing,
asking questions, and seeking answers
through tests and experiments

Software
A set of programs together with associated
documentation
Spreadsheet software
Software that organises and manipulates
data in tabular form (rows and columns)
Static friction
A resistive force to a body just before it
starts moving
Stationary waves
Waves which propagate without
transferring energy
Strain An extension produced per unit length
Streamline flow
A flow of fluid at constant velocity or speed
Stress
A deforming force per unit cross section
area
Surface energy
The work done by surface tension in
changing a unit surface area of a liquid




Surface tension
An elastic tendency of a fluid surface which
makes it acquires the possible minimum
surface area

Systematic error
An error which is constant in one direction

Tension
A force acting along stretched material
Terminal velocity
The maximum constant velocity attained
by object moving through a fluid

Test charge
A charge which experience electrostatic
force when placed in electric fields

Thermal conduction
Transfer of heat in solids

Thermal conductivity
A measure of ability of material to conduct
heat through it

Thermal convection
The transfer of heat in a fluid by actual
movement of molecules

Thermal resistance
Ability of material to resist condugtion of
heat through it

Thermocouple
An electromotive thermometer used to
measure temperature

Thermodynamic scale
Scientific standard scale adopted for
measuring temperature

Thermodynamics
A branch of physics deals with interaction
between heat and other forms of energy

Glossary

Thermometer
A device used to measure temperature

Thermometric
A physical property of an object that
changes in a measurable way as temperature
changes

Thermometry
A branch of science which deals with the
measurement of temperature

Torque The moment of force which produce
turning effect

Trajectory
A path described by a projectile

Triple Point of water
The temperature at which pure ice, water,
and water vapour coexist in equilibrium

Turbulent flow
The movement of fluid with fluctuating
velocity or speed and direction

Ultrasound
High-frequency sound waves (above the
range of human hearing) used to probe the
interior of the body, much as X rays do
Uniform circular motion
The movement of an object or particle
trajectory at a constant speed around a
circle with a fixed radius
Un-lagged material
A non-insulated thermal conductor

Variable
A storage location in computer memory
used to store a value of a quantity. Variables
are usually denoted by names

Viscosity
Ability of a fluid to resist relative motion
of its layers and a motion of an object that
flows through it
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Chapter One

Exercise 1.1
2. ML

|
4- L ETE
3. 3.6km/

Exercise 1.2
1. (a)0.042 (b) 1.50 (c) 0.028 (d) 2.8 %

2. 7%
3. (9.11£09)°C

4. (9.74£0.26)ms™

Revision exercise 1
4. (3.1£0.2)cm

5. 8.4%
6. 1.49%

Chapter Two

Revision exercise 2
5. (9.74+0.26) ms "’

6. (b)32.22cm’

Chapter Three

Exercise 3.1

1. (a)4.85m (b) 4.54s
2. (b) 30N
3. (a) P21.08M (b) P=2.16 M

(b) 2ms™

5. (a) 3.92N (b) 4.62N (c) 6.93N
6. (a) 8400N (b) 112500Nm

(c) 6.25ms™",6328.125]
7. (¢)2.004ms™

Exercise 3.2

3. (b) 60°

5. (a) 20.4°,69.6°
(b) 27.1ms™",3.91s
(b) 17.29ms ™’

9. (a)57.3m

Exercise 3.3
(A B313ms™ (b) 1.28ms™
(b) 18.69m
(a) 3.33 rads™' (b) 266.67N
8.1°
(a) 16.04N(b) 2.72 s
88ms ™, 9.28ms ™

. 45.6°

11. 28ms ', 17.6N

® N A oE W

Exercise 3.4
6. 0.5%

8. 222x10°Nkg"
9. 3.13x10°J

10. 1.69Nkg™

12. 2.39kms™
13. (a) 380.03N
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14. 6.02x10™ kg
15. 250N

16. 1.16x10")
17. 2.66x10* ms™

Revision exercise 3
2. (b)2546 N, 424N

4. 9.77ms”
5. 7.87N,204cm
6. 04N
7. 2.86s,14.29m
8. No, 18.56 ms™' North
9. 40.3ms™', 30°to the horizontal
10. (a) 59842 kg

(b) (i) 8000kgs™ (ii) 6907.8ms™
11. (b) 341421 N

(c) (i) 1.4ms™

(i) 7ms >, 4.2ms >, 1.4ms -
(111) 33.6 N,16.8N

13. (b) 323.5m
14. 18.2s
15. 330.24m, 68.8ms”’
16. (b) 63.4°
21. 2.1ms™
23. 0.31
24, 22.5°
25. 4.34rads™
26. 1.62Nkg™', —2.8x10°Jkg™'
27. 3.4%10")
28. (b) 3.67x10°m

T

Chapter Four
Exercise 4.2
5. (a)2 x10"'kgm’ (b) 8 x10™"'kgm’
6. (a) 2.6 kgm’(b) 20.7 kgm’
(¢) 1.6xkgm’
7. (a) Tkgm®(b) 8kgm® (c) 3.5kgm’
8. 1.58x10" gcm’
9. 9.8x10" gem®

Exercise 4.3

1. (a) 8kgm’(b) 24kgm”

2. (a) 4x107 kgm? (b) 8x 10~ kgm’
(c) 2x 107 kgm’

3. 4.1kegm’

(a) 2.083x10”° kgm®

(b) 1.302x 10~ kgm’

(¢)1.5%107' kgm®

5. 1.25x%10"'kgm’

g

Exercise 4.4
1. 0.65m

2. 18cm
4. 529cm

Exercise 4.5

6. (a) 1.03s (b) 2lrevolutions

7. (a) 24Nm (b) 0.036rads™
(c) 1.07ms™

8. 236ms™

9. (a)l1.36N, 7.57ms ", 9.53ms"’
(b) 9.53ms ™"



Exercise 4.6

2. (a) Skgm’s”' (b) 0.4Nm

3. 17.5kgm’s™

4. 4.lrads™

5. 5.4x10° kgm’s™

6. (a) 2.67ms™ (b) 0.67 ms™
(c) —=1.001 rads™

Revision exercise 4

7. 2.29kgm’
8. 4.04%
13. (a) Srads™ (b) 1.5Nm (c) 115
14. (a) 1.5Nm (b) 42.39]
(c) 20.59rads ™
16. 15.78 s

18. 0.16kgm’

20. 52.9cm

21. (a)0.013rads™ (b) 3.14rads™
(c) 235.5s (d) 118

22. 4.8ms™

23. 0.3m

24. 226.08rads”

25. 4.85s,800revolutions

26. (a) 6 rads™, 3rads™
(b) 63rads™

Chapter Five
Exercise 5.1

2. (b)10em
6. 2.62cm

Answers

7. (a) 1.88x107°J (b) 10mm
8. 94x10"'Nm”'
9, 1.01 mm

Exercise 5.2
4. 11.1

5. 3.19ms™
6. 64ms’

Exercise 5.3
3. 165 mm
4. 10ms'
5, _L_
V2
Exercise 5.4
3. 1.98ms”

I 312ms”

Revision exercise 5
5. 2.57cm

6. 9mm

T 12

8. Scm

12. 1.0x10°Nm”*

13. 1.45%10°Nm™

14. (a) 1.98ms™'(b) 2.8m
16. 15.8ms™

18. (c) 0.941m of water

19. 318.5ms™'
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21. I5N
28. 3.77x%10°m’™

Chapter Six
Exercise 6.1

2, 2.64ms™

3. (a) 6.02x10" moles
(b) 3.63x10*' molecules
(c) 482.7ms™

5. 707.1 ms™

6. 1843.6ms ', 460.9ms™'

Exercise 6.2
3. (b) 64N
4. (b)(i) 5x10™
(i) 110" Nm™ (iii) 0.025]

5. (c) 6.4x10°Nm™, 0.06,
1.1%10" Nm™

0.041,0.08]
Im*,4.5kgm™
6.0x10"Nm™

e ® N A

2.9%10* m
11. 473g¢

Exercise 6.3
1. 60°C

3. 384.8°C
4. 57.8°C

87.08°C

6. 369.2K

7. (a) 369.4K (b) 369.4K
(c) 368.9K

8. 50°C

9 17.3°%

Exercise 6.4

1. (b) 500015 or5000W
2. 41.12187% 37.13°C
J. l16cm
4. 3825m
5. (a) 650Wm™

(b) 2.0%10*ms™
7. (b) 3°C

Exercise 6.5

_2. 10 minutes

3. (a) 24°C (b) 42.7°C
4. (a) 47°C (b) 15.4 minutes
5. 7.5°C/minute

Exercise 6.6

3. (a) 0.71 (b) 2.42

4. 1933K
5. 98.09]s”'
6. 5749K

Exercise 6.7

1. (a) 832.671 (b) 2.1x10%J
(c) 2.9x10)

2. (b) —6171.5)



3. (b) 228.25], (c) 684.75]
(d) 913 (e) 113.991
4. (a) 1520mmHg, 17°C
(b) 2006 mmHg , 110°C
5. =T1.2°%C
(a) 33.2Jmol 'K, 24.9Jmol 'K
(b) 1.3 (c) 99601)
9. 28.8mmHg

Revision exercise 6
3. 0.5mm, 0.25mm
4. 1128 gem™
5. (1.5 (b)6.0x107°m, 4.0x107°m
(c) 780N
7. (a) L1x107m (b) 1.5x107°J
8. (a) 50N
(b) 1.8x107"'m, 44x107)
(c) 0.85x10*m
(d)0.084 m from B
12. (a) 4.62moles (b) 240.3ms™’
13. (a) 6.20x107"]
(b) 2.33x10°m’s™

(c) 483.2ms™
17. 405.6kJ

18. 979%@, 1.5°C
19. 3.6Js™

20. B8.3°C

21. 9903W

22. 0.036 Wm 'K

23. 3 minutes

24,
25.
26.
217.
29,
30.
31.

32.
33.

Answers

138.4W

2]

10*]

(a) 2kJ (b) 450K (c) 192.8)

56.4°C

39.89°C

(a) 3.96x10°VeC,
3.2%10° Ve

(b 12:5%¢7

1.45%10'kgs™

2.673%10°Nm™

Chapter Seven

Exercise 7.1

6.
7.

10.

(a) 2Hz (b) 3.16ms*(c) 0.25ms ™'
(a)19.6kgs or 19.6Nm™

(b) 0.63 s, 1.58Hz (c) 49ms™

(d) 0.49ms™'

(a) 1.05x10°Nm~  (b) 36ke

(a) 0.13m (b) 0.159 Hz (c) 6.28 s

(b) 1.1s

Exercise 7.2

4.

326.6 ms™

Exercise 7.3

4.
5.

6.

260Hz

(a)144.34 ms™' (b) 0.6m
(c) 240.5Hz

299.57 ms™'

0.0l m
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8. (a) 5—_'::[-rat:l (c) 6cm

(d) 0.01sin5007t
9. (a)30ms”' (b) 0.017kgm™
10. (a) 82ms™' (b) 16.8m

(c) 4.88Hz
11. (a) 105Hz (b) 157.5ms "
12. (a) 3.2% (b) 6.78%

Exercise 7.4
3. 170Hz

4. 02m

5. (b) llecm

6. 5.044beats/second

7. 27.5beats/second

8. (a)333ms ', 360.5ms™
(b) 384.9ms™

9. 1367.6m

10. 100Hz

Exercise 7.5

5. 2.0x10°ms™

Exercise 7.6
2. 10mm., 12.5mm

3. 551.25nm
4. 0.09mm

5. 32um

6. 0.034mm
8. 0.74mm

9. L174

10. 1.51m, 1.33

Exercise 7.7
5.06 mm

6.79%x 107 m or 679nm
2072, 3P

640 nm, 480 nm, 28.7°
17.5°,36.9°and 64.2°

2

- -

374 lines per mm
10. 569x10° lines per metre, 5898A

Exercise 7.8

1. 56.8%,53.1° @A
2. (b) 53.1°

5. (b)1.6,32°

Exercise 7.9

1. 6.18beats/second

2, (a) 859Hz (b) 741Hz
3. (@lI8ms' (b)17.1ms™
7. 3x10'ms™

Revision exercise 7
240 ms '

30.16Hz

11.7ms™

3.43mm, 3.16mm
1.2

12. 8.7x10°m

13. 0.3I N,39N

14. 1.43%x10°Nm™

e @& h & -



15. 5.5x10"Hz, 3457A

16. (¢) 6ecm, 20Hz, 120cms ™
18. (b)32s.7x107m, 0.28 ms™>
19. 8.2x10'ms™’

20. 403.3Hz to 484Hz

Chapter Eight
Exercise 8.1
2. (a) 742x107C

(b) 3.7x107C, 1.48x107°C
3. (a) +3.6x10°C
(b) 0.2N, downward
(a) 1.4AN (b) 379.7N
0.25mfrom 2.5 uC
50 NC™, 28.1 NC
(b) 4.32x10° NC™!
0.55
10. 1.8x10"NC,

60° below x-direction

1. 3

° ® NS

Exercise 8.2

8. 59x10°ms™

9. 443 mm

11. 1.59x107""C

12. 3.6x107)

13. 1.29NC', 0V, 0
14. 46

15. 47.68V

Answers

Exercise 8.3

1.
4.

(a)3uA (b) 2.5uA
(a) 1.88x107%s
(b) 3.36x107's
1.44
(a) 1071, 9.4x107°]
(b) 9.4x107]
(a) (ii) 33.90 mm
(b) 8.44x107J, 1.28x10*J
(a) 3.22x107""F
(b) (i) 6X107°F
(i) 6.04x 10”°F

Revision exercise 8

1.
%

(@) 9x10’ N (b) =7.2N, 0.41m
(a) 9% 10" NC'in ydirection
(b) (i) 1.09x 10" NC™

(ii) 35.6 cm on the right of +2q

5.92x10°C

(a) 1.4x10°NC ' totheright
(b) 4.24m from the 0 cm mark
(a)5.0kV (b) 4.2x10’ms™
1904V

(a) 7.65 V (b) 7.65x107°]
(c) 7.65x107°]J

(d) =2.2x107%)

(a) 3.54x10°C (b) 125V

(c) 22x107°)

. (a) 2.66x10°F (b) 4.72x10”F
. (a) 8.19mC (b) 1.641]
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/ Index

A

absolute error 7,9
absolute temperature
207, 222, 223, 246, 247, 258,

297, 339

a car on a level rough curved
road 100

acceleration 2, 37, 95, 110,
273, 384

acceleration due to gravity
110, 384

accuracy 13, 14, 385

adhesive force 180

aerofoil lift 189

alternative hypothesis 23

alternative hypothesis 385

analysing 18, 25, 39, 41, 53,
54

angle of contact 180 - 184,
199

angular displacement 93, 94,
151

angular displacement 94,
164

angular momentum 127, 162
- 166

angular velocity 93, 94, 105,
130, 149 - 153, 162-
165, 167, 168, 169, 271,
278, 342

angular velocity 94, 150, 164

aphelion 107

application of ICT in Physics
i1, 29

applications of circular mo-
tion 103

applications of projectile
motion 84

/

artificial satellite 121
astronomical bodies 106
atmospheric pressure 176,
182, 190, 193, 200, 224,
254, 255, 268, 384
atomizer of sprayer 189
atomizer or sprayer 192
average thermal energy 221

B

background research 23

Bernoulli’s equation 188,
189, 192, 193, 201, 202

Bernoulli’s principle 170,
189, 192, 193, 202

Boltzmann’s constant 208,
384

Boyle's law 207, 222

breaking point 214

breaking stress 214

brittle 213, 214

bulk moduli 215

bulk modulus 214, 215, 216,
220

bulk strain 212

C

capillarity 180

capillary depression 182

capillary tubes 181

car shock absorbers 280

cast iron 214

celsius 222, 223, 225, 267

centre of gravity 100, 102,
103, 130, 168

centre of mass 127- 130, 137,

139, 140, 144, 146, 147,
156, 157, 166, 339

centrifugal pump 104

centrifuge 104

centripetal acceleration 94,
97, 103, 385

centripetal acceleration 95,
385

ceramic 214, 366

change of momentum 72,
206

Charles’ law 207

circular motion iii, 63, 93,
94, 100, 103, 105, 154,
271, 272, 385, 388

coalescing 176, 177

coefhicient of friction 69, 70,
82, 160, 162

coeflicient of surface tension
171, 174

cohesive force 170, 171, 180

cohesive forces 183

command 385

commands 36, 38, 39, 52, 53,
387

compound pendulum 146,
147

compressibility 215

compressibility 185

compressible 185, 186

computational physics 20

computer simulations 20

concave meniscus 180, 181

conservation of mechanical
energy 98, 155, 157,
278, 360

continuity 186-189, 202

controlled variable 385




creating questions 53, 54

critical velocity 105, 186

curve fitting 25

cyclist on a curved rough
level road 102

D

data analysis 24, 29, 55

data recording 24

descending in a lift 70

dimensional homogeneity
3,4

dimensions 2

displacement 17, 74, 83, 84,
87,93, 94, 128, 151,
164, 220, 247, 269, 270,
272,273,274, 277, 278,
279, 281, 282, 286 -
290, 291, 295, 296, 336,
342, 361, 385

displacement 272, 284, 288,
289, 290, 291, 296, 313

ductile materials 213, 214

dynamic component 193

dynamic lift 191, 192

E

ejected mass 79

Elastic collision 73, 386

elasticity 210,211, 213, 214,
216,219, 263, 296, 298

elastic limit 213, 214, 217,
219, 220

elastic properties 75

energy 1,2, 3,6,16,73-78,
83, 98,99, 114, 118,
119, 121, 126, 127, 130,
131, 133, 134, 151, 152,

153, 155, 156, 157, 161,
162, 164, 165, 167, 168,
169,171 -178, 183-185,
187, 188 - 190, 194,
203 - 205, 207 - 209,
217,219 - 221, 227,
229 - 232, 235, 237,
246, - 262, 264, 265,
267, 269, 278, 279, 281,
282, 285, 286, 289, 292,
294, 296, 308, 342, 357,
358, 360, 365 - 367,
373 - 375, 378, 379,
381, 382, 385, 386, 387,
388

energy of liquid surface 172

energy of satellites 118

equation of mass continuity
186 |

error in division 10 ‘

error in exponents 11

errors from a graph. 11

errors in a difference 10

errors in a product 10

errors in a sum 9

escape velocity 119, 120, 121

ethical consideration 26

excess pressure 175, 176,
182, 184, 277

. exhaust gases 79, 80, 83
~ experimental methods 18

expression 2, 3, 6, 16, 34, 36,
38,79, 101, 114, 177,
198, 201, 205, 245, 264,
265, 270, 284, 286, 305,
350, 361, 378, 382

expression 149, 289, 386

[ F

Fahrenheit 222, 223
field strength 114, 115, 121,

126, 347, 350, 356, 364,
365, 366, 380

fluid 20, 72, 104, 170, 185,
186, 187, 188, 189, 190,
193, 194, 195, 198, 199,
201, 202, 204, 229, 306,
387, 388

force of attraction 106, 108,
109, 110, 113, 117, 122,
183, 345, 386

fractional error 8, 10,11

free fall 70, 121,190

frictional forces 100, 101

gases 1iv, 44, 78 - 81, 83, 170,
185, 195, 203, 205, 207,
208, 210, 215, 221, 222,
224, 252, 253, 255, 264,
265, 296, 297, 339
geostationary satellites 119
graphical representation 25
gravitation iii, 106, 108, 386
gravitational constant 108,
121, 126, 386
gravitational field 113, 114,
115, 120, 121, 126, 170,
343, 357
gravitational field strength
114, 115, 121, 126
gravitational force of attrac-
tion 110,113,117, 122
gravitational potential 106,
114, 115, 118, 121, 126,
188
gravitational potential energy
114,121, 188
gravitational potential gradi-
ent 115
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H |

hearing 280

horizontal component 83,
84, 86, 97

horizontal range 86

hydrostatic stress 212

hypotheses 23, 55, 60

hypothesis 22, 23, 57, 386

I |

ice point 224, 225, 228

ICT iii, 2, 13, 14, 18, 28, 29,
30, 39, 57, 84, 383, 386

ideal gas 205, 207, 209, 222,
228, 252, 253, 254, 256,
257, 258, 259, 261, 262,
264, 265, 297

Importing and exporting
data 45

impulse of the force 72

Impulsive forces 71

inclined plane 26, 64, 65, 68,
69, 87, 89, 90, 122, 146,
155, 156, 157, 158, 159,
160, 162, 167, 357

incompressible fluid 185,
194

Information and communi=
cation technology 29

isothermal condition 175,

177, 200
¢ K |
< _

kelvin 222, 223, 246, 247

Kepler’s First Law 107

Kepler’s laws of planetary
motion 106, 107, 121

ir Advanced .';lf'l'i-'“‘..lllulrl'l Schools

Kepler’s Second Law 107

Kepler'’s Third Law 107, 108

kinetic theory of gases 205,
264, 265, 339

L

Launching of a satellite 116

law of conservation of linear
momentum 71, 73,76

law of mass continuity 186

lift 70,71, 82, 189, 191, 192,
193, 219

linear momentum 71, 73, 74,
76, 78,79, 80, 83, 163,
164, 385, 386

line of action of the force
148, 174

liquids iv, 170, 171, 183, 185,
188, 203, 204, 205, 210,
215, 221, 243, 296,297

longitudinal strain 214

Mass ascending 70
mass flux 186
Mathematical models 19
Matlab 30
Maximum height 85, 87
Maximum tension 99
Mean absolute error 7, 15
Measurement iii, vi, 1, 8, 24,
173, 181, 382, 387
Methodology 56, 387
minimum tension 99
Moduli of elasticity 214
modulus 16,41, 213 - 221,
263, 264, 296-298, 341
modulus of elasticity 213,

214, 216, 296

moment of force 148, 149,
160, 388

moment of inertia 6, 127,
130 - 144, 146, 148-
155, 157, 159 - 169,
387

moment of inertia of a disc
133, 143

moment of inertia of a ring
132

moment of inertia of a solid
sphere 134, 144, 160

moment of inertia of a solid
sphere 134

moment of inertia of fly-
wheel 133

| Moon 105, 106, 107, 108,

109, 115,116, 120, 121,
126, 384

motion in a horizontal circle
96

motion in a vertical circle 98

motion of connected bodies
65

musical instruments 280

N |

natural satellite 116

Newton’s law of universal
gravitation 106, 108,
121, 122

Newton's Law of Universal
Gravitation 108

non-uniform motion 93, 98

non-viscous fluid 185, 188,
189, 201

null hypothesis 23

null hypothesis 387

number of revolution 152




0

observation 23, 24, 57

observational method 19

Octave 18, 30, 34, 35, 38, 39,
44, 52, 53

orbital velocity of a satellite
117

Origin 18, 30, 39

oscillations 8, 16, 21, 30, 61,
146, 147, 269, 274, 277,
282, 283, 284, 285, 291,
328, 341

Oscillations of a simple pen-
dulum 277

P

)

parabolic 85, 103, 116, 124,
226

parallel axis theorem 138-
142, 145, 146, 155

parking orbit 119, 121

partly plastic 213

peer review 22, 25, 26

Peer review 387

Period 21, 24, 117, 147, 272,
281, 282

Period of a satellite (T) 117

permanent stretch 213

physical quantities 1-7,9,
11,17, 219,284

Physics i, iii, vi, 1, 15, 18, 27,
29, 34, 45, 60, 61, 106,
365, 383, 389

Pitot tube 193

planets 106, 107, 108, 113,
125, 338

point of contact 180, 225,
313

Poiseuille’s formula 194, 196,
197, 201

potential energy 74, 98, 114,
118, 121, 153, 156, 172,
173,174, 187, 188, 189,
190, 217, 219, 220, 269,
278, 279, 296, 342, 357,
358, 366, 373, 374, 381

precision 1,6, 7,13, 14, 15,
17, 158, 285

pressure gradient 3, 195

principle of conservation of
mass 186

program 41

program 387

programming languages 30

projectile motion iii, 83, 85,
89, 90,91

projectile on an inclined
plane 89

projectiles fired from a point
above the ground 87

prompt 34, 39, 53, 385

prompt 387

PSPP 18, 30,39

publishing 27, 389

Python 18, 30, 34, 35, 36, 37,
39-41, 44, 45, 52,61

R

radius of gyration 144, 145,
146, 148, 157

rational kinetic 155

recording data 30

relative error 8,9

research question 20, 23, 24,
25, 27, 54, 56, 60

rigid bodies iii, vi, 127, 138,
139, 165

rolling 77, 138, 146, 155,
156, 157, 158, 159, 160,
162, 165, 167

root mean square speed 205,
207, 208, 209, 210, 265

rotating fluids 103

rotating uniform rod 131

rotational kinetic energy
130, 131, 152, 165, 207,
208

rotational motion 127, 130,
155, 160, 164, 165, 387

.,“’q S |

satellites 19, 93, 108, 116,
118, 119, 120, 121

science vi, 28, 29

scientific method 22, 388

scientist 18, 24, 26, 30, 45,
56, 330

sedimentation principle 104
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sinusoidal representation of
shm 270
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statistical Analysis 25
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theoretical method 19
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Torricelli’s theorem 190

torsional motion 146

total pressure 193, 206

Trajectory 84, 85, 388

translational motion 155,
160

turbulent flow iv, 186, 194

U

e
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universal 106, 108, 121, 122,
207, 208, 253, 258, 386

universal gas constant 207,
253, 258
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Variation of g with latitude
112

Velocity 2, 80, 86, 89, 164,
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volume expansion 221
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